COSC 460 Lecture 4: Relational Algebra

Professor Michael Hay Fall 2018

Architecture of DBMS

Relational algebra

- Algebra: set of values and operators on those values
 - Values: relations
 - Operators: select, project, cross, intersect, union, difference, join, etc.
- Relational algebra is closed ("input: relations, output: relations")
- Closure → combine ops into expressions

Select: filter rows

Students

$\underline{\operatorname{sid}}$	name
1	Bob
2	Alice
3	Bob

$$\sigma_{name=\text{`Alice'}}(S) = \begin{vmatrix} \text{sid} & \text{name} \\ 2 & \text{Alice} \end{vmatrix}$$

Shorthand: abbreviate relation name with its first letter.

"S" refers to Students relations

Project: filter columns

Takes

$\underline{\operatorname{sid}}$	$\underline{\operatorname{cid}}$
1	301
2	460
2	301
3	460

(and eliminate duplicates)

$$\pi_{sid}(T) = \begin{bmatrix} \text{sid} \\ 1 \\ 2 \\ 3 \end{bmatrix}$$

Cross product

Students

$\underline{\operatorname{sid}}$	name
1	Bob
2	Alice
3	Bob

Courses

$\underline{\operatorname{cid}}$	title	time
301	OS	10:20
460	db	1:20

	sid	name	cid	title	time
	$\boxed{1}$	Bob	301	OS	10:20
	$\begin{bmatrix} 1 \end{bmatrix}$	Bob	460	db	1:20
$S \times C =$	2	Alice	301	OS	10:20
	2	Alice	460	db	1:20
	3	Bob	301	OS	10:20
	3	Bob	460	db	1:20

Students

$\underline{\operatorname{sid}}$	name
1	Bob
2	Alice
3	Bob

Set operations

WiCS Club

$\underline{\operatorname{sid}}$	name
2	Alice
4	Courtney
325	Sam

Takes

$\underline{\operatorname{sid}}$	$\underline{\operatorname{cid}}$
1	301
2	460
2	301
3	460

Schemas don't match!

$$S \cup T = \text{error!}$$

Natural Join

Students

$\underline{\operatorname{sid}}$	name
1	Bob
2	Alice
3	Bob

\mathbf{T} akes

$\underline{\operatorname{sid}}$	$\underline{\operatorname{cid}}$
1	301
2	460
2	301
3	460

	sid	name	cid
	1	Bob	301
$S\bowtie T=$	2	Alice	460
	2	Alice	301
	3	Bob	460

Join on common attribute(s): sid

Theta Join

WiCS Club

$\underline{\operatorname{sid}}$	name
2	Alice
4	Courtney
325	Sam

Courses

$\underline{\operatorname{cid}}$	title	time
301	os	10:20
460	db	1:20

Among all pairs: keep only those that match condition

More complex predicates

$$\sigma_{sid=1 \land name=\text{`Bob'}}(S) = \begin{bmatrix} \text{sid} & \text{name} \\ 1 & \text{Bob} \end{bmatrix}$$

$$\sigma_{sid=1 \ \lor \ name=\text{`Alice'}}(S) = \begin{array}{|c|c|c|} sid & name \\ \hline 1 & Bob \\ \hline 2 & Alice \\ \hline \end{array}$$

Anywhere you can put a predicate, you can put an arbitrary logical expression. (Predicate must be on attribute values.)

Book-Keeping operators

Rename attributes

 $\rho_{cid \to cno, title \to name, time \to hour}(C) = \begin{bmatrix} \text{cno} & \text{name} & \text{hour} \\ 301 & \text{os} & 10:20 \\ \hline 460 & \text{db} & 1:20 \\ \end{bmatrix}$

 $\rho_{1\to cno,2\to name,3\to hour}(C) = \begin{bmatrix} \text{cno} & \text{name} & \text{hour} \\ 301 & \text{os} & 10:20 \\ \hline 460 & \text{db} & 1:20 \\ \end{bmatrix}$ (by position)

Assign name to result

$$R_1 \leftarrow S \bowtie T$$

Expressions

Students

$\underline{\operatorname{sid}}$	name
1	Bob
2	Alice
3	Bob

WiCS Club

$\underline{\operatorname{sid}}$	name
2	Alice
4	Courtney
325	Sam

Takes

$\underline{\operatorname{sid}}$	$\underline{\operatorname{cid}}$
1	301
2	460
2	301
3	460

Courses

$\underline{\operatorname{cid}}$	title	time
301	OS	10:20
460	db	1:20

Expression for names of students taking 460 (shown on board)

Essential vs. derived operators

(shown on board; see handout)

Cow book exercises

Suppliers(sid,sname,addr)
Parts(pid,pname,color)
Catalog(sid,pid,cost)

- 1. Find the names of suppliers who supply some red part.
- 2. Find the sids of suppliers who supply some red or green part.
- 3. Find the sids of suppliers who supply some red part or are at 221 Packer Street.
- 4. Find the sids of suppliers who supply some red part and some green part.
- 5. Find the sids of suppliers who supply every part.