Toward the Design of

Robust Interdomain Routing Protocols

Aaron D. Jaggard, Tulane University
Vijay Ramachandran, International Computer Science Institute

Abstract

The Border Gateway Protocol, the interdomain routing protocol for the Internet,
allows for a wide variety of routing policies that may interact in unintended and
unstable ways. Recent work on BGP and related protocols has begun to incorpo-
rate formal protocol models, which have enabled rigorous descriptive analyses of
BGP. More recently, such models have been used to give prescriptive guidelines
for the design of new protocols. These guidelines include both sufficient conditions
for good routing behavior and limitations on what can be achieved without coordi-
nation between routers. Here we review potential routing problems, various formal
protocol models, and the design guidelines they have been used to prove.

he Border Gateway Protocol (BGP) [1] establishes

best effort interdomain connectivity for the Internet.

BGP is unique among IP routing protocols because

routes are computed using fairly complex policies con-
figured locally at each router. The interaction of these local
policies can produce global routing anomalies [2, 3]. Because
the domains or networks that form the Internet, called
autonomous systems (ASes), are independently administered,
policies are provided with little coordination. This often
makes global anomalies hard to predict and debug because
they involve policies across several networks.

BGP is the classic example of a path-vector protocol, in
which routes are established as information about reachable
destinations is disseminated hop by hop through the network.
Figure 1 depicts the dynamics of the BGP route selection pro-
cedure: for each destination, the route choices of neighbors
are examined; then from these possibilities a best path is cho-
sen based on local policy; finally, the chosen path is shared
with neighbors so that they can establish routes using the
same process. (Information about a route first enters the net-
work when a router directly linked to the destination
announces its availability.) Best routes may change when new
routes are learned or existing routes are withdrawn; this
allows BGP to respond to network changes. By repeating the
route choice process and sharing routes through update mes-
sages, BGP attempts to converge, in time, to a stable set of
consistent routes.

Policies are only constrained by router programming lan-
guages and are not addressed in the BGP specification [1].
They can depend on various factors, such as security holes in
distant ASes or business relationships with neighboring ASes.
An improved understanding of how local policies affect con-
vergence will lead to increased network stability. Ideally, we
want to describe the protocols and policies that are robust,
that is, those that converge to a predictable set of consistent
routes even after link and node failures. Unfortunately, no
complete characterization currently exists. (In this article we

are only concerned with the effects of policies between ASes,
i.e., external BGP [eBGP]. BGP is also used within an AS; for
further details about BGP and anomalies in this setting, see
[4])

Initial work inspired by specific problems with BGP has led
to recent work that better characterizes the behavior of path-
vector protocols without involving the details of particular
network configurations or protocol-specific implementations.
As an application of theory to networking, this work uses for-
mal models to prove that certain constraints guarantee good
behavior, even in worst case scenarios; identifying these con-
straints is instrumental toward any characterization of stable
protocols and policies. Note, however, that this rigorous treat-
ment of protocol behavior is not a part of existing protocol
adoption standards.

In this article we trace the development of this work and
review best-known principles toward the design of robust
path-vector protocols. First, we give canonical examples of
BGP anomalies, motivating the need for robustness and other
design goals. We then discuss a mathematical representation
of policies that is useful in evaluating a network for robust-
ness. After that, we discuss constraints on protocols that guar-
antee robustness on any network.

Motivation
Potential Problems with BGP

As network nodes write their routing policies and share data
using BGP, the interaction between these policies can have
undesirable effects: nodes in a network may not settle on a
best route. An example of this was first given in [3] and is
shown in Fig. 2a. We call this combination of a small network
(or network fragment) and policies bad gadget, adopting the
name of a similar example given in [5]. Every pair of nodes is
connected by a link, and nodes 1, 2, and 3 are trying to select
routes to node 0. Next to each node in Fig. 2a are the permit-
ted paths each node will consider, listed in order of prefer-

IEEE Network * November/December 2005

0890-8044/95/$05.00 1995 © IEEE 35

Populate IP
forwarding table

7

policies

> Apply import > Routing > Best route > Apply export >
table selection

policies

Apply policy =
filter routes and
tweak attributes

Store
routes

Receive
updates

Apply policy =
filter routes and
tweak attributes

Transmit
updates
|

Based on
attribute values

Approaches open-ended programming:
constrained only by router vendors’ programming languages

Repeat at !
neighboring nodes 3<}

M Figure 1. Dynamics of BGP's route-selection procedure.

ence: node 1 prefers the path through node 2 to 0 over the
path directly from 1 to 0; these paths are denoted 120 and 10,
respectively. We assume that node 1 does not learn about
other routes because of routing policies (e.g., node 3 might
not share route information with node 1, and paths containing
loops are filtered out). Similarly, nodes 2 and 3 prefer routes
through 3 and 1, respectively, over their direct routes to 0 and
do not learn other routes. If no links fail, the direct paths to 0
are always known. Suppose that these direct paths are chosen
at nodes 1-3. Following BGP dynamics (Fig. 1), these choices
are advertised to neighbors, making available the more pre-
ferred indirect paths. Once the indirect paths are chosen, the
direct paths are no longer advertised; withdrawal of these
routes makes the indirect paths unavailable, and all nodes
choose the direct paths again. This process repeats ad infini-
tum, never converging to a choice of routes. As shown in [3],
this oscillation of path selections does not depend on the tim-
ing of updates in the network. Note that if any one of the
outer nodes’ policies were changed to prefer the direct path
to 0, this oscillation would not occur, and the nodes would
converge to a set of consistent routes.

We call a stable set of consistent route choices a solution.
In a solution every node is assigned a path such that all paths
are valid extensions of neighbors’ paths, and no node is able
to choose a more preferred path given its neighbors’ choices.
(This resembles a Nash equilibrium condition.) A solution
may or may not be unique in a given network. The routing
configuration shown in Fig. 2b, originally given in [5] and
called disagree, has two solutions:
¢ 10 and 210
* 20 and 120
Either set of routes remains stable because no node can learn
of a more preferred route. Unfortunately, the protocol does
not have to converge to either of these solutions. If both
nodes begin by choosing direct routes and advertising those to
the other, the protocol can oscillate indefinitely, although this
depends on the timing of various router operations.

Routing configurations with multiple solutions are not pre-
dictable: delays in BGP updates or different orderings of link
failures and recoveries can result in different choices of routes
for the same set of routing policies. In these cases routing
might appear nondeterministic to network operators, making
problem diagnosis difficult. We thus aim for routing configu-
rations with unique solutions.

120 230
10 1 2 20 120 210
10 1 2 20

310 0
3 |30

(a) (b)

M Figure 2. The routing configurations (SPP instances): a) bad
gadget; b) disagree.

Design Goals for Path Vector Protocols

Anomalies due to no solution (e.g., bad gadget) or multiple
solutions (e.g., disagree) are difficult to debug, because they
involve policies in different ASes. Avoiding these situations,
however, is only one goal of designing a routing system. Addi-
tional design goals were identified and rigorously defined in
[6]; as we discuss later, there are inherent trade-offs among
achieving multiple goals in any one protocol. These design
goals include the following.

Robustness — Each network should have a unique stable set of
paths to a given destination. A routing configuration is robust
if it and every subnetwork, obtained by deleting some subset
of edges and nodes from the original network, all have unique
solutions. (This ensures stable routing behavior even after net-
work failure.)

Expressiveness — It may be the case that networks running a
certain protocol are guaranteed to be robust, but the protocol
may achieve this by allowing a restricted set of routing policies
(i.e., few network routing configurations may be compatible
with the protocol). Ideally, we would like a protocol that guar-
antees robustness without overly constraining the types of
policies allowed; we are thus interested in designing expressive
protocols: those that can model as many different (robust)
networks as possible.

36

IEEE Network * November/December 2005

Vi

M Figure 3. A4 generic dispute wheel.

Autonomy — As we model routing policies, not just their net
effects, we care about how router operators can write these
policies. While some amount of coordination might help
achieve robustness, we expect policies to be written indepen-
dent of other nodes’ policies. We refer to this general goal as
autonomy; in looking at particular classes of protocols, we may
investigate specific types of autonomy that characterize differ-
ent degrees of freedom.

There are additional protocol design goals that might be
considered, but they involve more technical details about poli-
cy syntax and protocol implementation; see [6] for examples
of these.

Studying Policies on Individual Networks

Initial work investigating the impact of policies on protocol
convergence studied how BGP-like protocols ran on example
networks. Varadhan, Govindan, and Estrin [3] outlined a
basic view of routing dynamics and used this to characterize
the timing-independent oscillations that could occur in simple
classes of network topologies. Their motivating example was
essentially the bad gadget of Fig. 2a, which was the first such
oscillation shown for BGP. They also suggested that only
shortest path routing, in which each node prefers the route
with the fewest hops, might be provably safe in arbitrary net-
work topologies. (Note that both bad gadget and disagree are
inconsistent with shortest path routing.)

Griffin, Shepherd, and Wilfong [5] proposed the Stable
Paths Problem (SPP) as a formal model for the underlying
problem that BGP tries to solve—a problem of finding paths
given complex routing policies, not just path length. An
instance of SPP contains essentially the information given in
Figs. 2a-2b above: a graph corresponding to the network and a
set of permitted paths at each node; a node assigns each per-
mitted path a rank — some positive number — corresponding
to that node’s level of preference for the path. (Individual path
ranks are determined independently, i.e., not based on the
rank of other paths; when this is not the case, as with BGP’s
multi-exit discriminator [MED] attribute, the modeling and
analysis of protocols becomes much more difficult. The details
of the MED attribute are outside the scope of this overview;
see, e.g., [7] for a discussion of MED in BGP.) Which paths
are permitted and which ranks are assigned result from routing
policies across the network. Thus, an SPP essentially captures
the static semantics of a network’s routing policy configuration.
A solution to an instance corresponds to a stable set of consis-
tent routes, as described earlier.

This rigorous definition of the routing problem led to sev-
eral insights in [5]. First, it was shown that solving the routing
problem (i.e., determining whether or not a routing configura-
tion has at least one solution) is NP-complete, even if a cen-
tralized algorithm is used. Checking a specific set of routing
policies for a stable route assignment is thus presently imprac-
tical. Griffin et al. did show that the suggestion of Varadhan et
al. concerning shortest path routing worked: in general
topologies, if routers choose paths with the fewest hops, a
solution is always reached. But, using their formalism, they
could also prove much broader sufficient conditions on net-
work policies that guarantee robustness.

Begin by considering generalizations of shortest path rout-
ing. Suppose that network edges could be assigned costs (e.g.,
based on traffic load or payment for usage); then the cost of a
path is the sum of the costs of its component edges. When
positive costs are used, lowest cost routing is essentially short-
est path routing and, indeed, always converges to a solution.
Although BGP does not support assigning edge costs in this
way, in the design and study of a broader set of routing proto-
cols we might envision several that allow this feature. In doing
so, we can continue generalizing this notion of policies based
on edge costs to understand the level of expressiveness at
which our policies might cause routing anomalies. (This is
useful because more complex policies can often be modeled
by transforming them to cost assignments, given the network
topology.) For example, if we allow the assignment of nega-
tive costs to edges, there may be a cycle of negative total cost,
and following that cycle would artificially reduce the cost of
any path through it. This could be done infinitely, and thus
prevents finding a reasonable lowest cost path.

Griffin et al., however, directly proved in [5] that if edges
have negative costs, but every cycle in the graph has a positive
cost, lowest cost routing is indeed robust. Such a cost assign-
ment is called coherent. Coherence also precludes the diver-
gent examples above. However, the authors of [5] gave an
example of a convergent routing configuration in which poli-
cies are not consistent with coherent costs, suggesting that one
might write a broader sufficient condition for robustness, the
enforcement of which would permit a broader range of good
routing policies.

Proving the coherence result involved characterizing a nec-
essary condition for divergence. Griffin ef al. captured this
condition with a dispute wheel, which is a generalization of bad
gadget. It is an abstraction of a network fragment in which
policies are configured such that they might induce an oscilla-
tion. They described a procedure that, given an SPP, attempts
to construct a solution; an unsuccessful attempt implies the
existence of a dispute wheel in the SPP. They also showed
that multiple routing solutions imply the existence of a dispute
wheel. The combination of these results proves that SPPs
without dispute wheels are robust, an observation central to
subsequent work in this area.

A generic dispute wheel is shown in Fig. 3, in which specific
edges are shown by solid lines, and generic paths are shown
by broken lines. It comprises a rim (the outer circle) and
spokes (the inner paths), allowing nodes and edges to appear
multiple times in a single wheel. The rim and spokes are paths
in the network graph such that routing policies at the active
nodes, where spokes connect to the rim, conflict to allow bad
routing behavior. In particular, each of these nodes v; learns a
path Q; to the destination from its neighbor w down the spoke
but would prefer to use the path R; that follows the rim
counter-clockwise through u to v;_; and then goes down the
next spoke Q; ;. (It is easy to see that a three-node version of
this network configuration is bad gadget; the dispute wheel in
bad gadget is shown in Fig. 4.)

IEEE Network * November/December 2005

37

R,

M Figure 4. The dispute wheel in bad gadget.

Suppose all active nodes start by only knowing (and thus
selecting) spoke paths. As time progresses, extensions of these
routes may be further propagated through the network so that
at each active node, a path counterclockwise through the rim
to the next active node and then down that node’s spoke
becomes available. Because these routes are preferred, they
will all be selected. Once this happens, active nodes can no
longer advertise their spoke paths because they are not select-
ed, and the spoke paths will be withdrawn. This eventually
makes the extended paths through the rim unavailable, revert-
ing all choices back to the direct spoke paths, at which point
this sequence can start again.

Such an oscillation is not guaranteed to occur if a network
contains a dispute wheel; for example, other paths might be
preferred over all of the paths in the wheel, or, in the case of
multiple solutions, timing of updates might induce tempo-
rary nondeterministic convergence to one of the solutions.
But a dispute-wheel-free network will never oscillate and is
always predictable. The condition of dispute wheel freedom
is not a local condition but instead a restriction on how the
local routing decisions of nodes may interact globally. This
has guided much of the recent analysis of path-vector rout-
ing, as it has allowed researchers to specify local restrictions
that help prevent dispute wheels from appearing in a net-
work. In the next section we discuss frameworks that model
protocols, not only network instances, and how they are used
to prove that local conditions alone can be used to guaran-
tee convergence, albeit while sacrificing some other protocol
design goals.

Studying Protocolevel Constraints

Previous work has suggested various constraints for proto-
cols that guarantee robustness without examining specific
networks. In this section we begin by discussing one set of
assumptions about Internet hierarchy that does this. We
then discuss two frameworks that can be used to abstractly
model protocol behavior and policy constraints, and their
results for guaranteeing robustness. Finally, we discuss a
practical application of the frameworks, that of generalizing
hierarchical constraints, to analyze a broad range of next-
hop routing preferences commonly used for most policies
today.

HBGP

Gao and Rexford [8] were the first to discuss the role of local
constraints defined in terms other than cost increments
assigned to links. They showed that an assumption about the
Internet AS graph structure and a combination of simple rules
for nodes’ policies are enough to guarantee BGP’s conver-
gence. Fortunately, these rules and assumptions are consistent
with, and naturally enforced by, common Internet economics.

Two connected ASes usually view their relationship as
between either a customer and a provider of network connec-
tivity or two equals; in the second case, these peers may use
their connection to provide backup connectivity, connect their
customers, or shortcut expensive or longer routes through
provider links. In this Hierarchical BGP (HBGP) model, every
AS assigns one of the labels (customer, provider, or peer) to
each of its neighbors such that this view is consistent with that
of other ASes (e.g., an AS’s customers view it as a provider).

Nodes’ routing policies usually satisfy certain rules, defined
in terms of these labels, on the relative ranking of routes and
with whom routes are shared; these restrictions are natural
given the traffic agreements usually made with the three types
of neighbors. (For example, routes learned from customers
must be preferred to routes learned from providers, and the
latter are shared only with customers, not peers or other
providers.) Finally, it is assumed that no “customer/provider”
cycles exist (i.e., no AS is an indirect customer of itself). This
last restriction is also natural in that it is very unlikely that a
local ISP would sell network connectivity to a top-level net-
work.

If ASes have such a hierarchical structure and obey these
rules, BGP converges. Thus, we see that with constraints on
policies, we can guarantee convergence. Although this initial
result was proved directly, Gao, Griffin, and Rexford [9] gen-
eralized it by adding backup routes to HBGP and proved the
result using machinery from [5]. Note that backup routes
today are often established using community values, which are
extra parameters in BGP updates. These values are not often
propagated through the network. Consider the network shown
in Fig. 5. Suppose that nodes 3 and 0 have a special agree-
ment to use the link between them as a backup link; the
resulting configuration is shown as Griffin’s route pinning SPP
in Fig. 5a. At node 3, route 30 is the less preferred of the two
available because it is a backup; the preferences at nodes 1
and 2, assuming that the backup agreement is not specifically
propagated, are set using standard HBGP rules (preferring
customers). This instance has two solutions, like disagree, and
can thus recover from a link failure nondeterministically. An
analysis yields the dispute wheels shown in Fig. 5b.

In defining these restrictions, HBGP moves away from any
suggested policy language, such as policies determined by
edge costs, to the more general approach of giving local con-
straints on the effects of policies. Later work generalizes these
constraints by investigating sets of protocols and constraints
that together guarantee robustness; we examine this later.
Although HBGP’s rules are enforced today for the most part,
complex configuration (e.g., route pinning) and misconfigura-
tion can still result in anomalies that are hard to debug. Fur-
thermore, when multiple ASes are administered by the same
provider, the natural rules for inter-AS economics do not
apply. Therefore, some further understanding of complex pol-
icy interactions is necessary.

Path-Vector Policy Systems

The path-vector policy system (PVPS) was introduced by Grif-
fin, Jaggard, and Ramachandran in [6] and was designed to
explicitly model many components of the routing process.
Thus, a PVPS includes: a protocol definition, which deter-

38

IEEE Network * November/December 2005

Peers
130 20 T
120 1 2 | 2130
Providers
3120
30 3
Customers
0 l

(a)

Ry

Dispute
wheel 1

Ry
Dispute R,
wheel 2
R

(b)

M Figure 5. a) The route pinning SPP; b) its two dispute wheels.

mines how the protocol mediates the interaction between
nodes running it, including the route data structure and route-
selection procedure; a policy language, which nodes may use
to write policies capturing how they process path data; and a
set of assumptions about the network. These assumptions are
global in the sense that no single node is expected to have
enough information to verify that they do indeed hold. (In
contrast, the policy language and specification details of policy
constraints provide a local restriction on how nodes may treat
path data. It is in this way policies can be constrained to avoid
inputs that lead to routing anomalies.)

One of the main results obtained using this formal model
was the description of a local policy condition equivalent to
dispute wheel freedom. This condition, satisfied by an increas-
ing PVPS, requires that each path can be mapped to some
absolute rank value, and that these values increase as paths
are extended from one node to another. (As with path costs in
earlier models, lower-ranked paths are preferred in PVPSes).
Intuitively, an increasing PVPS requires a positive cost on
each network edge, although this cost may depend on the path
using the edge as well as the edge itself, in contrast with the
path-independent costs considered previously. Because these
costs must be positive, the increasing PVPS condition may
seem more restrictive than coherence. However, it was shown
in [6] that any network configuration satisfying the conditions
of [5] (or any other instance without a dispute wheel) is equiv-
alent to one permitted by an increasing PVPS (i.e., some
increasing PVPS allows a network configuration with the same
permitted paths and relative preferences at each node). The
increasing condition precludes bad gadget and disagree. (If we
try to write disagree in an increasing system, the rank of 10
must be less than that of 210, a path extending it, which in
turn must be less than the rank of 20, which is less preferred
than 210. 120 extends 20 and must have greater rank; as its
rank is smaller than the less preferred route 10, we obtain a
cycle of strict rank inequalities, a contradiction.)

When we view increasing PVPSes as having positive path-
dependent edge costs — the original definition contained this
idea, but used different language — it is clear that there is
some consistent mathematical order involved. In particular,
preferences at each node must correspond to cost, which in
turn increases as paths are extended. After showing that dis-
pute-wheel-free networks correspond to those running increas-
ing PVPSes, Griffin et al. [6] showed that these network
configurations are exactly those in which the preference order
at each node is consistent with “preferring” a path to any
extension of that path. (Such paths are never compared in any
route selection procedure because they start at different
nodes, but the preference ordering should remain consistent if
extended to include these comparisons. Mathematically, they
showed that these relations can be extended to a partial order
without antisymmetry.) Anomaly-free routing is guaranteed by
the absence of dispute wheels, which is in turn equivalent to
some mathematical consistency in the network; the question is
then how to ensure that consistency.

In an effort to answer this question, the authors of [6] iden-
tified and rigorously defined various protocol design goals,
including the three mentioned above: expressiveness, robust-
ness, and autonomy. Using these definitions, they showed that
enforcing the increasing condition on PVPSes generally
infringes on operator autonomy (because policies would have
to be continually adjusted based on neighbors’ assignments of
rank in order to maintain the increasing condition) or requires
private information to be shared among nodes, or the proto-
col to filter routes on the operator’s behalf, thus altering the
intent of routing policy. In fact, it was proved that achieving a
reasonable combination of design goals requires some global
constraint on the network: while local conditions alone can
enforce robustness, one must take into account global net-
work assumptions when designing a practical routing system.
By using a rigorous formal model, [6] was able to prove these
inherent design trade-offs independent of specific networks or

IEEE Network * November/December 2005

39

protocols. Feamster, Johari, and Balakrishnan
[10] extended this idea to other types of autono-
my and produced a necessary condition for con-
vergence using a variation of the dispute wheel
called a dispute ring.

Figure 6, adapted from [6], shows the design
space of robust PVPSes. (This figure is meant to
aid in developing intuitions, and should not be
taken too literally.) A point in the design space
indicates a PVPS specification; its position indi-
cates the approximate trade-off between expres-
siveness and global constraint tractability. (Other
design dimensions are not pictured in this fig-
ure.) The x-axis shows expressive power, ranging
from shortest path routing to allowing all possi-
ble robust configurations. We measure expres-
sive power using the SPP framework: Given a
PVPS (with a protocol specification and policy
language), we consider the set of all SPP
instances (network configurations) that corre-
spond to legal sets of input policies. Note that

paths

[BGP with robust policy checking

Maximal global
constraints

T Not tractable

l Tractable

,,«"‘/CIass-based .
systems .~

A\ A

Acyclic
{customer/provider
relationships

Minimal
E)C()?Arleé?swe expreg\s,\ll\ée; increasing
® P path ranking

No global
{\instraints
Maximal G|0ba||y

the robust design space of Fig. 6 does not
include PVPSes expressive enough to write all
possible preference orderings on paths; any
PVPS expressive enough to write disagree is not
robust. The y-axis shows strength of global constraint, from
minimum (no constraint) to maximum (checking all policies
individually for robustness). Ideally, we would like systems
near the lower right of Fig. 6; however, as discussed, these
infringe on other design goals.

Path-Vector Algebras

At the same time PVPSes were introduced, Sobrinho [11]
introduced the path-vector algebra, a model of path-vector pro-
tocols at a higher level of abstraction. In an algebra all of the
operations involved in sending route updates, including the
application of policies, are represented as a single object per
link, its label. Route information is represented by a signature,
and each signature maps to a weight (analogous to rank in a
PVPS) that indicates how good a route is. Route updates can
be modeled in the following way: When a route is shared
across a link, the label of the link is applied (as defined by the
algebra) to the sender’s signature for the route, producing a
new signature at the receiver. Thus, conditions on policies and
their effects on convergence are expressed in terms of how
labels affect weights.

Sobrinho [11] used the algebra framework to prove that a
certain condition can be used to guarantee that every node in
a network will receive its first choice path, not just its most
preferred extension of a neighbor’s path, in a routing solution.
This condition (isofonicity) relates to how the extension of two
paths affects their relative ranking; in particular, if one path is
at least as preferred as another at a node, a neighboring node
must prefer the extension of the first path at least as much as
the extension of the second path. Sobrinho also showed that
an increasing condition, called strict monotonicity in [11] and
mirroring the increasing PVPSes discussed above, guarantees
robustness, as does other conditions when coupled with a
weaker version of monotonicity. He also presented conditions
that, along with a weaker version of monotonicity, guarantee
robustness.

Algebras are a natural framework to discuss the overall
effects of policy on sharing data across an edge, while PVPSes
may be more natural for analysis of specific implementations
of policy constraints. Jaggard and Ramachandran [12] have
recently shown that the algebra and PVPS frameworks are
essentially equivalent, and provided a template for translating

M Figure 6. The design space of robust path vector policy systems.

between them. Thus, in studying path-vector protocols, the
more natural framework for describing the relevant questions
should be used; the results may then be translated to the
other framework as needed.

ClassBased Systems

As an application of the PVPS framework, Jaggard and
Ramachandran [13] investigated class-based systems, general-
izing the conditions given by Gao et al. [9] for robust HBGP
with backup routing. Gao and Rexford’s earlier work [8] on
HBGP suggested a specific combination of local and global
constraints, generally enforced by current Internet economics,
that guarantee robust routing. The work in [13] extended this
by allowing for general relationships between network nodes
— a general list of classes, not just customer, provider, and
peer — and constructing a global constraint whose satisfaction
guarantees robustness, based on the local restrictions defined
in terms of these relationships.

A class-based system comes with a (finite) list of class
labels, which nodes apply to their neighbors, and restrictions
on how these may be used (i.e., which pairs of labels can be
assigned together by pairs of neighbors on the same edge). As
with HBGP, the system also specifies when a node must pre-
fer routes learned from neighbors in one class over routes
learned from neighbors in another class, as well as the classes
of neighbors with which a route learned from a neighbor in a
given class may be shared.

In HBGP (with and without backup routing), networks
were required to avoid customer/provider cycles. The authors
of [13] generalized this global constraint for use in class-based
systems: given the list of classes, and the restrictions on pre-
ferring and sharing route data, they constructed a condition
on pairs of classes and then required that networks avoid
cycles in which every adjacent pair of edges have class labels
satisfying this condition. In the case of HBGP, this constraint
exactly reduces to avoiding customer/provider cycles. Further-
more, this constraint is only as restrictive as needed; as shown
in [13], networks satisfying it are robust, while networks vio-
lating it can set policies that cause divergence. Finally, central-
ized and distributed algorithms to enforce this constraint were
given. The algorithms can be used more broadly; for example,
any network configuration in which route preferences are pri-

40

IEEE Network * November/December 2005

marily determined by the next hop of a path (or the first edge)
can be checked for potential routing anomalies by construct-
ing a corresponding class-based system for the routing policies
and running the centralized algorithm.

Conclusions

We have reviewed recent work aimed at understanding policy
conflicts in networks running path-vector protocols, and how
these can be prevented through the design of protocols and
routing policies. Initial work in this area focused on network-
level examples of route oscillation and conditions on individu-
al networks that would ensure globally good routing behavior.
More recent work has emphasized protocol-level analysis and
has incorporated consideration of both (local) routing policies
in networks and (global) assumptions about the network; the
latter are provably necessary in order to achieve reasonable
protocol design goals.

This work should foster the design of routing protocols and
policy languages that ensure robustness; this is one topic for
further work. Given a desired level of expressiveness, the
frameworks discussed here can be used to understand poten-
tial policy-induced anomalies and generate constraints that
can be enforced in the protocol specification, built into a lan-
guage used to write policies, or through some supplementary
mechanism. While the tools developed so far allow us to rea-
son about basic BGP, modifications to the original protocol
can lead to other routing problems but are not amenable to
modeling in these frameworks. We expect future work to
investigate this.

Acknowledgments

This work was partially supported by the U.S. Department of
Defense (DoD) University Research Initiative (URI) program
administered by the Office of Naval Research (ONR). A. D.
Jaggard was partially supported by National Science Founda-
tion (NSF) Grant DMS-0239996 and by ONR Grants N00014-
01-1-0795 and N00014-99-1-0150. V. Ramachandran was
partially supported by a 2001-2004 DoD National Defense
Science and Engineering Graduate (NDSEG) Fellowship, by
ONR Grant N00014-01-1-0795, and by NSF Grant ITR-
0219018. The authors would like to thank the anonymous

reviewers for their suggestions to improve the organization
and readability of this article.

References

[1]Y. Rekhter and T. Li, “A Border Gateway Protocol 4 (BGP-4),” RFC 1771,
Mar. 1995; http: //www.ietf.org/rfc/rfc1771 txt

[2] Cisco Field Note, “Endless BGP Convergence Problem in Cisco I0S Software
Releases,” Oct. 2001. http://www.cisco.com/warp/public/770/fn12942.html

[3] K. Varadhan, R. Govindan, and D. Estrin, “Persistent Route Oscillations in Inter-
domain Routing,” Comp. Networks, vol. 32, no. 1, Jan. 2000, pp. 1-16.

[4] R. Musunuri and J. A. Cobb, “An Overview of Solutions {;r Persistent BGP
Divergence,” IEEE Network, this issue.

[5] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The Stable Paths Problem
and Interdomain Routing,” ACM/IEEE Trans. Net., vol. 10, no. 2, Apr.
2002, pp. 232-43.

[6] T. G. Griffin, A. D. Jaggard, and V. Ramachandran, “Design Principles of
Policy Languages for Path- Vector Protocols,” Proc. ACM SIGCOMM “03,
Aug. 2003, pp. 61-72; extended version: Yale Univ. Tech. Rep. YALEU/
DCS/TR-1250, Apr. 2004; fip://fip.cs.yale.edu/pub/TR/tr1250.pdf

[7]1T. G. Griffin and G. T. Wilfong, “Analysis of the MED Oscillation Problem in
BGP," Proc. ICNP ‘02, Nov. 2002, pp. 90-99.

[8] L. Gao and J. Rexford, “Stable Internet Routing Without Global Coordina-
tion,” ACM/IEEE Trans. Net., vol. 9, no. 6, Dec. 2001, pp. 681-92.

[9]1L. Gaoo, T. G. Griffin, and J. Rexford, “Inherently Safe Backup Routing with
BGP,” Proc. IEEE INFOCOM 2001, Apr. 2001, pp. 547-56.

[10] N. Feamster, R. Johari, and H. Balakrishnan, “Implications of Autonomy for
the Expressiveness of Policy Routing,” Proc. ACM SIGCOMM 2005, Aug.
2005, pp. 25-36.

[11] J. L. Sobrinho. “Network Routing with Path Vector Protocols: Theory and
Applications,” Proc. ACM SIGCOMM ‘03, Aug. 2003, pp. 49-60.

[12] A. D. Jaggard and V. Ramachandran, ”Rjating Two Formal Models of
Path-Vector Routing,” Proc. IEEE INFOCOM ‘05, Mar. 2005; extended ver-
sion: Yale Univ. Tech. Rep. YALEU/DCS/TR-1301, Mar. 2005; ftp://ftp.cs.
yale.edu/pub/TR/tr1301.pdf

[13] A. D. Jaggard and V. Ramachandran, “Robustness of Class-Based Path-
Vector Systems,” Proc. ICNP 204, Oct. 2004, pp. 84-93. Extended version:
Yale Univ. Tech. Rep. YALEU/DCS/TR-1296, Mar. 2005; ftp://fip.cs.yale.
edu/pub/TR/tr1296.pdf

Biographies

AARON D. JAGGARD (adj@math.tulane.edu) is an NSF VIGRE postdoctoral fellow
in the Department of Mathematics at Tulane University. He took his B.S. (1998)
and Ph.D. (2003) degrees in mathematics from Wheaton College, lllinois, and
the University of Pennsylvania, respectively. In addition to network routing, his
current research interests include in{;rmuﬁon security and combinatorics.

VIJAY RAMACHANDRAN (vijayr@icsi.berkeley.edu) is a postdoctoral researcher at
the International Computer Science Institute (ICSI), Berkeley, California. He
received his A.B. (2000) from Princeton University and his Ph.D. (2005) from
Yale University. His research interests include Internet algorithmics, including for-
mal study of routing and other Infernet services.

IEEE Network * November/December 2005

41

