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Abstract— Some commonly used inter-domain-routing
policies—e.g., those using BGP’s MED attribute for cold-potato
routing—are beyond the scope of routing theory developed
to date. This is because these policies cannot be expressed
as a linear preference ranking of available routes at each
node. Existing characterizations of well-behaved path-vector
routing, however, critically depend on this linear ranking and
do not naturally extend to more complex policies. In this paper,
we present a framework that is able to model these more
general policies. We use it to give the broadest-known sufficient
condition for robust convergence of path-vector protocols, even
when complex policies are used. In doing so, we present a new,
unified notion of order on policies; this reduces to earlier results
in the case of restricted policies, but it allows us to analyze
the practically useful but inconsistent policies that could not
be directly modeled before. As an application, we rigorously
analyze (and improve) various robust protocol-design proposals.

I. I NTRODUCTION

Most routes on the Internet transit several independently
administered network domains, called autonomous systems
(ASes). Establishing connectivity between ASes, called inter-
domain routing, is accomplished today using the Border
Gateway Protocol (BGP) [1], a path-vector protocol. Routes
are computed hop-by-hop through the network; at each step,
routing decisions depend on routing policies configured locally
within each AS. Convergence to a stable Internet routing thus
depends on a composition of decisions involving many com-
plex, autonomously provided inputs. Previous work [2] has
shown that the interaction of these local policies can produce
global anomalies in BGP,e.g., nondeterministic routing and
protocol divergence. To achieve greater network stability, a
better understanding of the interaction of routing policies is
necessary; furthermore, this must be done in a rigorous manner
so that network operators can rely on provable guarantees
about protocol behavior, even in worst-case scenarios.

This paper continues a line of work that explores the
theoretical foundations of inter-domain routing and routing-
policy interaction. Formal analysis of path-vector protocols
that derived general sufficient conditions for robust conver-
gence [3]–[7] ignore the complexities of sharing inter-domain
routes within an AS; in particular, the model of the Internet
assumes that every AS can be represented by one node in
a graph with a single routing policy and a single link to

each neighboring node. (In reality, an AS is often made up
of several routers that maintain BGP sessions; these sessions
often connect links to different neighboring ASes and provide
multiple inter-connections between the same ASes.) As a
result, these works fail to model some commonly used policies
in BGP today,e.g., the use of the Multi-Exit Discriminator
(MED) attribute for cold-potato routing (discussed below in
Example 2.8). One problem is that these policies seem to have
“inconsistent preferences,” because it is not possible to say that
a given route is always better (or worse) than another.

On the other hand, work that addressed MEDs [8]–[10] did
not give the policy-interaction analysis tools that the formal
models have. This paper bridges this gap by presenting a
generalized model to capture the static semantics of policy
interactions for both inter-domain and intra-domain BGP ses-
sions. We use this model to derive the first known sufficient
condition—analogous to the simplified case—that guarantees
robust protocol convergencedespiteinconsistent preferences.

In the rest of this section, we review the state of existing
theoretical frameworks for inter-domain routing and previous
attempts to analyze MED-related anomalies. In Section II,
we introduce our model and show that simple uses of incon-
sistent preferences (which we formally define)—even at just
one node—can cause routing divergence. We then derive the
generalized convergence condition in Section III and discuss
various applications in Section IV, including a space-efficient
version of a proposal from [8] to prevent MED oscillations.

A. BGP Convergence Conditions

Gao and Rexford [5] showed thatrobustness—predictable
convergence to a stable routing, even after link and node
failures—is achieved when all policies follow constraints
induced by a hierarchy corresponding to a simplified version
of today’s commercial Internet. However, minor changes to
the business relationships, flexibility in the constraints, or
misconfiguration could still lead to routing instability.

Griffin, Shepherd, and Wilfong [6] proposed the Stable
Paths Problem (SPP) as the underlying formal problem solved
by BGP. SPP captures the static semantics of routing-policy
interaction as a total preference order of routes at each
node. They were able to give a sufficient global condition
for robustness, but showed that checking individual policies



exactly for the existence of a stable routing solution isNP-
hard. Combining the results of [5] and [6] gave a simplified
version of BGP that assumed the underlying business hierarchy
but allowed back-up routing while remaining robust [11].

These initial results were incorporated into theoretical
frameworks [3], [4], [7] that model the behavior and design
of path-vector protocols more generally, which allow rigorous
analysis of convergence conditions. These works showed that
consistency among the many preference orderings of routes
at different nodes, together with ordering routes by path
length, represents a sufficient condition for robust convergence
equivalent to that of the original SPP work.

B. MED-Induced Oscillations

Unfortunately, the above convergence conditions only apply
to protocols in which preferences are totally ordered at each
node. We call this propertyindependent route ranking(IRR)
because the rank of a path does not depend on what other
routes are known; the rank of two routes can be directly
compared to determine which is best. (This property was
also listed in [12], calledset-immune determinism.) However,
BGP’s full route-selection procedure cannot be modeled in this
way. In particular, use of the Multi-Exit Discriminator (MED)
attribute may violate IRR (as in Example 2.8).

MED-induced oscillations are a well-known problem of
BGP [13]–[15], and it has been conjectured that the violation
of IRR is the major reason. These oscillations are especially
difficult to analyze and debug on a real network because they
are a product of not only BGP policy settings—involving
attributes set in separately configured, independent ASes—but
also internal distance settings within an AS (determined byan
interior gateway routing protocol, or IGP).

There has been some work on the consequences of using
the MED attribute, but the results have been incomplete.
Basu et al. [8] and Musunuri and Cobb [10] proved that
including in advertisements routes not chosen as best prevents
MED-induced oscillations, but this change to BGP would
increase the size of routing tables and the number or size of
update messages. Griffin and Wilfong [9] presented examples
of MED-induced oscillations and described them using an
extension to their SPP model, but did not give a robustness
constraint as in the original model. Other suggestions to solve
the MED-oscillation problem affect the use of route reflectors
and configuration of iBGP sessions within an AS [16] or
require changing the interpretation of attributes [15].

This paper presents a formal model for policy routing
that applies to configurations with or without IRR violations,
including use of the MED attribute. We derive a constraint for
policy configuration that guarantees robust convergence for the
general case; it applies to instances of the original SPP model
as well. Our extension to the general case is nontrivial, because
previous conditions were expressed in terms of route rankings,
which our model does not require. We also use the constraint
to rigorously evaluate conjectured solutions to the MED-
oscillation problem; in particular, we discuss a modification to
the solution of Basuet al. [8] that requires fewer resources.

II. A G ENERALIZED FRAMEWORK FOR

INTER-DOMAIN ROUTING

We begin this section by reviewing the dynamics of inter-
domain routing protocols. We then define route-selection func-
tions and independent route ranking (IRR), explaining the
difference between our more general definitions and the more
specific definitions used in previous theoretical work. We then
present the Generalized Stable Paths Problem (GSPP) as the
underlying theoretical problem being solved by routing proto-
cols; it incorporates the generalized version of route selection.
In doing so, we provide an example GSPP demonstrating a
MED-induced oscillation.

A. Overview of Inter-Domain Routing

Internet traffic isforwarded from source to destination by
routers along paths that traverse inter-domain and intra-domain
links. Routers perform a basic forwarding operation, in which
the destination IP address of a packet of traffic is matched to
an entry in a forwarding table, and the packet is sent to the
correspondingnext hop—or neighboring router—listed in the
entry. The job of routing protocols is to fill this forwarding
table to form consistent, loopless paths for traffic to follow.

Intra-domain routing is well understood and is often based
on simultaneous best-path calculations using some Interior
Gateway Protocol (IGP)—at the intra-domain level, “best” is
often defined as shortest. Inter-domain routing, however, is
more complicated because the autonomy of domains and the
scale of the Internet prevents both information about network
topology to be distributed for such calculations and coordi-
nation or consistency among definitions of “best.” Therefore,
routes are computed on a hop-by-hop basis and decisions are
influenced by local policy configurations.

Knowledge about destinations is learned throughadvertise-
mentsfrom neighboring routers; once a path to another AS
is established, an AS will share thatreachability information
with its neighbors so that they gain knowledge of the destina-
tion as well. Assuming that destinations are firstoriginatedby
the router responsible for that destination, paths are established
by repeating the following three-step process:

1) Information about established routes through neighbor-
ing routers is collected, calledimporting routes. The
route data stored in the local routing table depends on the
route information in the update message and theimport
policy; the policy mayfilter routes entirely,i.e., remove
them from consideration.

2) For each destination, the protocol’s best-routeselection
procedureis used to choose best routes from the local
routing table. Best routes are then used to populate the
forwarding table for these destinations.

3) Best routes are advertised to neighboring routers, called
exporting. Update-message information about these
routes is influenced byexport policy, which may also
filter routes.

The routers with inter-AS connections exchanging this infor-
mation areborder routers; however, any non-border routers



must learn about external destinations as well. The inter-
domain protocol is thus also used to share external destina-
tions with internal routers. As a result, path-vector protocols
accomplish two inter-domain routing tasks:

1) establishing connectivity and sharing reachability infor-
mation across inter-domain links; and

2) distributing knowledge of inter-domain routes to non-
border routers.

Much of inter-domain-routing theory developed to date fo-
cused on task (1),e.g., [4]–[7]. The Internet was modeled as a
graph in which each vertex represents one AS; only inter-AS
connections were considered and anomalous behavior related
to task (2) was ignored. However, such anomalies have indeed
been identified [13]–[15], and this paper extends routing theory
to address these anomalies.

We write paths in the direction of forwarding traffic;e.g.,
P = v0v1 · · · vn is a path from nodev0 to destinationvn.
Node v1 is the next hop onP . At the inter-domain level,
most nodesvi will represent ASes, not individual routers.
However, because of task (2), it will be important to write
a portion of the path from the source router to the border
router such that nodes represent internal routers;e.g., we may
write P = ABC(3)(6)(12)(7) for a path from the source
AS starting at routerA through internal routerB to border
router C, then onto ASes3, 6, and 12 before reaching the
destination AS7. We assume that each transit and destination
AS can appropriately route traffic within itself; thus inter-
domain messages do not contain intra-domain information
for other ASes. In general, when a router is establishing
forwarding paths to a destination, we can view the Internet
graph from that router’s perspective as one in which all other
ASes are represented by one node, neighboring ASes connect
to the border routers of this router’s AS, and other nodes
represent the intra-domain routers and connections.

B. Route-Selection Functions and Independent Route Ranking

Step 2 in the above-described three-step process of choosing
best routes from a routing table can be modeled by the
following type of function.

Definition 2.1: A route-selection functionσv maps a set of
pathsR to a setS ⊆ R that is a set of “best” routes at node
v; we write σv(R) = S. When we restrict the selection to a
particular destination, we will writeσd

v(R) = Sd such that all
pathsSd have destinationd.

In most cases, including BGP,|σd(R)| ≤ 1 for a set of paths
R and some destinationd (i.e., for each destination, at most
one best path is chosen; we refer to these assingleton-valued
selection functions). Furthermore, we assume that choosing
some permitted path is preferred to choosing no path, although
some paths are filtered by local policy so that they are never
considered as part of the selection process. Assuming that
these filtered paths are not stored in the routing tableR, then
for all Rd ⊂ R to a particular destinationd, Rd 6= ∅ implies
σd(Rd) 6= ∅. The process of collecting and storing routes,
including what data structures are used for this purpose, and

how it interacts with the selection procedure depend on the
protocol implementation.

Independent route ranking (IRR) means that the preference
of a path relative to other paths depends only on that path
alone (and any information in that path’s routing-table entry)
and not knowledge of other paths.

Definition 2.2: A selection functionσ obeys Independent
Route Rankingiff, for all sets of routesR1 and R2 and
destinationsd, the following two conditions hold:

1) σd(R1) = S implies σd(R1 ∪ R2) ∩ (R1 \ S) = ∅; and
2) σd(R1) = S andσd(R1∪R2)∩S 6= ∅ impliesσd(R1∪

R2) ⊇ S.
We call violations of the first conditiontype-1 IRR violations
and those of the second conditiontype-2 IRR violations. For
singleton-valued selection functions, the above definition of
IRR is equivalent to the following: if pathP1 is chosen over
all paths inP as best, then additional knowledge of a route
P2 6∈ P does not permit another routeP3 6= P1 in P to
be chosen as best; onlyP1 or P2 may be chosen relative to
P ∪{P2}. (Condition 2 is irrelevant for single-valued selection
functions.)

Previous theoretical work [4], [6], [7] on path-vector pro-
tocols modeled only selection functions that independently
assign arank to each route and choose the path of minimal
(or maximal) rank. Selection functions written in this way are
called linear selection functions; at each node, the preference
order on unfiltered (permitted) paths is consistent with a linear
order. Because the protocol-convergence conditions described
in [4], [6], [7] depended on this notion of rank, they do
not apply to the more general setting involving arbitrary
selection functions. (Note, however, that a preference ranking
in terms of path attributes that corresponds to a given linear
selection function may be quite complex.) We now show the
relationship between linear selection functions and IRR; due to
lack of space, these proofs may be found in the full report [17].

Definition 2.3: A selection functionσ is a linear selection
function iff there exists a mapω : P → U from permitted
pathsP to a totally ordered setU such that

∀R ⊂ P , σ(R) = {P | ∀P ′ ∈ R, ω(P ) ≤ ω(P ′)} .
Proposition 2.4:A selection function has no IRR violations

iff it can be written as a linear selection function.
It has been conjectured that IRR violations are a major cause

of protocol oscillations [8], [9]. Proposition 2.5 shows that
even a single IRR violation can cause divergence.

Proposition 2.5:Supposeσv is an IRR-violating (nonlin-
ear) selection function. Then there exists an oscillating net-
work instance containing nodev in which all other nodes have
IRR (linear) selection functions.

C. Generalized Stable Paths Problem

The Stable Paths Problem (SPP) [6] was suggested as the
theoretical problem underlying inter-domain routing, butit
limits nodes’ route-selection functions to linear selection func-
tions. We now present the generalized version first discussed
in [9] to accommodate modeling attributes in BGP that are
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inconsistent with independent route ranking; from this point
on, we assume that selection functions are singleton-valued.

Definition 2.6: An instance of theGeneralized Stable Paths
Problem (GSPP)is a networkG = (V, E) and a set of
permitted pathsP in G to a fixed destination nodev0 ∈ V .
(The setP of permitted paths can be partitioned into setsPv,
v ∈ V , which are the permitted paths at nodev, i.e., starting at
v and ending atv0.) All nodesv 6= v0 have a route-selection
functionσv0

v : 2Pv → Pv. A path assignmentπ : V → P is a
solution to GSPP iffπ(v0) = (v0) and for everyv 6= v0 ∈ V ,
π(v) = σv0

v ({vP ∈ P | P = π(u) and{u, v} ∈ E}).
Remark 2.7:GSPP isNP-complete. This is because GSPP

is in NP—given a solution, it is easy to check whether it
is stable—and because SPP, anNP-complete problem [6],
trivially reduces to GSPP by writing its path preferences as
(linear) selection functions.

Example 2.8:Figure 1 shows an example GSPP, which was
given in [9] and is namedMED-EVIL . This instance models
the route-selection procedure of BGP running on a network in
which the MED attribute is used. The network is shown from
the perspective of AS 3.

When a route is imported from neighbors, it is given a
local-preference value that is entered into the routing table
to indicate how “good” the route is; the MED attribute, on
the other hand, is set by theexporting(or advertising) AS to
indicate its preference among multiple inter-AS connections.
The path-selection procedure for BGP is as follows:

1) Choose routes with the largest local preference.
2) In the case of a tie, routes with the shortest AS-path

length are chosen.
3) In the case of a tie, if there are multiple paths to the same

AS, choose the path with the lowest MED value. MED
values are only compared among paths to the same AS.

4) If there remains a tie because there are paths to different
ASes, choose the path with the shortest IGP distance to
its egress point.

The importing AS has ultimate control by setting local-
preference values, but these are often set equally for all routes
through a given AS, even across different inter-AS links. In
practice, this allows a neighboring AS to influence the choice
between the inter-AS links by using the MED attribute.

If MEDs are not used (i.e., ignoring step 3), the route-
selection procedure above (via step 4) breaks ties based on
minimal IGP distance; this is known ashot-potato routing, in
which nearest egress points are used. Otherwise, the termcold-
potato routingis used, and neighboring ASes can express al-
ternate preferences for ingress points using the MED attribute.
For example, consider a small network with high costs to carry
traffic internally, and suppose it has inter-AS connectionsto its
Internet provider in California and New York. When advertis-
ing destinations to the provider, the small customer can attach
appropriate MED values so that the provider chooses egress
points closest to each destination; traffic traverses as little
of the customer network as possible. If the provider instead
used basic hot-potato routing, traffic would exit the provider
network at first opportunity (close to the source), possibly
causing the customer to handle transcontinental traffic.

The instanceMED-EVIL , shown in Figure 1, was first given
in [9] as an example of a MED-induced oscillation. IGP
distances are listed as numbers next to links; MED values
are listed next to inter-AS connections in parentheses. Letthe
fixed destination be AS 0, and assume that all paths have the
same local-preference value assigned at AS 3. The selection
functions for the internal routersA andB are also shown. It is
important to note thatσA has an IRR violation because of the
MED values set by AS 2; thus, the paths cannot be ranked and
this configuration cannot be represented as a standard SPP.

To see why this GSPP has no solution, assume thatA and
B have not advertised routes to each other; then they will
chooseAD20 and BE20, respectively, because of minimal
IGP distances. If these nodes share these choices,B will still
chooseBE20 because, even thoughBAD20 has a shorter
IGP path length, its MED value is higher thanBE20 and both
paths lead to AS 2. RouterA, upon learning ofABE20, will
no longer considerAD20 because of its higher MED value
and will chooseAC10 instead (because of its IGP path length
is shorter thanABE20, the other viable option). WhenA’s
new choice is broadcast toB, routerB will chooseBAC10
because of its shorter IGP distance (overBE20), withdrawing
BE20. However, this withdrawal removes the path through AS
2 with lower MED value, causingA to chooseAD20 again,
withdrawing AC10. Thus, we have an oscillation similar to
that in the proof above.

D. Convergence Properties

We are not only interested in whether policies interact to
allow a stable path assignment,i.e., whether or not a GSPP has



a solution, but also in how path-vector protocols, following the
three-step hop-by-hop process described above, can reach that
assignment. In the next section we will provide a broad suffi-
cient condition that guarantees robust protocol convergence to
a unique solution. To derive this condition, we must investigate
protocol behavior in addition to the existence of solutions. The
evaluation digraph, which is a graph constructed from a GSPP
instance and defined below, allows us to do this.

To simplify our discussion of convergence properties, we
assume that routes to different destinations are computed
independently; therefore, we can always discuss protocol con-
vergence with respect to one destination. This allows us to use
GSPPs to describe protocol convergence in general.

Definition 2.9: The evaluation digraphof a GSPP instance
S is a directed graphT (S) = (VT , ET ) in which the nodes
representprotocol selection states, and the edges represent
transitions between states. A selection state is a path assign-
ment π ∈

(
∏

v∈V Pv

)

; if α ∈ VT , then we denote the path
assigned toα by πα. Thestart stateis the node corresponding
to the empty path assignment, in whichπ(v0) = (v0) and, for
v 6= v0, π(v) = ǫ, the empty path.

The directed edge(α, β) is present inET iff

∀ v ∈ (V \ {v0}) , πβ(v) = σv0

v





⋃

{u,v}∈E

{vπα(u)}



 ;

i.e., given that nodes select the pathsπα and then broadcast
these selections to their neighbors through asynchronous FIFO
links, nodes might next select the pathsπβ . Note that there
may already be path data in the links that has been delayed in
transit, so thatπα(v) = P andπβ(v) = P ′ but, for a neighbor
u, πα(u) = Q and πβ(u) = uP . (Therefore, states may not
be consistent; these states are not acceptable as solutions.)

We can follow the execution of a path-vector protocol on a
GSPP instance by itstrace, which corresponds to a directed
path in the evaluation digraph beginning at the start state.
Traces end atsink states, i.e., nodes whose only outgoing
edges are loop edges. Because the evaluation digraph is finite,
if all traces are acyclic (ignoring loop edges), then all protocol
runs will converge. It is clear that, equivalently, if the network
dynamically oscillates during route selection then there is a
cycle in its evaluation digraph; each of the paths among which
a node oscillates will appear in at least one of the states in the
corresponding cycle.

Proposition 2.10:A path assignment corresponds to a sink
state iff it is a solution.

Proof: A solution is a stable routing tree. Supposeπα

is a solution; then by Definition 2.6, for allv 6= v0 ∈ V ,
σv0

v

(

⋃

{u,v}∈E{vπα(u)}
)

= πα(v). By Definition 2.9, this is
equivalent toα having no outgoing edges in the evaluation
digraph other than loop edges,i.e., thatα is a sink state.

Therefore, we can define protocol-convergence properties in
terms of the structure of the corresponding evaluation digraph.
The following combinations of the existence of solutions and
the ability of protocols to reach those solutions are of interest.

Definition 2.11: The following are convergence properties
for GSPP instances.
Solvability: A GSPP issolvable if there exists at least one
path assignment that is a solution;i.e., the evaluation digraph
of the GSPP has at least one sink state.
Unique Solvability (Predictability): A routing configuration
is uniquely solvableif there exists exactly one GSPP path
assignment that is a solution;i.e., the evaluation digraph
contains exactly one sink state.
Safety: A routing configuration issafeif a path-vector proto-
col is able to converge to a solution;i.e., all traces in the
GSPP’s evaluation digraph are acyclic. The existence of a
solution does not determine safety.
Robustness:A routing configuration isrobustif it and all sub-
instances (resulting from node or link failures) are uniquely
solvable and safe;i.e., all traces in the GSPP evaluation
digraph are acyclic and end at the same sink state.
We are interested in robust path-vector protocols because these
avoid nondeterminism and divergence, which are problems
that are difficult for network operators to understand and debug
when they occur at the inter-domain level.

Remark 2.12:Note that the definition of robustness, while
requiring all sub-instances to be predictable and safe, requires
all traces only in the original GSPP’s evaluation digraph to
be acyclic and end at the same sink. This is because sub-
instances have evaluation digraphs that are subgraphs of the
original instance’s evaluation digraph (with some paths no
longer possible because of failures); the property of acyclicity
holds on subgraphs.

Remark 2.13:The generalization of SPP to GSPP leads to
a parallel generalization of the PVPS framework of [4]. The
technical report [17] discusses that generalization, which we
call the GPVPS (Generalized PVPS) framework. The conver-
gence properties that we discuss here have GPVPS analogues,
and the sufficient condition for robust GSPP convergence may
be used as a global constraint on GPVPSes [17].

III. G ENERALIZED CONVERGENCECONDITIONS

Given a set of routing-policy inputs, we can study the corre-
sponding GSPP instance’s evaluation digraph to see how they
affect path-vector-protocol execution. However, an evaluation
digraph is both large and complex; it is impractical to construct
it as this requires simulating all possible update sequences.
Griffin, Shepherd and Wilfong [6] showed that a smaller
structure, called adispute wheel, can be constructed from an
SPP instance that is not robust. Unfortunately, the original
definition of the structure is not compatible with nonlinear
selection functions.

In this section we begin by introducing a new version of
dispute wheels and prove that it adequately captures oscil-
lations in GSPPs. From that discussion, we are then able
to describe oscillations in terms of an underlying order on
permitted paths described by local-policy configurations.This
notion ofpartially ordered SPPsfirst appeared in [4]; however,
because our generalized version of the problem does not have
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a notion of rank, we must nontrivially change the components
of this order to correctly describe the robustness condition.

A. Generalized Dispute Wheels

Definition 3.1: A generalized dispute wheel(see Figure 2)
containsactive nodesv0, . . . , vk (with all subscripts inter-
preted modulok + 1) such thatvi has aspoke pathQi to the
destinationd andvi andvi+1 are connected by arim segment
Ri+1 such that either:

1) ∃S ⊇ {Qi, Ri+1Qi+1} s.t. σd
vi

(S) = Ri+1Qi+1; or
2) ∃S 6∋ Ri+1Qi+1 s.t.:

a) σd
vi

(S ∪ {Qi}) 6= Qi and
b) σd

vi
(S ∪ {Qi, Ri+1Qi+1}) = Qi; or

3) ∃S 6∋ Ri+1Qi+1 s.t.:
a) σd

vi
(S ∪ {Qi}) = Qi and

b) σd
vi

(S ∪ {Qi, Ri+1Qi+1}) 6∈ {Qi, Ri+1Qi+1}.
Remark 3.2:Note that of the three relationships between

active nodes in a generalized dispute wheel, only condition
(1) can occur for a linear selection function; conditions (2)
and (3) imply the existence of an IRR violation. Condition (1)
is analogous to the condition on rim segments found in the
original definition of a dispute wheel for standard SPPs.

The generalized dispute wheel is a graph constructed from
a GSPP instance, using the same nodes and edges in the
instance’s network graph. However, nodes may appear more
than once in a dispute wheel,e.g., in multiple spoke paths.

Theorem 3.3:If the evaluation digraph of a GSPP instance
contains a cyclic trace,i.e., if a GSPP instance is not safe,
then there exists a generalized dispute wheel.

Proof: Let C be a cycle in the evaluation digraph of
the instance,v0 a node which does not select the same route
throughoutC, andQ0 one of the paths thatv0 selects inC.
Without loss of generality, we may assume thatu is the last
(and thus only) node onQ0 that does not select the same
route throughoutC. Viewing Q0 as one of the spokes of
a generalized dispute wheel, we now construct another such
spoke and a rim segment joining it to the spokeQ0.

Let v0P1 be the next path thatv0 selects inC, and letx1

be the first node onP1. If x1 oscillates its path selection inC,
then letv1 be the last cycling node onP1, let Q1 = v1 · · · d
be the next spoke, andR1 = v0x1 · · · v1 be the rim segment
connecting these two spokes. (BothQ1 andR1 are subpaths
of P1.) Becausex1 oscillates inC, it must broadcast and

withdraw P1 during the oscillation, and one of these actions
causes the selection-state transition; thus the rim segment
satisfies condition (1) in Definition 3.1.

If x1 does not oscillate inC, let v0P2 be the path thatv0

selects inC after v0P1 and x2 the first node onP2. If x2

cycles inC, we may proceed as above, otherwise we consider
the pathv0P3 that v0 selects inC after v0P2, etc.Eventually,
we either construct another spoke connected toQ0 by a new
rim segment or we progress through all ofC and return to the
path assignment in whichv0 selectsv0P1. If the latter happens,
thenv0 cycles through a sequence of paths inC, and each of
these paths is learned from a neighbor who does not cycle
in C. All of these paths are thus known tov0 at all times,
therefore all of the changes in path assignment tov0 must be
the result of IRR violations. (This is because a change in path
assignment requires thatv0 know of different routes before
and after the change. If the change selects a route that was
already known but not chosen, by Definition 2.2, the selection
function for v0 has a type-1 IRR violation.)

In this case, assume thatv0’s selection ofQ0 is the result
of σd

v0
(S) = Q0 and v0’s choice of v0P1 is the result

of σd
v0

(S1) = v0P1, with Q0, v0P1 ∈ (S ∩ S1). Because
S ∆ S1 6= ∅, there is some routeP2 such that either learning
or withdrawingv0P2 causes the transition fromS to S1 and
Q0 to v0P1. Let x be the first node onP2 and v1 be the
last oscillating node onP2. (There is such a node becauseP2

is broadcast and withdrawn in the oscillation; otherwise we
would not have this oscillation.) Then we can letQ1 = v1 · · · d
be the next spoke, andR1 = v0x · · · v1 be the rim segment
joining them such that either condition (2)—ifP2 is learned—
or condition (3)—ifP2 is withdrawn—is satisfied.

Because the oscillation cycle is finite, we can repeat this
process until we reach a selection state or path assignment that
we have already visited. At this point, a subset of the spoke
and rim segments will form a generalized dispute wheel.

Corollary 3.4: If an instance of GSPP is not solvable, then
it contains a generalized dispute wheel.

Proposition 3.5: If an instance of GSPP has multiple solu-
tions, then it contains a generalized dispute wheel.

Proof: We follow an analogous proof method in [6].
Supposeπ1, π2 are two solutions; we can view these as trees
in the network, rooted at the destinationv0: Ti =

⋃

v∈V πi(v).
Then letH = (V, E(T1) ∩ E(T2)) be the graph induced by
the intersection of the trees and letT be the component ofH
including v0. T1 6= T2 implies thatV − V (T ) is nonempty.

In the following process, assume that all nodesui are
assigned paths in both solutions. Choose an edge{u1, v1} ∈
T1 whereu1 6∈ V (T ) andv1 ∈ V (T ). Thenπ1(u1) = u1Q1,
whereQ1 is the path inT from v1 to d; π1(v1) = π2(v1) = Q1

so thatQ1 is in both solutions becauseT is the intersection of
both solutions. There is some other pathP1 = π2(u1) in T2;
this path is of the formR2Q2 whereR2 = u1 · · ·u2 contained
in T2 \ H and Q2 = v2 · · · d contained inT . Note that
π2(u2) = u2Q2, so we can repeat this process by examining
the pathπ1(u2). Continuing, we can alternate between both
solutions until we repeat a nodeui.



The pathsRi, Qi form a generalized dispute wheel. This is
because for eachi, there must exist someS ⊂ Pui

such that
σv0

ui
(S ∪ {Ri+1Qi+1, uiQi}) = Ri+1Qi+1 because for either

i = 1 or i = 2, πi(ui) = Ri+1Qi+1 given the construction
above. (If not,πi is not a stable solution: BecauseQi is
in the intersection of both solutions, the pathuiQi must be
available.) This satisfies condition (1) in Definition 3.1.

The contrapositive of the above three assertions forms a
sufficient condition on GSPP instances that guarantees robust
protocol convergence; we summarize this as the following.

Proposition 3.6: If a GSPP instance has no generalized
dispute wheel, it is robust.

B. Partially Ordered GSPPs; Generalized Dispute Digraphs

The three types of conditions described in Definition 3.1 that
connect dispute-wheel spokes by rim segments can be used to
define relations between permitted paths in a GSPP. Here, we
use these relations to define another tool for characterizing
policy disputes—a generalization of the dispute digraph [4],
[6]. Intuitively, when policies are consistent with a partial order
defined by these path relations, they do not induce a global
routing anomaly.

Definition 3.7: Define the following four relations on per-
mitted paths in a GSPP instance; assume thatv0 is the fixed
destination node and thatu, v ∈ V are other network nodes.
Subpath: P1 ⊖ P2 iff

P1 = v · · · v0, P2 = u · · · v0, anduP1 = P2

Linear Selection: P1 ⊘ P2 iff

P1 = v · · · v0, P2 = u · · · v0, and
∃S : σv0

u ({uP1, P2} ∪ S) = uP1

Nonlinear Selection (first type): P1 ⊙1 P2 iff

P1 = v · · · v0, P2 = u · · · v0, and∃S 6∋ uP1 :
σv0

u ({P2} ∪ S) 6= P2 andσv0

u ({uP1, P2} ∪ S) = P2

Nonlinear Selection (second type):P1 ⊙2 P2 iff

P1 = v · · · v0, P2 = u · · · v0, and∃S 6∋ uP1 :
σv0

u (S) = P2 andσv0

u ({uP1} ∪ S) 6∈ {uP1, P2}

We now define the following graph on the set of permitted
paths using the above relations.

Definition 3.8: Given a GSPP instanceS, its generalized
dispute digraphis the directed graphD(S) = (VD, ED). The
nodesVD = P are the permitted paths in the network. The
directed edge(P1, P2) is present inED iff one of P1 ⊖ P2,
P1 ⊘ P2, P1 ⊙1 P2, or P1 ⊙2 P2 holds.
Note that the dispute digraph is smaller than the evaluation
digraph as each node is labeled with a single network route
rather than a set of network routes; it is also easy to build
given the definition of each node’s selection function.

Because the relations correspond to transitions in the evalu-
ation digraph and connections between dispute-wheel spokes,
we can prove the following.

Theorem 3.9:A GSPP instance has a generalized dispute
wheel iff it has a cycle in its generalized dispute digraph.

Proof: First assume that the instance has a generalized
dispute wheel. Its rim gives a cycle in the generalized dispute
digraph as follows, because the pair of paths from adjacent rim
nodes to the destination each belong to one of the four relations
in Definition 3.7. Begin with any active nodevi on the rim; let
r1 be the next node on the rim segmentRi. From the construc-
tion of the dispute wheel,r1Qi = r1vi · · · d is an extension of
Qi, soQi⊖rQi; this relation holds for further extensions along
the rim, such that(ri · · · r1Qi)⊖ (ri+1ri · · · r1Qi). Let R∗

i be
the rim segment up to, but not including,vi−1; using these
relations, we see there is a path fromQi to R∗

i Qi in the dispute
digraph for each active nodevi in the dispute wheel. Call these
pathsDi. Then, for everyRiQi and Qi−1, one of the three
conditions in Definition 3.1 holds. In the case of condition (1),
∃S : σd

vi−1
(S ∪ {RiQi, Qi−1}) = RiQi; thusR∗

i Qi ⊘Qi−1,
corresponding to the edge(R∗

i Qi, Qi−1) connectingDi

and Di−1. In the case of condition (2), learningRiQi at
vi−1 forces another route to be selected overQi−1; thus
R∗

i Qi⊙2 Qi−1, also corresponding to the edge(R∗
i Qi, Qi−1)

connectingDi andDi−1. Finally, in the case of condition (3),
withdrawing some route atvi−1 forcesQi−1 to be chosen; thus
R∗

i Qi⊙1Qi−1, corresponding to the same edge connectingDi

andDi−1. Therefore the dispute-digraph edges corresponding
to pairwise relations between paths starting at adjacent rim
nodes form a cycle.

Conversely, assume we have a cycle in the dispute digraph.
For any edge(P1, P2), examine the relation betweenP1 and
P2. If P1 ⊖ P2, then let the first node ofP1 be a rim node
and connect it to the first node ofP2 as an adjacent rim node
(counterclockwise, referencing Figure 2.). IfP1⊘P2, P1⊙1P2,
or P1 ⊙2 P2, then letP2 be a spokeQi and connect the first
node ofP2 to the first node ofP1 on the rim segmentRi+1;
the subpath ofP1 from the first node to the last oscillating
node will be the rim segmentRi+1 and the remainder ofP1

will be the next spokeQi+1. The resulting structure will obey
one of the three conditions in Definition 3.1 for rim segments
connecting spokes and will have subpaths along individual
rim segments (moving clockwise); thus, this structure is the
dispute wheel corresponding to the dispute-digraph cycle.

This immediately leads to the following corollary, which
provides an equivalent sufficient condition to Proposition3.6.

Corollary 3.10: Given a GSPP instance, if there is a cycle
in its evaluation digraph, then the corresponding relation© =
(⊖ ∪ ⊘ ∪ ⊙1 ∪ ⊙2)

∗ on permitted paths is not a partial order.
Remark 3.11:The linear-selection relation defined in [4]

for SPP partial ordering (nonlinear relations did not apply)
was defined as follows: assuming thatω is a ranking function,
P1⊘P2 iff ω(P1) ≤ ω(P2). In this version, both paths begin at
the same node, and the extension ofP1 to u in Definition 3.7
was captured in the transitive closure of⊘ with the subpath
relation⊖. If we used an analogous relation here,i.e., P1⊘P2

iff there exists someS such thatσ({P1, P2}∪S) = P1, then
any IRR violation would automatically introduce a cycle in the
dispute digraph (this fact follows directly from Definition2.2).
But, not all such IRR violations cause protocol oscillations
(given other nodes’ policies), and subsuming one subpath
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relation into the selection relations eliminates these spurious
cycles from dispute digraphs. Thus, the example dispute cycles
in the next subsection will appear different than in [4], [6].

We may in fact generalize the relations⊖ and⊘ to relations
⊳ and◭ that also subsume⊙2 and ⊙1 .

Definition 3.12: Given a GSPP instance, a vertexv, a (pos-
sibly empty) set of pathsS ⊂ Pv, and pathsvP, Q, R ∈ Pv,
such thatσv(S) = R and σv(S ∪ {vP}) = Q, the relations
P ⊳ Q andP ◭ R hold.

These relations capture the effects of route export and
withdrawal on neighbors’ route choices. IfS is empty (so that
R is the empty path), thenQ = vP and we haveP ⊳ vP ,
which is the subpath relationP ⊖ Q. If S is not empty and
vP = Q 6= R, then P ◭ R is the linear selection relation
P ⊘R. If S is non empty andvP /∈ {Q, R}, then the relations
⊳ and◭ give the nonlinear selection relations⊙2 and ⊙1 .

C. Example GSPPs and Dispute Digraphs

Example 3.13:Figure 3 shows the generalized dispute di-
graph for MED-EVIL , the GSPP from Example 2.8.1 The
graph’s nodes are the permitted paths in the instance; edges
are drawn between paths for which one of the relations in
Definition 3.7 holds; the correspondence between arrow type
and path relation is shown below the graph in Figure 3.

For example, the edges(C0, AC0) and(BE0, ABE0) are
subpath edges becauseAC0 and ABE0 are one-hop exten-
sions ofC0 and BE0, respectively. The edge(E0, BAD0)
corresponds to linear selection: the selection function atnode
B statesσ0

B(BAD0, BE0) = BE0, which means that, at
some time,BE0 is preferred toBAD0, andE0 is the path
advertised toB to makeBE0 available. Likewise, the edge
(BE0, AC0) corresponds toBE0 ⊙1 AC0: the selection
function at nodeA statesσ0

A(AC0, AD0) = AD0, but after
the addition ofABE0, we haveσ0

A(AC0, AD0, ABE0) =
AC0; the broadcast ofBE0 from B would causeA to switch
to a different path it already knew, which is an IRR violation.

Note that this digraph has a cycleAC0 − BE0 involving
nonlinear-selection edges and the paths that cause the IRR

1To simplify the diagram, we have condensed ASes1, 2, and0 into a single
AS 0 connected to routersC, D, andE; we can write analogous selection
functions that maintain the oscillation in the originalMED-EVIL .
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Fig. 4. (a) The SPP instanceBAD GADGET and (b) its corresponding
generalized dispute digraph.

violation; the MED-induced oscillation inMED-EVIL corre-
sponds to this cycle. However, because acyclic digraphs are
sufficient—but not necessary—for robustness, the appearance
of a cycle, in general, does not guarantee an oscillation.

Example 3.14:A canonical policy-induced oscillation first
given by [6] is represented by the SPPBAD GADGET shown in
Figure 4; it has no solution, so its dispute digraph also contains
a cycle. Because it has a linear selection function, routing
policy is shown as a list of permitted paths next to each node
(with the most preferred path listed on top). The digraph is not
acyclic; indeed, the oscillation inBAD GADGET corresponds to
the cycle10− 20− 30. This cycle is equivalent to the dispute
cycle in the original SPP model: The generalized model can
characterize instances with or without IRR violations.

IV. A PPLICATIONS TOPROTOCOL DESIGN

We now examine some strategies for constraining policies
to guarantee robustness. While dispute wheels and dispute
digraphs are useful tools for studying policy interactions,
they can be impractical for real network configurations. The
dispute digraph has size proportional to the number of loopless
paths in a network, and there is no known way to directly
produce a dispute wheel without an instance’s dispute digraph
or evaluation digraph. Furthermore, it is almost impossible
to obtain Internet-wide policy information to generate these
structures, and the structures may change every time nodes
change policies. Ideally, we want constraints on the protocol
specification or policy-configuration language that applies to a
broad set of networks and routing configurations—we would
like to use the sufficient condition from the previous section
while allowing for as much policy expressiveness as possible.

Previous work [4], [5], [7] has given concrete local-policy
constraints that guarantee robustness when MEDs are not used.
However, it is difficult to generalize this work to GSPPs
because these constraints use notions of order and path rank
that need not be present with nonlinear selection functions;
we thus consider other constraints for GSPPs. Some obvious,
draconian constraints,e.g., preventing the advertisement of
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any route that causes an IRR violation, can be trivially
shown to prevent routing anomalies, but these harshly limit
expressive power. Below, we first review a specific proposal
to prevent MED-induced oscillations in BGP, and we use our
tools to suggest an improvement. Then, we discuss two other
conjectured solutions and prove them correct using our results.

A. Multiple-Path Broadcast

Basu et al. [8] and Musunuri and Cobb [10] proved that
a modification to BGP’s update messages will prevent MED-
induced oscillations. They suggested that nodes broadcastnot
only best routes but also any route that remains after step 3
in the BGP route-selection process (see Example 2.8);i.e., all
routes with minimal MED values, possibly one for each AS,
are broadcast, not only the one with minimal IGP distance to
the egress point. This prevents routes that cause IRR violations
from being broadcast and withdrawn repeatedly. In the case
of MED-EVIL in Example 2.8, nodeB would then always
broadcast the routeBE20, even though it would not select it
if BAC0 were known.2 Extensions ofBE20 are not chosen
elsewhere because they are longer than corresponding exten-
sions ofBAC0; so, this introduces no consistency problems.
However, it (1) allows other nodes to make the correct choice
of routes with respect to MED values and (2) stops the
oscillation by making that choice stable. We also note that
only one route is chosen for the forwarding table; thus, we
need not worry about routing loops. The additional routes are
used only to force the correct route choice.

We can see the effect of such a change by examining cyclic
traces in the evaluation digraph. The MED-induced cycle of
MED-EVIL is shown in Figure 5. The nodes show the selections
of nodesA andB, and the labels on arrows show the causes
of transitions (routes being advertised, denoted with a+, or
withdrawn, denoted with a−). The IRR violation is clear in the
transition between the first and second states; nodeA switches
from AD0 to AC0 by learning a different route,ABE0. With
multiple-path broadcast, the withdrawal ofABE0 never takes
place; therefore the state(AC0, BAC0) becomes a sink state
and a stable assignment.

This effect generalizes to all GSPP instances involv-
ing MEDs: broadcasting additional routes will break an
evaluation-digraph cycle by allowing nodes to receive MED
values they otherwise would not, thus preventing one (or
more) of the cycle’s transitions. Because routes are always

2As in Example 3.13, we simplify the instance by condensing AS1, AS 2,
and AS0 into a single AS0 and modifying the selection functions accordingly.

added to (not removed from) the broadcast, nodes will not
choose higher-MED-valued routes when lower-MED-valued
routes are available; this preserves the intended behaviorof
the MED attribute.

Multiple-path broadcast can increase the size of routing
tables and update messages. However, we propose that IRR vi-
olations can be detected dynamically, precisely when a newly
learned route causes a switch in selection without selecting the
new route. Requesting that the new route always be broadcast
will prevent a future oscillation due to withdrawal of that
route without any route inconsistencies. Maintaining one extra
route as needed is more storage-efficient than the multiple-
path broadcast proposed by [8], [10]. Although this solution
requires further modification to BGP, dynamic detection of
IRR violations is possible in practice. Whenever a BGP update
message is received, the route selection before and after the
update message can be compared. If the new selection is
neither the old selection nor the newly learned route, this
points to an IRR violation (this is clear from Definition 2.2).
Requesting this IRR-violating route to be broadcast as long
as it is available prevents any induced oscillations because
the route essentially becomes fixed, breaking the cycle of
withdrawals and advertisements in the evaluation digraph.
Formally, we have the following.

Proposition 4.1:An oscillation due to an IRR violation
can be dynamically detected and stopped by requesting one
additional route to be broadcast permanently.

Proof: Given a cycle in the evaluation digraph involving
an IRR violation, there are transitions in this cycle involving an
advertisement or withdrawal of a route that is never selected.
This route can be detected by comparing path assignments
in the states adjacent to these transitions. If the withdrawal
transition is prevented by forcing the route to be advertised as
long as it is available, even if it is not chosen, the withdrawal
transition cannot take place and the cycle is broken.

If changes occur and routes are introduced or withdrawn
for legitimate causes, the resulting GSPP instance will have
a different evaluation digraph; however, the relevant IRR-
violating routes can be detected for this new instance in the
same way. If the IRR-violating route is no longer available,the
broadcasting node can send the appropriate withdrawal—this
still allows the receiving node to detect new IRR violations
involving other routes. Furthermore, if any IRR-violatingse-
lections are superseded by learning new routes that are always
more preferred or by other IRR-violating routes, the original
routes are not needed and the broadcast can be stopped.

B. Compare All MEDs

Some routers have an option to change the route-selection
procedure involving MEDs: In step 3 of the BGP procedure
described in Example 2.8, instead of eliminating multiple paths
to the same AS by choosing the one with lowest MED value,
MED values are compared across all paths so that, regardless
of AS next-hop, only paths with the lowest MED values are
retained for possible selection.



This option changes the route-selection procedure so that it
is linear: for each path, the preference of that path depends, in
order, on its local preference, then path length, then MED
value, and finally IGP distance. Therefore, IRR violations
are no longer possible, and previous convergence constraints
apply. In fact, because local-preference, AS-path length,and
MED values do not change during intra-domain BGP (iBGP)
sessions, and because IGP distances increase as paths are ex-
tended, the absolute rank value associated with paths increases
on extension within an AS. This obeys the strict-monotonicity
constraints of [4], [7], so MED-induced oscillations cannot
occur. (Of course, more general policy-induced oscillations
due to,e.g., local-preference settings, can still occur.)

C. AS-Distinct Local-Preference Settings

McPhersonet al. in [15] suggest a workaround for MED-
induced oscillations that prevents BGP from having a conflict
when it reaches the MED step. If only routes from one AS
remain when MEDs are considered, then all routes have their
MED values compared and, similar to above, IRR violations
are not possible. One simple way to do this is to assign
local-preference values such that no two routes from different
ASes have the same value; then the first step of the BGP
selection process will automatically eliminate all routesexcept
those from a single AS. (One can also assign distinct local-
preference values to equidistant ASes; then the first two steps
eliminate all routes but those from one AS.)

This route-selection procedure is, in fact, consistent with
linear selection functions because, just as above, the rankof a
route independently depends on four criteria in order. Oncethe
MED value is considered, all remaining routes have the same
local preference, path length, next-hop AS, and MED value,
again leaving the strictly monotonic IGP distance to be used
to break ties. Therefore, this modification to BGP prevents
MED-induced anomalies.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we investigated the use of the Generalized Sta-
ble Paths Problem (GSPP) to model route-selection functions
that violate Independent Route Ranking (IRR); in particular,
this model allowed us to analyze networks in which BGP’s
MED attribute is used and facilitated studying the interaction
between inter- and intra-domain routing. Using this model,we
generalized the classical dispute wheel and used our results
to provide the broadest-known sufficient condition for robust
routing in networks, whether or not they exhibit MED-like
behavior. We also used our work to gain insight into various
proposed solutions to the MED-oscillation problem.

Depending on assumptions made about filtering,etc., one
may construct examples in which MEDs are used but no oscil-
lation occurs, MEDs are used but no IRR violation occurs, IRR
violations occur but no oscillation occurs, or MEDs are used
and an oscillation occurs even when an IRR violation does not.
Whenever an oscillation occurs, regardless of the cause, the
tools in this paper can characterize the corresponding policy
dispute. However, it is not yet possible to use these tools alone

to diagnose oscillations; this direction of research remains
open, even when IRR violations are ignored.

Here we have focused on singleton-valued selection func-
tions, but another avenue for future work is extending the
theory to set-valued functions and understanding the conse-
quences on multi-path routing; IRR is more complex in this
setting (recall Definition 2.2).
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