COSC 460 Lecture 21:
Map Reduce

Instructor: Michael Hay
Fall 2018

Credits: Slides adapted from Franklin, Miklau, and Kot

Recap: Programming Model

* Borrows from functional programming (note: ideas from Haskell, etc.
but not implemented in Haskell)

* Users implement two functions ([...] denotes list)
map (K, v) = [(K', V)]

* map() takes single input key-value pair and produces one
or more intermediate results: (output key, value) pairs

* after map phase over, system combines all the intermediate
values for a given output key together into a list.

reduce (K', [V']) 2 [V']

* reduce() combines intermediate values into one or more
final values for that output key

let’s look at python version

—Xercises

* Input: a relation of web logs
- Key: tuple_id, Value: (ipaddr, url, category, timestamp)
» Tasks
1. Urls that have at least V visits (entries in log)
2. Categories that have at least S distinct urls

3. Categories that have at least S urls with at least V visits each
(hint: may require multiple rounds of map-reduce)

—Xercises

- Input: a friends relation Friend(user, friend)
- Key: tuple_id, Value: tuple (u,f)
- Tasks
1. For each user, number of friends

2. Set of pairs (u, fof) where u is a user and fof is a friend of a
friend

3. For each (u,f) pair, the number of mutual friends (hint: may
require multiple rounds of map-reduce)

—Xercises

* Input: a relation of numbers R(x)
« Key: tuple_id, Value: x
- Tasks
1. Largest number
2. select AVG(x) from R
3. select x, COUNT(x) from R group by x

4. select count(distinct x) from R

Map Reduce Implementation

- System setup
 Data is stored using a distributed file system.

- Computations parallelized over many machines.

« Key concerns
 Coordination
 Fault-tolerance

- Data distribution, especially “shuffling” data from map to reduce

 Load balancing

Hadoop

An open-source implementation in Java

Uses HDFS for stable storage

Download: http://lucene.apache.org/hadoop/

adapted from J. Leskovec. A. Rajaraman. J. Ullman: Minina of Massive Datasets. http:/www.mmds.org

http://www.mmds.org
http://lucene.apache.org/hadoop/

Hadoop (20057...)

* Open-source project initiated by Cutting and Cafarella

*In 2010 Facebook claimed that they had the largest Hadoop
cluster in the world with 21 PB of storage. (1 PB = 1000 TB)

* On July 27, 2011 announced growth to 30 PB.

* On June 13, 2012 announced growth to 100 PB.

* On November 8, 2012 announced warehouse grows by
roughly half a PB per day.

B Ut -
facebook.

adapted from Mike Franklin, Berkeley

N ... "' -~ r .r =
u.ﬂ | o/. P .Q.. g d * L0
® 4 oo ..-m “.
. .
- . TN I / _. - _q
5 '_3 '@ s o ._o * .
L .“ l‘ ‘
a. .0 “ 1
. . ;
, .. ‘ v
. .
. /
ooo. ’
"

-

- 2 B A ¥
v ‘ -, ‘.4. ‘ ; A m
- " vy

ﬂa. 3
L ;
L4

YA
B

Cluster Architecture

2-10 Gbps backbone between racks

1 Gbps between Switch
any pair of nodes
In a rack
Switch Switch
CPU CPU CPU CPU
Mem Ca Mem Mem Ca Mem

Disk \ Disk \ Disk \ Disk \

Each rack contains 16-64 nodes

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/ShhORO

10

adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

http://www.mmds.org
http://bit.ly/Shh0RO
http://bit.ly/Shh0RO

Storage Infrastructure

* Problem:

* If nodes fail, how to store data persistently?
» Answer: Distributed File System:

 Provides global file namespace

- Google GFS; Hadoop HDFS;

adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

11

http://www.mmds.org

Hadoop Distributed File System

Underpinnings of the entire Hadoop ecosystem

Traditional hierarchical file organization: directories and files
Highly portable

HDFS properties:

« Scalable to 1000s of nodes

- Assume failures (hardware and software) are common

- Can store very large files

« Append only workloads: Write once, read multiple times

adapted from Mike Franklin, Berkeley

12

File Splits

Large File
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001

6440MB

Let’e color-code them

Block Block Block Block Block . Block Block
1 5 6 100 101

64dMB ©64MB 64MB 64MB 64MB 64MB 64MB 40MB

Files are composed of set of blocks
 Typically 64MB in size
e.g., Block Size = 64MB - Each block is stored as a separate file in the
local file system of a node

adapted from Mike Franklin, Berkeley

13

Block Placement

- uBIOCk -

Node 1 Node 2 Node 3 Node 4 Node 5
- Default placement policy: -3
y toleranc€ ur=
First copy is written to the node creatir~ CCeSS fau It 9
ta
Second cor |:' ad balancmg, 2" vithin the same rack (to minimize cross-rack
iaciives: 10
0Ob ecll

I hird copy is written to a data node in a different rack (to tolerate switch failures)

adapted from Mike Franklin, Berkeley

HDFS Architecture

m—lBackupNode'

7/ 0N T~ namegpace backups
7/ / I \ N\
/ / \ N\ N
7’ / : \ N

(heartbeat, balancing, replication, efe. 1N

i E@g write 1o local dek

adapted from Mike Franklin, Berkeley

Fallures, Fallures, Failures

* HDFS was designed with the expectation that failures (both
hardware and software) would occur frequently

* Failure types:
« Disk errors and failures
- DataNode failures
- Switch/Rack failures

Datacenter failures

! « NameNode failures

adapted from Mike Franklin, Berkeley

16

Map-Reduce: Environment

Map-Reduce environment takes care of:

. the input data across machines (DFS)

. the program’s execution across a
set of machines (tasks and workers)

 Performing the step (using “shuffle” and sort)

- Handling machine

- Managing required inter-machine

adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

17

http://www.mmds.org

—xecution overview

W workers
M map tasks
R reduce tasks

User
Program

(1) fork .. (1) fork

stored in a

system (DFS)

(1)§f0rk

o) also in DFS
distributed file
I L

assign assign

i-' .-~’map reduce

split 0 “ote (6) write output
split () local writ W/e“d e
ocal write

} (3) read
split 2 worker >

split 3
output
split 4 file 1

Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. Communications of the ACM, 51(1):107-113, 2008.

18

Suppose a given map reduce job has M
map tasks and R reduce tasks and there
are W workers available. How many
intermediate files are created”

What information does master need to
keep track of?

19

Key concerns

« Coordination
* Fault-tolerance

* one or more machines may fail during computation
» Data distribution

» especially “shuffling” data from map to reduce

 Load balancing

20

Coordination: Master

Task status: (idle, in-progress, completed)
Idle tasks get scheduled as workers become available

When a map task completes, it sends the master the location
and sizes of its R intermediate files, one for each reducer

Master pushes this info to reducers

« Master pings workers periodically to detect failures

21

adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

http://www.mmds.org

Dealing with Failures

» Map worker failure*
- Map tasks reset to idle if in-progress or completed (why?)

* Reduce workers are notified when map task is executed by another
worker (which they can ignore in some cases — see “stragglers”).

* Reduce worker failure
« Only in-progress tasks are reset to idle (why not complete?)
* Reduce task is restarted

- Master failure

- MapReduce task is aborted and client is notified

* failure = master not getting timely response, worker may still be working!
system must handle workers that “come back from the dead”

adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

22

http://www.mmds.org

How many Map and Reduce jobs”

- M map tasks, R reduce tasks, W workers
* Rules of thumb:
Make M much larger than the number of workers
One DFS chunk per map is common

Improves dynamic load balancing and speeds up recovery
from worker failures

« Make R small multiple of W
Final output is spread across R files

- Common numbers at Google: M=200,000, R=5,000 using 2,000
worker machines.

23

adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

http://www.mmds.org

Task Granularity & Pipelining

* Fine granularity tasks: map tasks >> machines
» Minimizes time for fault recovery
- Can do pipeline shuffling with map execution

 Better dynamic load balancing

—xample: M=3, R=2

Process Time >

User Program [MapReduce() ... wait ...

Master Assign tasks to worker machines...

Worker 1 Map | Map 3

Worker 2 Map 2

Worker 3 Reduce 1
Worker 4 Reduce 2

24

adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

http://www.mmds.org

Fault tolerance: “Stragglers”

* Problem: Slow workers significantly lengthen the job completion time:
- Causes for slowness:
 Other jobs on the machine
- Bad disks
« Weird things
« Solution
« Near end of phase, spawn backup copies of tasks
« Whichever one finishes first “wins” (idempotence!)
- Effect

» Dramatically shortens job completion time

adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

25

http://www.mmds.org

|Issues

« Synchronization barrier

« Reduce function cannot be applied until all map tasks have
finished (why?)

 Other systems allow asynchronous computation
« Data skew
- When some keys appear many many times (word count: “the”)

* Load unevenly distributed across reduce workers

26

Refinement: Combiners

- Combiner: combines the values of all keys of a single mapper (single machine).
Combiner often same as reducer function. Back to our word counting example:

(A, 12) (A.2)
72) N | —
(€, 111 | | Reducer H |(c.2)
(0, [2.2]) (D.4)
€0 (E1)

- Much less data needs to be copied and shuffled!
« Works when reduce function is associative and commutative

 Improves load balancing (somewhat) for reduce workers

adapted from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

http://www.mmds.org

Suppose we execute word count program on large
collection of documents (WWW) with M map tasks and
R reduce tasks. (Recall how data is sent from map
tasks to reduce tasks.)

1. Suppose no combiner used and R=10,000. Do you
expect significant skew?

2. Suppose no combiner used and R=10.
Do you expect significant skew?

3. Suppose we use combiner and R=10,000.
Do you expect significant skew?

28

Dealing with Data skew

- Combiners
» Map worker combines all values for given key.
* Hashing
 Recall that map worker hashes intermediate results
* Reduce worker takes one hash bucket (contains many keys)

* While key distribution may be skewed, bucket size distribution
may be closer to uniform

- Set R larger than W (# workers)
« Avg. tasks per worker: R/W

- Worker with skew may do 1 task, others may do > R/W tasks

29

Resources

Hadoop Wiki jsmapreduce.com

* |ntroduction

 http://wiki.apache.org/lucene-hadoop/
+ Getting Started
« http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop

- Map/Reduce Overview

- _http://wiki.apache.org/lucene-hadoop/HadoopMapReduce

» http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses

 Eclipse Environment

» http://wiki.apache.org/lucene-hadoop/EclipseEnvironment

Javadoc
» http://lucene.apache.org/hadoop/docs/api/

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

30

http://wiki.apache.org/lucene-hadoop/
http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses
http://wiki.apache.org/lucene-hadoop/EclipseEnvironment
http://lucene.apache.org/hadoop/docs/api/
http://jsmapreduce.com

