
COSC 460 Lecture 22:
No SQL Overview

Instructor: Michael Hay
Fall 2018

No SQL

• Name is historical accident

• Name for SF meetup in 2009 to discuss emerging
database technologies

• Google’s BigTable 2006 (→ open-source HBase)

• Amazon’s Dynamo 2007 (→ open-source Riak)

 2

Driving forces

• Impedance mismatch

• Role of database: integrator vs. app backend

• Scaling out

 3

Impedance mismatch

 4

line items:

customer: Ann

$4820321293533

$3910321601912

$5110131495054

$96

$39

$51

payment details:

Card: Amex
CC Number: 12345
expiry: 04/2001

ID: 1001
orders

customers

order lines

credit cards

Impedance mismatch
Tuesday, June 11, 13

Object-relational
mappers —SQLAlchemy,
Django—help manage
this mismatch.

Application vs. Integration
Database

 5
Application vs Integration

databases

Billing

Inventory

Billing

Inventory

Integration Database

Application Database web service

Tuesday, June 11, 13

Application vs Integration
databases

Billing

Inventory

Billing

Inventory

Integration Database

Application Database web service

Tuesday, June 11, 13

 6

Source: https://codopia.wordpress.com/2017/10/28/
capacity-planning-and-scaling-the-azure-function-apps/

Characteristics of “No SQL”

• Not using relational model

• Designed for web services

• Designed to scale out on clusters

• Open-source

• “Schemaless”

 7

Data Models

 8

Relational

• Familiar to us

• Important properties (for NoSQL discussion)

• No nesting: attribute values must be simple data
types (string, int, double)

• Relations are normalized to eliminate redundancy

 9

 10

cid title prof_first prof_last offering location

290 Discrete
Structures Philip Mulry Fall 2018 314

McGregory

290 Discrete
Structures Michael Hay Spring

2018
315

McGregory

290 Discrete
Structures Michael Hay Fall 2017 315

McGregory

290 Discrete
Structures Vijay Ramachan

dran
Spring
2017

315
McGregory

Course Offerings

cid title

290 Discrete
Structures

pid prof_first prof_last

1 Philip Mulry

2 Michael Hay

3 Vijay Ramachandran

cid pid offering location

290 1 Fall 2018 314
McGregory

290 2 Spring 2018 315
McGregory

290 2 Fall 2017 315
McGregory

290 3 Spring 2017 315
McGregory

Courses Professors Offerings

normalize

Aggregates

• An aggregate is collection of data that want to treat
as a unit

• Aggregate can have complex, nested structure

• Data is often denormalized (same fact may appear
in multiple aggregates)

 11

Aggregate model

 12Aggregate model
(Embedding objects)

Tuesday, June 11, 13

Order is embedded
inside customer
aggregate

Aggregate data

 13

Do you see examples
of denormalized data?

Aggregate Data

// in customers
{
 "customer": {
 "id": 1,
 "name": "Martin",
 "billingAddress": [{"city": "Chicago"}],
 "orders": [
 {
 "id":99,
 "orderItems":[
 {
 "productId":27,
 "price": 32.45,
 "productName": "NoSQL Distilled"
 }
],
 "shippingAddress":[{"city":"Chicago"}]
 "orderPayment":[
 {
 "ccinfo":"1000-1000-1000-1000",
 "txnId":"abelif879rft",
 "billingAddress": {"city": "Chicago"}
 }
],
 }
]
 }}

Tuesday, June 11, 13

Alternative aggregation

 14

Two types of aggregates —
linked by references.

Aggregate model
(Referencing Objects)

Tuesday, June 11, 13

Aggregate data

// in Customers
{
 "id":1,
 "name":"Martin",
 "billingAddress":[{"city":"Chicago"}]
}
// in Orders
{
 "id":99,
 "customerId":1,
 "orderItems":[
 {
 "productId":27,
 "price": 32.45,
 "productName": "NoSQL Distilled"
 }
],
 "shippingAddress":[{"city":"Chicago"}]
 "orderPayment":[
 {
 "ccinfo":"1000-1000-1000-1000",
 "txnId":"abelif879rft",
 "billingAddress": {"city": "Chicago"}
 }
],
}

Tuesday, June 11, 13

Aggregate-oriented
databases

• Treats an aggregate as unit and supports updates to units

• Why aggregates?

• Makes it easier to distribute data storage across cluster

• Collocate related data into single aggregate

• Work best when most data interaction is on same
aggregate

• Inter-aggregate relationships are difficult to handle!

 15

Aggregate choice
• Context: data about courses

• What is the “right” aggregate?

• Professor aggregate: list of courses taught, students in those courses

• Student aggregate: list of courses taken, professor of those courses

• Multiple aggregate types… students, professors, courses, offerings…

• Suppose…

• … facilities wants to see which classrooms are under utilized

• … professor wants to (atomically) swap lab sections between pair of
students

 16

Aggregate-oriented data
models

 17

Key-value
Column-family

Document

(Graph DBs are not
aggregate-oriented.)

Boundaries are fuzzy

“Schemaless”

• Sales pitch: Flexibility! 😀

• Truth:

• Implicit schema is encoded in app code ☹

• Flexibility is within aggregate only — changing
aggregates is painful! 🤯

 18

Scaling out

• Sharding: divide collection of units across multiple
machines (why?)

• Replication: copy same unit multiple places (why?)

 19

Consistency

• Two distinct consistency problems arise:

• Logical — updates involving multiple units

• Replication — propagate update of single unit to
all its replicas

 20

Logical consistency
• Aggregates reduce need for full blown transaction

support

• Aggregate updates are designed to be atomic,
durable

• Since most database interactions update a single
aggregate, this is all you need.

• Updates that involve multiple aggregates are harder
to handle. Solutions: offline locks, version stamps, ….

 21

Replication consistency
• Same data item appears multiple places

• If you write, make sure change gets propagated to
others

• If you read, make sure you have most recent
update.

• You don’t have to talk to every replica: quorums

 22

CAP Theorem
• Consistency: a read guaranteed to return the most

recent write for a given client.

• Availability: non-failing node will return reasonable
response within reasonable time.

• Partition Tolerance: the system will continue to
function when network partitions occur.

• Theorem (informal): in distributed setting, you can’t
have both consistency and availability, must choose!

 23

Presentations
• Data model

• Scaling

• Querying: individual aggregate, across aggregate

• Consistency: logical, replication

• What sort of consistency does it achieve?

• How does it do it?

 24

