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ABSTRACT

Distributed autonomous routing algorithms such as BGP, AODV, and others are intended to
reach a consistent, global solution after nodes iteratively and independently collect, process,
and share information. However, the important role of the mechanism used to share infor-
mation has generally been overlooked in previous analyses of these algorithms. In this paper,
we explicitly study how the network-communication model affects algorithm convergence.
To do this, we consider a variety of factors, including channel reliability, how much infor-
mation is processed from channels, and how many channels are processed simultaneously.
Using these factors, we formally define a taxonomy of communication models and identify
particular models of interest, including those used in previous theoretical work, those that
most closely model real-world implementations of BGP, and those of potential interest for
the design of future routing algorithms. We then analyze how the algorithm convergence
properties of different models in our taxonomy are related.

We show that algorithm convergence depends on the communication model in nontrivial
ways. For some pairs of models, any execution of the routing algorithm in one model can
be realized as an execution of the same algorithm in the other models. Conversely, we show
by example that some of the possible executions in some models cannot be realized in other
models; importantly, there are network instances for which the algorithm always converges in
one model but need not converge in another model. Here we give an extensive description of
these types of relationships among the models in our taxonomy. These results are important
for studying the convergence of distributed autonomous routing protocols because certain
communication models are best for proving model-independent conditions that guarantee
convergence, while other models are best for proving model-independent conditions that
might permit nonconvergence.
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1 Introduction

Distributed autonomous routing algorithms (e.g., BGP [16], RIP [14], AODV [15], and
PVEX [11]) are used to establish network connectivity when coordination among network
entities is low. Much work has been done to analyze the behavior of such protocols, in-
cluding giving examples of possible protocol divergence and proving sufficient conditions
for protocol convergence. This work has used a variety of models for the communication
between protocol participants; however, the possible impact of the communication model
on the theoretical results has generally been neglected, so it was previously unknown even
whether this is a significant factor. Here we address this issue comprehensively by defining
a taxonomy of communication models for routing protocols and showing how the different
models can affect convergence. In addition to showing that theoretical convergence results
do depend on the choice of communication model, we consider the possible pairs of commu-
nication models from our taxonomy and prove an extensive set of results that show when
protocol convergence or divergence results proved in one of the models necessarily hold in
the other. In the process, we thoroughly explore the design space defined by our taxonomy;
different points in this space correspond to different models used in previous research and
also to different configuration settings in real-world networks. Our work identifies previously
unstudied models that are important because they appear to better capture the flexibility of
actual protocols and because of their strong ability to simulate algorithm behavior in other
models.

Distributed autonomous routing algorithms iteratively compute path assignments; they
promote a consistent view of the network without overwhelming it with unnecessary infor-
mation. The essential steps in such an algorithm may be abstractly captured as the following
actions, repeatedly performed by each node:

1. Collect updates of path information describing feasible paths to a destination node d;

2. Choose the most preferred path (according to local policy) from the paths known at
the node; and

3. Announce any changes in path choice to neighboring nodes.

However, these actions do not determine aspects of the communication model that can have
an impact on an algorithm’s outcome.

Network operators and protocol designers hope that when a distributed autonomous rout-
ing protocol is run, it will eventually converge to a stable and consistent path assignment.
However, previous work ([18], followed by a line of work analyzing BGP convergence, includ-
ing [4,6,8,9,17]) has shown that divergence, which necessarily involves routing oscillations,
is possible. Different work in this area has made different assumptions about how nodes
execute actions (1)—(3) above. These differences can be realized in practice (e.g., the BGP
specification [16] allows flexibility in how actions (1) and (3) are carried out). As we discuss
below, we may view these differences as assuming different properties of the communication
channels between nodes.
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Here we consider these differences as well as reliability of message delivery, which is
important because routing algorithms may be run on networks that do not guarantee reliable
message delivery (e.g., in many wireless networks, or if TCP is not used); in such cases,
communications between nodes running the protocol can be arbitrarily delayed or even lost.
We define and explore the space of communication models using three dimensions, crucial
to Internet routing, that correspond to answers to the following questions:

e Are updates ever lost?
e From how many neighbors are updates collected in action (1) above?

e How many announcements from each neighbor are collected in action (1) above? (As
described below, given the answer to the first two questions, a communication channel
between two nodes may contain more than one update.)

The space defined by these dimensions provides a taxonomy that includes points that system-
atically capture various combinations assumptions about synchrony, atomicity, and network
delays; these map to realistic differences in today’s network infrastructure. The space also
includes both reliable and unreliable channels. To our knowledge, this is the first work to
consider the algorithmic properties of interdomain routing over unreliable channels.

Considering these various communication models, we are particularly interested in whether
a routing algorithm that is guaranteed to converge in a network (perhaps satisfying certain
conditions) using one model is also guaranteed to converge if that network uses a differ-
ent communication model. To this end, we formally define different notions of realizing an
execution of one model in another and prove an extensive set of realization relationships be-
tween different pairs of models. We note that our focus is on the communication of updates
and not on assumptions about the computation models assumed within nodes; in particular,
the choice of communication model only affects actions (1) and (3) above. We show that
for many pairs of the models in our taxonomy, all executions (in particular, all divergent
executions) in one model can be realized in some form in the other; however, we also show
that there are some pairs of models for which this is not true. We are also able to identify
aspects of the communication models that do and do not affect convergence. This work
enriches the important line of work understanding the convergence behavior of BGP and
other networking protocols, e.g., [3-6,8-10,17].

Our work here guides the future analysis of routing protocols by demonstrating which
models are appropriate for which types of analysis results. Our results imply that there are
“weak” models that are useful for exhibiting oscillations (so that divergence is then possi-
ble in all other models as well) and “strong” models that are useful for proving guarantees
of convergence. We demonstrate that previous analyses of BGP in particular, while not
explicitly considering the effects of communication models, satisfy our guidelines to ensure
applicability across communication models. Our results also contribute to protocol analy-
sis by demonstrating that some types of divergence are not possible in some models and
by identifying important models in our taxonomy that are realistic and powerful but that
have not been considered before. Finally, our results imply that, in this framework, reliable
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channels offer little benefit over unreliable channels for the purpose of guaranteeing conver-
gence. However, always having access to the current network state (instead of sequentially
processing update messages from a queue) can help guarantee convergence.

To summarize, our main contributions are as follows:

e We define a taxonomy of communication models (Sec. 2.2);
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o We identify particular points of interest in our taxonomy, including “polling,” “message-
passing,” and “queueing” models (Sec. 2.3); and

e We prove an extensive set of relationships between the different models in our taxonomy
(Sec. 3).

Of particular interest is the fact that convergence does depend on the choice of communica-
tion model. Before presenting our contributions, we provide some background and technical
preliminaries in Sec. 2.1. We discuss related work, including the relationship of our work to
classical results about modeling in the distributed computing literature, in Sec. 4.

2 Communication Models

We start in Sec. 2.1 with a description of the routing problem and the general distributed
autonomous routing algorithm. We introduce the dimensions of the model space in Sec. 2.2
and highlight some specific models of interest in Sec. 2.3.

2.1 Problem basics and algorithm

We focus on using distributed autonomous routing algorithms to solve the Stable Paths
Problem (SPP) [9], an abstract representation of the interdomain-routing problem. An
instance of SPP contains an undirected graph G = (V, E) with a distinguished destination
node d and, for each node v € V', a set of permitted paths P,, which is a subset of all simple
paths from v to d, and a ranking function A, : P, — N indicating v’s preference for each
permitted path. (Assume that, like cost, paths with lower rank are more preferred.) Ties
in ranking are not permitted except when two paths go through the same neighbor. The
problem is to find a path assignment m = {m,},cv that, for each v # d, is (1) consistent—
assuming that the next hop along 7, is u, we have that 7, = v, (if v extends a path from u
to d, then that path from u to d is assigned to u)—and (2) stable—for all neighbors w # u
of v, A\y(vmy) < Ay(vmy), i.e., m, is more preferred than any other vm,. We assume that
Mg — d.

Let C be the set of communication channels that might be used; for each edge {u, v} in
the undirected instance graph, C contains directed channels (u,v) and (v,u). We assume
that each channel is FIFO, so that messages that are written by u (and no other party) to
the channel (u,v) and are not dropped by the channel are processed by v in the same order
in which they were written. We also assume that a single communication model is used
throughout the network.
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Definition 2.1 (Components of network state). We keep track of various components of the
network state, although for relationships between models we focus on the path assignments
in particular. Each aspect of state depends on the step ¢ of the algorithm’s execution. The
components we consider are:

Path assignments. 7,(t) is the path to the destination that v chooses at the end of step ¢;
we let w(t) = {m,(t)}vev be the collection of all path assignments. Note that 7,(t4+1) = 7,(t)
unless v runs the update algorithm in step ¢ + 1. We let 7,(0) = € for v # d and 74(0) = d.
Known routes. After the execution of the first part of the algorithm in step t, p,(c;t)
contains the contents of the last update that v successfully processed from the channel c.
pu(c;t + 1) = py(c;t) unless v updates from channel ¢ in step ¢ + 1. We let p,(c;0) = € for
every v € V and c € C.

Channel contents. For a channel ¢ = (u, v), we let ¢(t) be the contents of ¢ at the beginning
of step t; let m.(t) be the number of messages in ¢ at the beginning of step t. We will use
ci(t) to denote the i'" message in ¢ at the beginning of step ¢, where the first message is the
oldest. We let ¢(0) = 0 for every ¢ € C.

In each iterative step of the algorithm, nodes (1) collect information from channels, (2)
choose route objects based on their ranking function and permitted paths, and (3) share
information by writing route objects to channels. The communication models we study here
affect only the first of these three actions. We use an activation sequence to specify the
nodes involved in each round and how the first action is executed; an activation sequence
determines the algorithm’s execution. We now define the most general notion of activation
sequence; the different models we consider can be viewed as different restricted classes of
activation sequences.

Definition 2.2. An activation sequence « is a function on the non-negative integers that
assigns to each t € Zs( a quadruple (U, X, f, g) such that:

e U C V is the set of vertices that will update in step ¢;

e X C C is the set of channels that will be updated in step ¢. For each ¢ = (u,v) € C,
we require that v € U, i.e., the receiving end of each channel is one of the nodes that
is updating in step ¢;

o f: X — ZsyU{oo} indicates how many messages from each channel should be
processed. For ¢ = (u,v) € X, v will process f(c) messages from ¢ (if f(c) = oo, then
v will process all messages in the channel); and

e g: X — P(Zso) indicates which, if any, messages will be dropped from each channel;
the elements of g(c) are the indices of the messages that will be dropped so if, e.g.,
2 € g(c), then the second message in ¢ will be dropped. We require that if f(c) = 0,
then g(c¢) =0, and if 0 < f(c) < oo, then g(c) C{1,2,..., f(c)}.

Definition 2.3 (Algorithm execution using a general activation sequence). Given a network
instance and an activation sequence «, the iterative routing algorithm executes as follows,
starting with ¢ = 0.



1. Let (U, X, f,q9) = a(t).
2. For each v € U and u € N (v) such that (u,v) € X

(a) Let ¢ = (u,v)
(b) If f(c) = 00, let i = m.(t); if f(c) < oo, let i = max{f(c), m.(t)}.

(c) If{1,2,...,i}\ g(c) # 0, let j be the largest element of this set, and let p,(c;t) be
the route in the 5" message in c. If {1,2,...,i}\g(c) = 0, let p,(c;t) = py(c;t—1).

(d) Delete the first ¢ messages from ¢, and set m.(t + 1) = m.(t) — 7.

3. For each v € U, set m,(t) to be the most preferred path from the set {p,((u,v);t)NP, |
uw e N(w)}if v #d, and let m,(t) = d otherwise.

4. For each v € U and u € N (v), if m,(t) # m,(t — 1) and if prescribed by export policy,
write the path m,(t) to the channel (v, u) and increase m, ) (t 4+ 1) by one.

5. Increment ¢ and repeat from Step 1.

Definition 2.4 (Fair activation sequence). We say that an activation sequence « is fair if
every node tries to read each of its channels infinitely often and, if a message is dropped from
channel ¢ (a possibility when unreliable channels are used), then there is a later message on
¢ that is not dropped.

We will restrict our attention to fair activation sequences.

Definition 2.5 (Convergence of an activation sequence). An activation sequence o converges
to the path assignment 7 if, for the induced sequence of path assignments 7(t), there exists
some t* such that for any ¢’ > t*, 7(t') = 7. We write lim; ., 7(t) = 7, and say « converges
if the limit exists.

Various work—e.g., [6,9]—has studied restrictions that can be placed on networks to
ensure that every fair activation sequence converges. As we relate different models below,
we will focus on sequences of path assignments {7 (¢)};, which are present in every model,
instead of other aspects of network state.

2.2 Dimensions of the model space

The quadruples that appear in a general activation sequence suggest four dimensions that
might be considered in studying different models of communication: the number of nodes
updating per step, the number of neighbors processed at each step, the number of messages
processed per channel, and channel reliability.

Definition 2.6 (Dimensions of the model space). The four dimensions we study are:
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Number of nodes updating An activation sequence must specify the set of nodes that
update at each step (the activated nodes). In the remainder of this paper, we require
exactly one node to update at each step.! However, various possible values are:

Every Every node updates at every step, i.e., U = V/;

Unrestricted There are no restrictions on which nodes do or do not update, although
to avoid trivial steps we assume U # (); and

One Exactly one node updates at each step, i.e., |[U| = 1.

Number of neighbors processed Each model specifies how many channels a node should
process when it updates. The possible values are:

E (Every) Whenever a node updates, it processes messages from every one of its
neighbors, i.e., X, = N (v) for every v € U.

M (Multiple) Whenever a node updates, it processes messages from some subset of
its neighbors (potentially multiple neighbors), including the possibility of process-
ing no channels and that of processing all channels; this imposes no additional
restriction on X,.

1 Whenever a node updates, it processes messages from exactly one of its neighbors,
i.e., | X,| =1 for every v € U.

Number of messages processed per channel Each model specifies how many messages
a node should read from a channel when it processes that channel.

A (All) Whenever a node v updates and is assigned to process messages from a neigh-
bor u, v processes all of the messages in this channel, i.e., f, = oco.

S (Some) There are no restrictions on the number of messages that a node processes
from each of its neighbors when it updates.

F (Forced) Each node is forced to process at least one message from each of the
neighbors from which it updates (although this set may omit some neighbors),
but it may process multiple messages from each neighbor.

O (One) Whenever a node v updates and is assigned to process messages from a
neighbor wu, it processes exactly one message from this channel, i.e., f, = 1. If
unreliable channels are used, this message may be lost.

Channel reliability Channels are either reliable or unreliable in the following senses.

R (Reliable) Every message placed in a channel (u,v) by u is always read by v, i.e.,
the functions ¢, in the fourth component of an activation sequence entry are
always identically equal to (.

'However, see Ex. A.6 in App. A for some initial results about multiple-node updates.
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U (Unreliable) Some messages placed in channels are not read, i.e., the functions g,
need not be identically equal to 0.

The symbols for each option in the last three dimensions (E, M, etc.) are used to abbreviate
the combinations; thus RMA is the model that uses reliable channels in which the node that
updates in a given step processes an arbitrary set of its incoming channels and processes all
messages from each of these channels.

2.3 Specific models

We now review some models that are of particular interest because of their previous use in
research, their fidelity to the current BGP specification [16], or their potential for guiding
the design of new routing protocols. (We note that although the BGP specification [16]
assumes that BGP runs on TCP, thus ensuring reliable delivery, protocols like BGP are
being designed for various purposes [10]. Our work permits analysis of convergence even
when only unreliable channels are available.) As noted above, we restrict our attention to
models in which exactly one node updates in every step, i.e., |U| = 1 in every activation
sequence quadruple.

2.3.1 Polling models

Informally, in “polling” models, nodes learn the current state of (some or all of ) their neigh-
bors in the first algorithm action when activated. The REA polling model was used in [3,4];
as we show below, this allows the hardness results in that work to apply regardless of model
used. The REA polling model has also been used in the application of mechanism design to
routing (e.g., [7,12]), although the primary focus of that work is not algorithm convergence.

Because all messages in a channel are processed before the active node chooses its best
route, the active node essentially ignores any intermediate messages and only uses each
neighbors’ most recent announcement. (We note that in adversarial or unfaithful settings,
nodes may use the additional information from intermediate messages to modify their actions;
otherwise, only the most recent information is used in route choice.)

Because of the constraints on activation sequences that define polling models, we may
simply abbreviate the elements of the activation sequence as the updating node and the
neighbors from which it updates. If REA is being used, we may further abbreviate this to
just the node itself (writing, e.g., a(t) = v), because all channels are read.

Informally, we call R1A “poll one,” RMA “poll some,” and REA “poll all.”

2.3.2 Message-passing models

“Message-passing” models were used in the original definition and proof of NP-completeness
of SPP [9]. In these models, when a node is assigned to update, it reads (or possibly drops if
unreliable channels are used) one message from each channel being read. As we show below,
any nonconvergent algorithm execution in any of the other models we consider can also occur
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in the message-passing models R10 and RMO (but not necessarily in the model REO, in which
a nodes essentially act on the first message in every nonempty channel simultaneously). The
message-passing model R10 can be thought of as an “event-driven” model, in which nodes
respond individually to each incoming update, or in which node activation is triggered by
an announcement.

2.3.3 Queueing models

The “queueing” models RMS and UMS have not, to our knowledge, been used in earlier work
on path-vector protocols. We believe these are of particular interest because the flexibility
of configuration parameters in the BGP specification [16] suggest that they most naturally
correspond to correct operation of BGP on the Internet. Furthermore, as we prove below,
they are very strong in their ability to realize the other models in our taxonomy.

There is one queueing model for each option of channel reliability; each model then allows
any number of channels to be processed in a single step, and any number of messages to be
processed from each channel (so that X and f are unrestricted and either g = ) or g is also
unrestricted).

3 Realization Relationships between Communication
Models

In this section, we analyze the algorithm executions that can occur in the various models
generated by the dimension values outlined in the previous section. We begin by defining
types of relationships between models and then go on to prove how an algorithm execution
in one model might be seen as an “equivalent” execution in another.

One main result of this section is that most of the queueing and message-passing models
capture at least as many protocol executions as any other model in the space. We also show
that the models REF and REO cannot capture all the executions of other models, but they
both capture all the executions possible in REF, REO, R1A, RMA, and REA. Finally, we
show that the polling models capture even fewer executions than REF and REO.

3.1 Notions of realization

In studying the effects of communication models, we are essentially interested in the following
relationship between models.

Definition 3.1 (Oscillation preservation). We say that model B preserves the oscillations
of another model A if the existence of a nonconvergent activation sequence « in A for some
network instance I implies that there exists an activation sequence o’ in B for network
instance I that does not converge. We then write A < B.

This definition formally allows a node to have a limiting path assignment in the first
model but not in the second model, so long as some nodes oscillate.
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While the oscillation-preserving relationship is weaker than most of the relationships that
we actually prove, it captures the essential impact of model choice on convergence. Most
of our results involve the following realization relations, which imply the preservation of
oscillations. Saying that model A realizes model B (in some sense) might be thought of as
asserting that for every execution of a system under model B, there is an execution of the
system under model A such that a specific type of simulation relation may be defined from
the first execution to the second.

Definition 3.2 (Execution realization). We say that model B realizes the executions of
model A (ezxactly, exactly with repetition, or as subsequences) if, for every network instance
using B and activation sequence « (in B), there exists an activation sequence o/ in the A
such that, if {7 (t)}; and {7'(¢)}; are the path-assignment sequences induces by o and o/, we
have

Exact realization Vi, 7'(t) = 7 (t), i.e., the sequences are the same. We then write A < B.

Exact realization with repetition 3f : N — N such that Vi, j, i < j = f(i) < f(j) and
ft) <k< f(t+1)=n'(k) =mn(t), i.e., {n'(t)}; is obtained from {m(¢)}; by replacing
each 7(t) with one or more occurrences of 7(t). We then write A < B.

Realization as a subsequence 3f : N — N such that Vi, j, i < j = f(i) < f(j) and Vt,
' (f(t)) = 7(t), i.e., {m(t)}+ is a subsequence of {7’(t)};. We then write A < B.

By examining these definitions, we see that exact realization implies exact realization with
repetition, which implies realization as a subsequence. If one model realizes the executions
of another, in any of these senses, it immediately follows that the first model preserves the
oscillations of the second model.

3.2 Foundational positive results

Here we present our positive results, which show that certain models may be realized in
various senses by other models. We build on these results by combining them with each
other, our negative results in Sec. 3.3, and additional arguments to obtain a broad range of
relationships as described in Sec. 3.5. We start with some general exact realizations.

Proposition 3.3. For every w € {R,U}, x € {1,M,E}, and y € {O,S,F,A}:
1. Uzy ezactly realizes Rxy;
2. wxS exactly realizes wxF;
3. wxF exactly realizes wxrO and wxA; and
4. wMy exactly realizes wly and wEy.

Proof. This follows from the following straightforward observations:
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1. Any activation sequence in Rzy is also an activation sequence in Uzy.
2. Any activation sequence in wzS is also an activation sequence in wxF.

3. Any activation sequence in wzO is also an activation sequence in wxF. Any activation
sequence in wxA is also an activation sequence in wxF.

4. Any activation sequence in wly is also an activation sequence in wMy. Any activation
sequence in wEy is also an activation sequence in wMy.

m
We may also prove the following exact realization.
Proposition 3.4. For every w, wES exactly realizes wMS.

Proof. Let a be a fair activation sequence in wMS. For each ¢t > 0, if a(t) = ({v}, X, [, 9),
we define o/(t) = ({v}, X', f',¢') where X' = {(u,v)|lu € N(v)}, f'(¢c) = f(c) if c € X and
fl(c)=0if ¢ ¢ X, and ¢'(c) = g(c) if c € X and ¢'(¢) = 0 if ¢ ¢ X. Then o is a fair
activation sequence in wES and the sequence of path assignments induced by o’ equals that
induced by «. O]

We have the following general result that involves realization with repetition; in light of
Prop. 3.10, it cannot be strengthened, at this level of generality, to use exact realization.

Theorem 3.5. For every w € {R,U}, y € {O,S,F, A}, wly realizes wMy with repetition.

Proof. For fixed w € {R,U} and y € {O,S,F, A}, let a be a fair activation sequence in wMy.
For each element ({v}, X, f,¢) in {a(t)} we define a sequence of quadruples that are legal
entries in activation sequences (for this network) in wMy; replacing each element of {«(t)}
by its corresponding sequence will produce a valid activation sequence in wly that meets
the claimed conditions. We assume that all channels in the wly system contain exactly the
messages, and in the same order, that appear in the wMy system; this is true before the
system starts, and each sequence of steps in the wly system (corresponding to a single step
in the wMy system) will preserve this.

Let ¢ be the channel from which v learns the path it selects after step ¢ (in the wMy
system) and let d be the channel from which it learns the path it selects after step ¢t — 1 (if
t > 0). Order the channels in X as ¢y, ..., ¢ so that, if ¢ £ d, ¢; = ¢ (if c € X) and ¢, = d (if
de X);if c=d € X, then let ¢; = ¢ if the path chosen after step ¢ is higher-ranked than the
path chosen after step ¢t — 1, and let ¢, = d if the opposite is true. The requisite sequence of
quadruples is ({v}, {c1}, f1,91), -, ({v} {ee}, fi, gr) where fi(e;) = f(c:) and gi(c;) = g(cs).
Before proceeding through any of these steps, the wly system is (by induction) using the
path P = m,(t — 1). After proceeding through these steps, the wly system will be using
the path @ = m,(t) because it will know the same set of routes that the wMy system does
after step t. We claim that, if P # @, then at some point in this sequence of steps, the new
system switches from P to ) and that this is the only change in path assignment that it



- 12 —

makes. If v did not already know () before it starts this sequence of steps, it learns ) in
the first step unless it prefers P to (Q and it learns both P and @) from the same channel
c. (In that case, all paths that v learns in the intermediate steps are less-preferred than @),
and thus P, which it knows about until the final step, when it learns—and switches to—P;
this case thus satisfies the claim.) Any new paths that v learns in intermediate steps must
be less-preferred than @; if there are old paths that are more-preferred than (), these are
less-preferred than P and are thus never chosen (because P is then chosen until the last
step). Thus the claim holds. O

We also have the following positive results. In view of Cor. 3.14, the one for reliable
channels cannot be strengthened to realization with repetition.

Proposition 3.6. R10 realizes R1S as a subsequence, and U1O realizes U1S with repetition.

Proof. For the reliable channel case, we let o be a fair activation sequence in R1S. For
each element ({v},{c}, f,g) in {«a(t)} we define a sequence of quadruples that are legal
entries in activation sequences (for this network) in R10; replacing each element of {a(t)}
by its corresponding sequence will produce a valid activation sequence in R10 that meets the
claimed conditions. In the R10 system, we will informally “flag” some messages to indicate
the ends of sequences of messages that are processed in a single update in the R1S system.

If f(¢) >0, let k> 1 be the number of messages in ¢, after the steps in the R10 system
that correspond to steps 0,...,t — 1 in the R1S system, up to and including the f(c)®
“flagged” message. Replace ({v},{c}, f, g) with k copies of ({v},{c}, f',¢'), where f'(c) =1
and ¢'(¢c) = 0 as required by R10. Finally, flag the update messages that v sends after
processing the k' of these updates. If f(c) = 0, then we delete ({v}, {c}, f,g) and do not
replace it with anything. The resulting sequence is a legal activation sequence in R10. The
R10 system may have various path assignments while processing the k update commands,
but after processing the final one, the set of known paths at v (and at all other nodes, none
of which have updated during this time) is the same as at v in the R1S system after step ¢,
so the path assignments will be the same. As a result, we see that R10 realizes R1S as a
subsequence.

For unreliable channels, given a fair activation sequence « in U1S, we replace ({v}, {c}, f, 9)
in {a(t)} with nothing if f(¢) = 0; but, if f(¢) = k& > 0, we replace ({v}, {c}, f,g) with
({v}, {c}, f1.90), -, v}, {c}, firgr), where fl/(c) = 1 for every i and gi(c) = 0 if i is the
largest element of {1,...,k} that is not in g(c) and g.(c) = {1} otherwise (including if no
such integer exists). This means that the only messages not dropped in the U10 system are
exactly the ones that the U1S system actually uses (i.e., that contribute known paths at the
end of a step); thus the UL1O system may repeat path assignments, but it does not transition
through other path assignments. This shows that U1O realizes U1S with repetition. ]

The following property is important in that it allows us to move from the unreliable case
to the reliable case. The proof of this theorem relies on the fact that every dropped message is
followed (eventually) by a non-dropped message in the definition of a fair activation sequence.
Without this assumption, however, R1S does not even preserve the oscillations of U10.
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Theorem 3.7. R1S exactly realizes U10.

Proof. Let a be a fair activation sequence in U10; each element is of the form ({v}, {c}, f, 9),
where f(c) = 1 and g(c) is either () or {1}. Construct o/ by: replacing all elements
({v},{c}, f, g) for which g(c) = {1} with ({v},{c}, ', ¢'), where f'(¢) = 0 and ¢'(c) = 0, and
replacing those elements for which g(c) = 0 with ({v},{c}, f',¢'), where: f'(c) > 1 equals
the number of elements ({v},{c}, f,g) in a (including the current one) since the previous
such element with g(c) = 0; and ¢'(¢) = (). This is then a fair activation sequence in R1S,
and the sequence of path assignments it induces is the same one induced by «, because in
any channel there is always a non-dropped message after every dropped message. O

3.3 Foundational negative results

Our negative results show that certain models cannot be realized, in various senses, by other
models. These are proved by exhibiting a network and an activation sequence from the first
model that produces behavior that provably cannot be seen in the second model (either at
all, to show that oscillations cannot be preserved, or without the addition of repeated or
other states, to show that certain other realization relations do not hold). The examples
referenced in these proofs are in App. A.

Theorem 3.8. The oscillations of R1O are not preserved by REO, REF, R1A, RMA, and
REA.

Proof. Example A.1 presents a network that may oscillate in R10 but that cannot be made
to oscillate in REO, REF, R1A;, RMA, and REA. O

Theorem 3.9. The oscillations of REO and REF are not preserved by R1A, RMA, and REA.

Proof. Example A.2 presents a network that may oscillate in REO and REF but that cannot
be made to oscillate in R1A, RMA, or REA. O

Proposition 3.10. REO cannot be exactly realized in R10.

Proof. Example A.3 presents network and path assignment sequence induced by an activation
sequence in REO that cannot be induced by any activation sequence in R10. O

Proposition 3.11. REA cannot be realized with repetition in R10.

Proof. Example A.4 presents a network and path assignment sequence induced by an activa-
tion sequence in REA such that no expansion of it obtained by replacing each assignment by
one or more copies of the assignment is a path assignment sequence induced by an activation
sequence in R10. O]

Proposition 3.12. REA cannot be exactly realized by R1S.

Proof. Example A.5 presents a network and path assignment sequence induced by an acti-
vation sequence in REA that cannot be induced by an activation sequence in R1S. O]
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Proposition 3.13. REO cannot be exactly realized by R1S.

Proof. The REA activation sequence in Example A.5 (used in Prop. 3.12) is also an REO
activation sequence. O

3.4 Remarks on transitivity

As noted in Sec. 3.1, exact realization is stronger than realization with repetition, which
in turn is stronger than realization as a subsequence, which in turn is stronger than the
preservation of oscillations. If a model M realizes a model M in sense R;, and M; realizes
model M5 in sense Ry, then we have that M3 must also realize M; in the weaker of the senses
R; and R, (although it might also realize M; in a stronger sense). This is illustrated in Fig. 1,
which (along with Fig. 2) helps depict how to reason about realization relationships.

M, M,

M, M, M, M, M, -
MI MI MI MI

Figure 1: Graphical representation of positive transitivity rules. In both cases, model M,
realized model M; and model Mj realizes model M, (indicated to the left of the implication
double arrow). As a result, we know that M; realizes M; the weaker of the previously known
realization senses. Here, the thicker arrow suggests stronger a (weakly) stronger realization
relationship. Informally, (left) we may “push” the head of a realization arrow (going from
the realized model to the realizing model) forward along a weakly stronger realization arrow,
and (right) we may “pull” the tail of a realization arrow backward along a weakly stronger
realization arrow.

Conversely, if My realizes M; in sense R; but Mj; cannot realize M; in sense Ry, and if
R, is at least as strong as R, then Mj also cannot realize My in sense Ry. (Otherwise, the
composition of the realization of M; in M, and the realization of Ms in M3 would produce a
realization of M; in M3 in sense Ry.) Similarly, if M3 realizes M; in sense R; but M3 cannot
realize Ms in sense R, and if R; is at least as strong as R,, then M; also cannot realize
M, in sense Ry. (Again, transitivity would lead to a realization of My in M3 in sense Rj.)
These rules are illustrated in Fig. 2.

We may apply these arguments to the results above to obtain relationships between the
models presented here. Section 3.5 presents all of these corollaries in a condensed form. As a
detailed example, we may start with Prop. 3.11 and obtain the following collection of results.

Corollary 3.14. For every y,y',z with z # O, Ryz cannot be realized with repetition in
Ry'O.

Proof. By Thm. 3.5, R10 realizes RMO (and thus, by Prop. 3.3, REO) with repetition. As
this is at least as strong as the sense of non-realization in Prop. 3.11, for every ¢’ € {1, M, E},
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M, M, M, M, M M M, M,
M, M, M, M,

Figure 2: Graphical representation of negative transitivity rules as described in the text.
The crossed-out arrows represent realization relationships that do not hold, and the thicker
arrow a weakly stronger realization relationship that does hold. Informally, (left) we may
“push” the tail of a non-realization arrow forward along a weakly stronger realization arrow,
and (right) we may “pull” the head of a non-realization arrow backward along a weakly
stronger realization arrow.

Ry’O cannot realize REA with repetition. Repeated applications of Prop. 3.3 show that for
y € {M,E} and z € {S,F,A}, Ryz realizes REA exactly; by Thm. 3.5, we then have that
R1z realizes REA with repetition for z € {S,F,A}. The arguments above and the first
observation imply that for every y,3’ € {1,M,E} and z € {S,F, A}, Ry’O cannot realize Ryz
with repetition. O

3.5 Comprehensive listing of realization results

Figures 3 and 4 summarize the results stated in Sec. 3.2-3.3 along with various corollaries
obtained from these by the transitivity arguments above.

It is important to note how strong we have shown the queueing models to be. RMS is
able to realize all reliable channel models exactly and all unreliable channel models either
with repetition or exactly. UMS is able to exactly realize all models, reliable and unreliable.
Furthermore, among the reliable channel models, R10, RMO, R1S, RMS, RES, R1F, and
RMF are all able to capture all of the oscillations of all other models in our taxonomy. In
contrast, REO, REF, R1A, RMA, and REA are provably unable to capture some oscillations
that may occur when using other models, so conditions that guarantee convergence in these
models may not do so in general.

4 Related Work

Many general results in distributed computing [13] consider assumptions about network
communication, including atomicity and synchrony. In contrast to those general results, we
do not attempt to simulate an algorithm in one model by a modified algorithm in another;
instead, we are interested in properties of the executions of the same algorithm in a variety
of models. Rather than general simulation, we define the more specialized notion of a
realization relationship (Sec. 3) and apply it to routing-algorithm convergence. Recently,
Chambart and Schnoebelen [1] studied the impact of channel reliability on the ability of an
algorithm execution to transition between two states; their results do not directly apply to
our context because state transitions do not preclude the possibility of nonconvergence.
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| || R10 | RMO | REO [ R1S [ RMS | RES | R1F | RMF | REF | RIA | RMA | REA |

R10 - 1] 4 4 4] 4 4] ] 1 1] 1
RMO 3 — 3 1 4] 3 4] 1] 1 1]
REO 3 1 —1 3 1 4] 3 4 4] 1
R1S 2 o 1| - 4 4] >2 >2 1| -1 1 -1
RMS 2 2 -1 3 - 4] 23 =2 1] 1 1]
RES 2 2 1 3 4 “23 >2 1| 1 1]
R1F 2 2 1| 4 1 N 4] 1| 1 1] 1
RMF 2 2 1 3 1 4] 3 N 1]
REF 2 2 <2 3 1 4] 3 4 — 1]
R1A 2 2 <2 4 4 4] 4 4 - 4

RMA 2 2 <2 3 1 4] 3 4 3

REA 2 2 <2 3 4 4] 3 4 4 3 1 -
Uio [[ >2] >2] -1] 4 4 4] >2 >2] 1] -1 1] 1
UMO || 23] >2| -1 3] >3] >3 23| >2| -1| -1 1] 1
UEO || 23] >2 3] >3] >3 23] >2 1 1] 1
u1s 2 2 1| >3 >3] >3] >2| >2| 1| -1 1]
UMS 2 2 1 3] >3] >3 23] >2| 1| -1 1]
UES 2 2 1 3] >3] >3 23] >2| 1| -1 1]
ULF 2 o 1| >3] >3] >3] >2| >2| 1| -1 a1 -1
UMF 2 2 1 3 >3] >3 23] >2| 1| -1 1
UEF 2 2 <2 3| >3] >3] 23| >2 1 1 1
UIA 2 2 <2 =3[ >3] >3] >2| >2

UMA 2 2 <2 3| >3] >3] 23| >2 <3

UEA 2 2 <2 3| >3] >3] 23| >2 <3

Figure 3: Summary of the ability of reliable-channel models to realize the various models we
consider here. The entry whose row is labeled with model A and whose column is labeled
with model B indicates what we have proved about B’s ability to realize A. If the entry
is 4, then B exactly realizes A; if the entry is 3, then B realizes A with repetition; if the
entry is 2, then B realizes A as a subsequence. A > symbol indicates that the value is a
lower bound and the relationship could be stronger, while a < symbol indicates an upper
bound, so the relationship could be weaker. In cases where both upper and lower bounds are
known, we list all of the possible relationships. If the entry is —1, then B does not preserve
the oscillations of A. Blank entries indicate pairs for which the relationship is unknown.
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| | U1O | UMO | UEO | U1S | UMS | UES | UIF | UMF | UEF [ U1A | UMA | UEA |

R10 4 4 4 4] 4] 4 4

RMO 3 4 >3 4] 4] >3 4

REO 3 4 4] >3 4] 4| >3 4] 4

RIS >3 >3 1 4] 4| >3] >3

RMS 3] >3 >3 4] 4| >3] >3

RES 3] >3 >3 i 4| >3] >3

RIF >3 >3 4 4] 4| 4 4

RMF 3] >3 >3 4] 4] >3 4

REF 3] >3 >3 4] 4] >3 4] 4

RIA || >3 >3 4 4] 4| 4 4 4 4
RMA 3] >3 >3 4] 4] >3 4 >3 4
REA 3] >3 >3 4] 4] >3 4] 4| >3 4 4
U10 - 4 4 4] 4] 4 4

UMO 3 - >3 4] 4] >3 4

UEO 3 1 1 >3 4] 4| >3 4] 4

u1s >3 >3 - 4] 4| >3] >3

UMS 3] >3 >3 — 4| >3] >3

UES 3] >3 >3 4 - >3] >3

UIF || >3 >3 1 i 4| - 4

UMF 3] >3 >3 i 4| >3 -

UEF 3] >3 >3 4] 4] >3 i -

UIA || >3] >3 4 4] 4| 4 4 - 4
UMA 3] >3 >3 i 4| >3 1 >3 -
UEA 3] >3 >3 4] 4] >3 41 4] >3 4 -

Figure 4: Summary of the ability of unreliable-channel models to realize the various models
we consider here. The entry whose row is labeled with model A and whose column is labeled
with model B indicates what we have proved about B’s ability to realize A. If the entry
is 4, then B exactly realizes A; if the entry is 3, then B realizes A with repetition; if the
entry is 2, then B realizes A as a subsequence. A > symbol indicates that the value is a
lower bound and the relationship could be stronger, while a < symbol indicates an upper
bound, so the relationship could be weaker. In cases where both upper and lower bounds are
known, we list all of the possible relationships. If the entry is —1, then B does not preserve
the oscillations of A. Blank entries indicate pairs for which the relationship is unknown.
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The BGP specification [16] outlines technical details of interdomain route computation,
but leaves some room for interpretation. As an example, the amount of time nodes wait
before sending route announcements can vary. In some cases, longer wait times may slow
BGP convergence because nodes’ discovery of potential routes is delayed; in other cases,
longer wait times may hasten convergence because nodes do not waste resources on spurious
or transient announcements. We have studied these types of effects in this paper, and some
of the identified models represent various interpretations of the BGP specification.

The Route Refresh Capability [2], which is an optional extension to BGP, can be used
to learn, immediately and on demand, a node’s current route choice. Although intended to
prevent information loss after a policy change, nodes can use this capability to poll nodes
for the most current update. This permits implementation of the polling models, and the
BGP specification alludes to this possibility. We show that certain types of nonconvergence
cannot be realized in these polling models.

Nodes’ ranking functions and permitted paths are independently configured inputs, and
previous work showed that BGP may not converge on certain inputs [18]. Attempting to
characterize these inputs has given some necessary conditions [4] and some sufficient condi-
tions [6,8,9,17] on the inputs for convergence, but not a complete characterization. These
results were proved in different communication models. For example, Feamster, Johari, and
Balakrishnan [4] used a polling model. In contrast, other work [6,8,9,17] assumed a queue-
ing or message-passing model. In addition to these results about policy constraints, some
hardness results are also known. Using a queueing model, Griffin, Shepherd, and Wilfong [9]
showed the decision problem of whether an SPP instance has a stable, consistent path as-
signment is NP-complete. Using a polling model, Fabrikant and Papadimitriou [3] showed
that determining whether BGP converges on a succinctly-represented problem instance is
PSPACE-complete. Finally, previous work on game-theoretic models of BGP (e.g., [7,12])
have assumed polling models. Our results relating various models, including those used in
previous work, suggest which models are best used for continuing this line of work. For
example, here we show that although the sufficient condition in [9] was shown in a queueing
model, the condition also guarantees convergence in a polling model.

5 Conclusions and Future Work

We have systematically defined a taxonomy of communication models that play an impor-
tant, but generally overlooked, role in the convergence behavior of distributed autonomous
routing algorithms; we have defined new realization relationships and given an extensive
description of which ones hold between different pairs of these models. We have shown that
the queueing (and some other) models are very strong, in that they can capture the algo-
rithm behavior seen in all the other models. As such, they are useful for proving guarantees
of convergence. We have also shown that the polling models are strictly weaker than other
models in that they do not capture all the algorithm behavior that may be seen using other
models (and in the real world); thus, they may be useful for providing examples of divergence
but not for proving convergence guarantees.
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There are important questions remaining in this line of work. We have not extensively
studied models in which multiple nodes are activated simultaneously; polling in that case is
strictly stronger than the polling models we consider here,? but we do not expect this to be
true of other models. The question of algorithm behavior in the context of mixed channels
may also be interesting. Although unreliable channels model reliable channels—so our results
for unreliable channels do apply with a mixture of reliable and unreliable channels—we do
not have results when, e.g., some nodes poll and other act on messages. Finally, the question
of behavior in the presence of adversarial or unfaithful nodes is important. We assume that
nodes use the most recent information they have to execute the algorithm when activated;
however, in adversarial settings, nodes may use the other messages read to act in different
ways that may affect algorithm convergence.
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Some Examples

Example A.1. The instance DISAGREE from [9] is depicted in Fig. 5. In this network, node
x prefers choosing the route through neighbor y over the direct route to d; likewise, node

ybp

refers the route through x over the direct route to d. The network contains two stable

solutions, m = (d,zyd,yd) and 7y = (d,zd,yxd). A result from [9] states that multiple
stable solutions imply the existence of a policy structure called a dispute wheel; the absence
of a dispute wheel is the broadest-known sufficient condition for convergence. However, the
existence of a dispute wheel does not imply divergence; in particular, this example shows
that divergence depends on the communication model.

xyd yxd

xd 0' yd

Figure 5: A network instance that cannot oscillate in REO, REF, R1A, RMA, or REA.
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In the R10 model, let node d activate, announcing itself to nodes x and y. Then let
node x activate, processing the message from d, and then let node y activate, processing
the message from d. Both nodes now choose the direct route to d and have announced this
choice in the channel to the other. Now, alternately activating nodes x and y ad infinitum,
processing the channels between them, will lead to a fair oscillation (assuming that the
channels to and from node d are processed infinitely often, which have no effect on the route
choice). This is because the choice of more preferred route causes a message to be placed in
the channel withdrawing the direct route; that withdrawal removes the preferred route on
the next activation, causing the direct route to be chosen and advertised. This returns the
network to a previous state—including the messages in the channels—indicating a cycle in
the algorithm execution. Note that, because this oscillation is an R10 activation sequence,
a similar oscillation can be produced in any model that realizes R10 as a subsequence.

However, the models that do not realize R10 as a subsequence, namely REO, REF, R1A,
RMA, and REA, are separated from the others through this example. We now show that
DISAGREE cannot oscillate in these five models. We do this by showing impossibility of
oscillation in the REF and RMA models; impossibility in the other three models is implied
by our general realizability results.

First consider RMA. In this model, when a node is activated, it receives the most current
state of any neighbor that is polled. Consider any fair activation sequence in this model. At
some time, node d must be activated, after which point its existence will be known by z or
y when the channel to d is polled. Without loss of generality, let  be the first node to poll
d after d is activated; this causes = to choose the direct route xd. Any further activations of
x or d have no effect. Because the sequence is fair, y must then activate, and either x alone,
d alone, or both x and d will be polled at that time. If z is included in the set of neighbors
polled, then y will choose the route yxd, and any further activations of any node will not
change the network path assignment (convergence). If x is not included, then y will choose
the direct route yd. After this point, because the sequence is fair, either x must activate
polling y, or y must activate polling = (any other activation and polling will have no effect).
The first node that does will choose the route through the other, entering a stable converged
state. Therefore, any RMA activation sequence must converge.

Now consider REF. In this model, nodes pull one message off every channel when acti-
vated. Consider any fair activation sequence. Until node d activates, nodes have no route
and will announce nothing. Once d activates, its announcement appears in the channels to
x and y. Without loss of generality, let = activate first after this point; it will choose xd
after processing the announcement from d and will place a corresponding announcement in
the channel to y. The next time y activates, it must read this announcement, causing it to
choose its most preferred route yaxd. This results in the converged state (d, zd, yzd).

To summarize, there is no oscillatory activation sequence for DISAGREE in REO, REF,
R1A, RMA, or REA; however, an oscillatory sequence can be found in any of the other
models. This provides a separation result among models, because these five models cannot
realize any of the others, even in the weakest way (REF ¢ R10, RMA ¢ R10, and anything
implied by these).
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Example A.2. Consider the instance depicted in Fig. 6. Each node’s route preferences are
listed next to that node from top to bottom in order of decreasing preference. We show that
this instance cannot oscillate in the polling models (R1A, RMA, REA), but can oscillate in
the other two models in which DISAGREE (Ex. A.1) cannot, providing a separation among
the polling and other models.

vua*
vax

uva* (except uvayd)
ua* (except uayd)

xd

Figure 6: A network instance that can oscillate in REO and REF but not in R1A, RMA, or
REA.

We show that an oscillation cannot occur in RMA; the other results are implied by our
general realizability results. Consider any fair activation sequence in RMA; recall that, in
such a sequence, nodes are activated to poll the current state of at least one of its neighbors.
Before d is activated, the path assignment does not change. At some point after d is activated,
node z must be activated; after that, node a must activate polling z at some point, when it
will choose its most preferred route azd. After this point, node a’s choice will not change,
because all subpaths of azd are most preferred at their respective source nodes, and the
choices of x and y will not change unless a is polled. Now consider the first activation of
either u or v that polls a after the choice of azd. We have four cases:

1. Node u is activated, and it believes that node v is routing directly through a (either
from a poll of v or from a previously learned, potentially stale state). Then u chooses
the extension of the route through v. The next noteworthy activation (one in which
the route choice of u or v changes) is that of node v. We have two cases:

(a) If v polls u, then v must choose vazd. The next noteworthy activation is node u
polling v, at which point u will choose uvazd. This can only result in convergence
to the path assignment (d, xd, yd, zd, azd, uvazd, vazd).

(b) If v does not poll u, then v may choose vazd (leading to convergence as describe
above), or it may choose some stale route through u (which must be vuayd or
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vuazxd). The next noteworthy activation is when u polls v, falling into the next
case below.

2. Node u is activated, and it believes that node v does not have a feasible route it can
extend (either from a poll of v or from a previously learned, potentially stale state).
Then u must choose uazd. Node u will not change unless node v chooses a direct route
through a. There are two cases for node v’s next activation:

(a) Node v polls node u; if so, the instance converges to (d, xd, yd, zd, azd, uazd, vuazd),
because vuazd is most preferred.

(b) Node v does not poll node u; in this case, it chooses vazd. Now, both u and v
have chosen to directly route through a. The next activation of either that polls
the other will reach a converged state, and no other activation will change the
choice of u and v. This must happen because of fairness.

3. Node v is activated, and it believes that node u is using uaxd. It then chooses vuaxd.
The only noteworthy activation is when u polls a; node u would update its choice
to wazd. The next time node v polls u, node v chooses vuazd, which leads to the
converged state (d, xd, yd, zd, azd, uvazd, vuazd).

4. Node v is activated, and it believes that node u has no feasible route that it can extend
(u has no route or is routing through it). Node v must then choose vazd. Activating v
again changes nothing (unless it learns that w is using waxd, which is the case covered
above.) We then have two cases when u next activates:

(a) Node u polls node v before or at the same time that it polls node a. In this case,
node u chooses uvazd, leading to the converged state (d, xd, yd, zd, azd, uvazd, vazd).

(b) Node u polls node a before it polls node v. In this case, u chooses the route uazd,
having had no route earlier. Now, both x and y are routing directly through a;
the next activation of either that polls the other will lead to a converged state.

The above discussion shows that the network in Fig. 6 cannot oscillate in RMA (and
consequently cannot in R1A or REA). We next show that the network can oscillate in REO
(and consequently REF, because REO < REF). An activation sequence in this model consists
of activating a node, which pulls exactly one message off of all nonempty channels, processes
those messages, and only then chooses a route and announces an update if necessary.

Consider the activation sequence and corresponding route choices below:

= 1 2 3 4 5) 6 7 8 9 10 11 12 13
ut) = d x a u v y a u vz a v u
mow(t) = d xd axd uaxd vuaxd yd ayd (u)e vayd zd azd vazd uazd
14 15 16 17 ... 2k 2k+1
v u v uo ... u

vuazd wvazd vuwazd wvazd ... vuazd wvazd



— 24 —

The first seven steps are straightforward; the activated nodes choose the best available routes,
and at most one message is ever in a channel. In step 8, node u does not have a path, because
it refuses paths containing y. It processes ayd and vuaxd from its channels, and is left to
choose € because both of those are infeasible. This permits node v to choose vayd in step 9,
as it processes both the announcement of ayd from a and € from u. Note that this injects an
announcement of vayd into the channel to u. When v is next activated in step 12, it chooses
vazd because the channel from u is empty; it subsequently injects the announcement vazd
into the channel to u. Therefore, although u does not have a path, there are two messages in
the channel from v; the delay in receiving the current state (two activations are necessary in
REO) is essential for the oscillation to work. When u finally activates in step 13, it chooses
uazd because the message from v contains an infeasible path (vayd). At this point, both
nodes are routing directly to a, but simultaneously have in their channels announcements
that will change their route choice upon next activation. The classic DISAGREE oscillation
will work here, and as u and v alternately activate, they will oscillate between their direct
and indirect routes.

This example thus gives a separation result REO 9 RMA, showing that there are oscilla-
tions realizable in REO and REF that cannot be realized in the polling models.

Example A.3. Earlier, we showed that zEy < x1ly for any x,y we consider in this paper.
The network instance depicted in Fiig. 7 shows that this general result cannot be strengthened
to an exact realization, i.e., zEy £ x1y.

Figure 7: A network instance on which an execution in REO cannot be exactly realized by
an execution in R10.

To show this, we begin with an activation sequence in the REO model and show that
it cannot be exactly realized in the R10 model. Consider the activation sequence below;
the path sequence marked with a star (%) is induced in the REO model (parts of the other
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assignment sequence may vary as explained below):

t= 1 2 3 4 5 6 7 8 9 10

Ut)= d b uw v a u v s s s
* (REO) my(t) = d bd ubd vbd ad wad vad subd suad suad
(R10) myuy(t) = d bd ubd vbd ad wad vad subd suad svbd

We now attempt to exactly realize this sequence in the R10 model. To achieve the same
sequence of path assignments in steps 1-7 as x, we must have the identical activation sequence
in R10. Also note that for each of these activations, only one incoming channel has a message,
and that channel has only one message, so even though R10 offers a choice of channel, the
messages processed are identical in both models’ executions.

After step 7, the channel from u to s has the messages {ubd, uad} in it, and the channel
from v to s has the messages {vbd, vad} in it. To achieve the assignment 74(8) = subd, we
must activate s and pull the message ubd from the channel from u. In the REO model, this
means that the message vbd is also pulled from the channel from v, because in this model,
every neighbor’s channel is processed when activated. Because subd is preferred to svbd, the
route svbd is never assigned to s in the REO path sequence (node v, already having its most
preferred route vad, will never again announce vbd along the channel). However, in the R10
model, only one channel is processed at a time; therefore, the message vbd remains to be
examined at a later step.

To achieve 74(9) = suad, we must process the message uad from the channel from u; this
makes subd infeasible. The only reason that s would not choose suad as its route is if it also
knows the route svbd, which is ranked higher. In the REO model, when the channel is read
to process uad, the channel from v (now containing vad) must also be read, and this removes
the route svbd from consideration. In the R10 model, it must be that the channel from v
is not read. After step 9, the REO execution converges to (d, ad, bd, uad,vad, suad). In the
R10 model, the outstanding messages must be processed; this causes m4(10) = svbd because
svbd is preferred to suad. The choice of svbd would never happen in the REO model, but to
exactly realize the path assignment sequence up to step 9, it is impossible for the message
vbd to be processed earlier. Because this state in the R10 path-assignment sequence does not
appear in the REO path-assignment sequence, we conclude that REO ¢« R10, which means
the general result xEy < xly cannot be strengthened.

Although other examples may show this, we remark that trivial network examples do
not lead to the desired result. Informally, this is because reordering message processing can
overcome the restriction of processing only one channel at a time.

Example A.4. Consider the instance depicted in Fig. 8; the permitted paths are ad, bd,
ubd, uad, suad, and subd, with ubd preferred to uad and suad preferred to subd. In the REA
model, activate the nodes in the sequence d, a,u,b, u, s; the path selected in step ¢ by the
active node U(t) is shown in the third line ((REA) 7y (t)) below:

1 2 3 4 5 6
d a U b u s
d ad wad bd ubd subd

t
U(t)
(REA) mu)(t)



Figure 8: A network instance on which an execution in REA cannot be realized with repetition
in R10.

Before the last step (t = 6), the first message in the channel (u,s) is uad and the second
message is ubd. Now consider any expansion of this sequence of path assignments obtained
by replacing each path assignment by one or more copies of itself. This again has one or more
instances of wad in the channel (u, s) before any instances of ubd. Any activation sequence
in R10 that attempts to achieve such an expansion would need to process these instances of
uad before assigning subd; however, subd must be assigned to s before suad ever is, so R10
cannot realize this path assignment sequence with repetition. (However, from other results,
we know that it is indeed realizable as a subsequence; in this example, the R10 activation
sequence that activates the channels (d,a), (a,u), (d,b), (b,u), (u, s), (u, s) produces a path
assignment sequence that differs from the original one only in the insertion of suad just

before subd.) Thus we have that REAZR10.

Example A.5. Consider the instance depicted in Fig. 9; the permitted paths are ad, bd,
xd, cad, cbd, scad, scbd, and sxd, with scbd preferred to sxd preferred to scad at s and cad
preferred to cbd at c¢. In the REA model, activate the nodes in the sequence d, b, ¢, x, s, a, ¢, s;
the path selected in step ¢ by the active node U(t) is shown in the third line ((REA) 7y ) (t))
below:

t 1 2 3 4 d 6 7 3
Ul(t) d b ¢ x» s a c¢ s
(REA) my@y(t) = d bd cbd xd scbd ad cad sxd

We now attempt to induce this sequence in the R1S model. The sequence of channels
activated must start with (d,b), (b,c), (d,z), (¢, s) because the changed paths are all being
learned for the first time. Note in particular that the first activation of s in the REA
model, at which point s chooses scbd, also allows s to learn the path sxd without a second
activation because it is learning information from all of its neighbors. The sequence of
activated channels must continue with (d,a), (a,c), again because the changed routes are
being learned for the first time. In the R1S model, at this point: s now knows only scbd,
the channel (¢, s) contains cad, and the channel (x,s) contains xd. In order to match the



Figure 9: A network instance in which an execution in REA cannot be exactly realized in

R1S.

original path assignment sequence, we must activate a single channel and, as a result, have
s choose sxd. This channel must thus be (z, s), because s has not yet learned sxd; however,
because s does not activate (¢, s) until some point later in the execution, s will continue to
use its most preferred path scbd. Thus, REA £ R1S.

Example A.6. Consider the instance DISAGREE from Ex. A.1 above, and assume a model
like R1A except that multiple nodes may be activated in each step (with each node, as in
R1A, processing all of the messages in exactly one of its incident channels). If the channels
that are activated at each step are given by X (t), then we can have a cycle as follows.

t= 1 2 3 4 5)
X(t) = {(d.d)} {(d2),(dy)} {(z,y),(@y,2)} {(d2).(dy)} {(zy) (y2)}
7. (t) = —— xd xyd xyd xd
T, (t) = —— yd yxd yxd yd
6 7
{(d,z),(d, )} {(z,9),(y,2)}
xd xyd
yd yxd

Here x and y are always activated simultaneously, either both polling their channels to d or
both polling their channels to the other. If we require that each of (x,y) and (y, x) is activated
in infinitely many steps in which the other is not activated (perhaps as a modification of
fairness for the case in which multiple nodes may be activated in a given step), then the
arguments of Ex. A.1 apply and we cannot get an oscillation.



