
COSC 460 Lecture 20:
Map Reduce

Instructor: Michael Hay
Fall 2018

Credits: Slides adapted from Franklin, Miklau, and Kot

MapReduce

• MapReduce is two things

• A programming language abstraction

• A system for running programs

• Invented by Google, announced publicly in 2004

• Used widely at Google, Facebook, Yahoo!, Microsoft, ...

�2

What is (was?) MapReduce used for?

• At Google:

• Index building for Google Search

• Extracting properties from web pages (e.g., geographic locations for local search)

• Analysis of user query logs (e.g., Google Zeitgeist)

• Large-scale graph computations

• Statistical machine translation

• At Yahoo!

• Spam detection for Yahoo! Mail

• At Facebook (using Hadoop)

• Data mining

• Ad optimization

• Spam detection

�3slide courtesy of Mike Franklin

Motivating example

• Word frequencies

• Count often each word occurs on WWW

• Assumption

• WWW has already been crawled, each web page stored as a file
on disk

�4

word_frequencies.py

Computations on big data

• How long would it take to count word occurrences for each word in
the entire World Wide Web?

• 20+ Billion pages x 20 KB = 400+ Terabytes

• 400,000,000,000,000 bytes

• One disk can read ~128 MB/s

• 3,125,000 seconds = 36.2 days

�5

Traditional computational model

• Single machine

�6

Big data computational model

• Large numbers of commodity Linux boxes, connected by
commodity network

�7

Parallel & distributed

Central challenges

• Parallelism

• How do we rethink our algorithms to make them parallel?

• Distributed computation

• How do we deal with the complexities of distributing
computation across multiple machines?

• MapReduce is two things

• A programming abstraction: helps programmers think parallel

• A system: manages big ugly mess of distributed comp.

�8

Complexities of distributed computation

• Coordination:

• which machines do what work? how and where are results
combined?

• Data distribution:

• where is input data located? where does output do go?

• Load balancing:

• how do we distribute work evenly across servers?

• Fault tolerance:

• what happens when one or more machine crash in the middle of
execution?

�9

What is hard about
distributed computation?

�10

MapReduce: Simplified Data Processing
on Large Clusters

by Jeffrey Dean and Sanjay Ghemawat

1 Introduction
Prior to our development of MapReduce, the authors and many others
at Google implemented hundreds of special-purpose computations that
process large amounts of raw data, such as crawled documents, Web
request logs, etc., to compute various kinds of derived data, such as
inverted indices, various representations of the graph structure of Web
documents, summaries of the number of pages crawled per host, and
the set of most frequent queries in a given day. Most such computa-
tions are conceptually straightforward. However, the input data is usu-
ally large and the computations have to be distributed across hundreds
or thousands of machines in order to finish in a reasonable amount of
time. The issues of how to parallelize the computation, distribute the
data, and handle failures conspire to obscure the original simple com-
putation with large amounts of complex code to deal with these issues.

As a reaction to this complexity, we designed a new abstraction that
allows us to express the simple computations we were trying to perform
but hides the messy details of parallelization, fault tolerance, data distri-
bution and load balancing in a library. Our abstraction is inspired by the
map and reduce primitives present in Lisp and many other functional lan-
guages. We realized that most of our computations involved applying a
map operation to each logical record’ in our input in order to compute a
set of intermediate key/value pairs, and then applying a reduce operation
to all the values that shared the same key in order to combine the derived
data appropriately. Our use of a functional model with user-specified map
and reduce operations allows us to parallelize large computations easily
and to use reexecution as the primary mechanism for fault tolerance.

The major contributions of this work are a simple and powerful
interface that enables automatic parallelization and distribution of
large-scale computations, combined with an implementation of this
interface that achieves high performance on large clusters of com-
modity PCs. The programming model can also be used to parallelize
computations across multiple cores of the same machine.

Section 2 describes the basic programming model and gives several
examples. In Sec tion 3, we describe an implementation of the Map Reduce
interface tailored towards our cluster-based computing environment.
Sec tion 4 describes several refinements of the programming model that
we have found useful. Sec tion 5 has performance measurements of our
implementation for a variety of tasks. In Section 6, we explore the use of
MapReduce within Google including our experiences in using it as the ba-
sis for a rewrite of our production indexing system. Section 7 discusses re-
lated and future work.

2 Programming Model
The computation takes a set of input key/value pairs, and produces a
set of output key/value pairs. The user of the MapReduce library
expresses the computation as two functions: map and reduce.

Map, written by the user, takes an input pair and produces a set of
intermediate key/value pairs. The MapReduce library groups together
all intermediate values associated with the same intermediate key I
and passes them to the reduce function.

The reduce function, also written by the user, accepts an interme-
diate key I and a set of values for that key. It merges these values
together to form a possibly smaller set of values. Typically just zero or
one output value is produced per reduce invocation. The intermediate
values are supplied to the user’s reduce function via an iterator. This
allows us to handle lists of values that are too large to fit in memory.

2.1 Example
Consider the problem of counting the number of occurrences of each
word in a large collection of documents. The user would write code
similar to the following pseudocode.

Abstract

MapReduce is a programming model and an associated implementation for processing
and generating large datasets that is amenable to a broad variety of real-world tasks.
Users specify the computation in terms of a map and a reduce function, and the under-

lying runtime system automatically parallelizes the computation across large-scale clusters of
machines, handles machine failures, and schedules inter-machine communication to make effi-
cient use of the network and disks. Programmers find the system easy to use: more than ten
thousand distinct MapReduce programs have been implemented internally at Google over the
past four years, and an average of one hundred thousand MapReduce jobs are executed on
Google’s clusters every day, processing a total of more than twenty petabytes of data per day.

Biographies
Jeff Dean (jeff@google.com) is a Google Fellow and is currently work-
ing on a large variety of large-scale distributed systems at Google’s Moun -
tain View, CA, facility.

Sanjay Ghemawat (sanjay@google.com) is a Google Fellow and works
on the distributed computing infrastructure used by most the company’s
products. He is based at Google’s Mountain View, CA, facility.

COMMUNICATIONS OF THE ACM January 2008/Vol. 51, No. 1 107

“As a reaction to this complexity, we designed a new abstraction
that allows us to express the simple computations we were trying to

perform but hides the messy details of parallelization, fault
tolerance, data distribution and load balancing in a library. Our

abstraction is inspired by the map and reduce primitives present in
Lisp and many other functional languages.”  

- Dean and Ghemawat, 2004

Typical Workflow

• Iterate over a large number of records

• Extract something of interest from each

• Bring together intermediate results

• Aggregate intermediate results

• Generate final output

• (Repeat as needed)

• Most of the real "computation" occurs in the two blue phases

�11

Map Reduce

• A general framework for writing parallel programs that follow the
workflow we saw

• Idea:

• You write the code for the two blue phases

• Because that's what is unique to your computation

• System takes care of the rest

�12

Typical Workflow

• Iterate over a large number of records

• Map: Extract something of interest from each

• Bring together intermediate results

• In some standardized way

• Reduce: Aggregate intermediate results

• (Generate final output)

• Repeat as needed

�13

Understanding Map Reduce

• Key to understanding Map Reduce is the third point in workflow

• How are intermediate results brought together?

• The framework does it for you, but you have to understand how

• Fundamental idea: key-value model

• This is the data model for Map Reduce jobs

• Helps provide a unified interface for bringing results together

�14

Key-Value Data Model

• Map reduce program:

• Input: a collection of  
(input key, value) pairs

• Output: a collection of  
(output key, value) pairs

• In/out keys can be different!

• Word count example:

• Input is collection of webpages
(key:url, value:html)

• Output is collection of word
counts  
(key:word, value:frequency)

�15

• MapReduce framework can pull data from variety of sources (files, BigTable,
RDBMS, etc.)

• Useful to think of any input data source as collection of (key, value) pairs

• Key can be any (hashable) object, value can be any object (e.g., JSON)

Programming Model

• Borrows from functional programming

• Users implement two functions ([…] denotes list)

map (k, v) → [(k', v')]

• map() takes single input key-value pair and produces one

or more intermediate results: (output key, value) pairs

• after map phase over, system combines all the

intermediate values for a given output key together into
a list.

reduce (k', [v']) → [v'']

• reduce() combines intermediate values into one or more

final values for that output key

!16

map(String key, String value):

 // key: document name

 // value: document contents

 for each word w in value:

 EmitIntermediate(w, "1");

A mapper utility can apply this in parallel to a whole lot of
documents

special function: writes key, value pair out to storage

Example: Word Count

!17

Now what?

• Have a whole lot of key-value pairs after the map

• Need to bring together: GROUP BY key, and aggregate values

• The system does the group by

• In example: for each word, group consists of list of [“1”, “1”, …]

• The programmer’s reduce() does the aggregation

• In example: for each word, compute single final value: the sum

!18

Example: Word Count

reduce(String key, Iterator values):

 // key: a word

 // values: a list of counts

 int result = 0;

 for each v in values:

 result += ParseInt(v);

 Emit(AsString(result));

!19

Can also run this in parallel

special function: writes value(s) for given key out to storage

Concrete example

!20

quick brown
fox jump

red fox jump
quick

slow fox jump
brown skunk

(quick,1)
(brown,1)
(fox,1)
(jump,1)

map

(red,1)
(fox,1)
(jump,1)
(quick,1)

(slow,1)
(fox,1)
(jump,1)
(brown,1)
(skunk,1)

inputs

(quick,(1,1))

(brown,(1,1))

(fox,(1,1,1))

(jump,(1,1,1))

(slow,(1))

intermediate
grouping

reduce

(quick,2)

(brown,2)

(fox,3)

(jump,3)

(slow,1)

output

(skunk,(1))

(red,(1))

(skunk,1)

(red,1)

So what do we have so far?

• See how to write map and reduce functions

• Work on a key-value model

• Believe that both map and reduce functions can be
executed in parallel

• But what about the middle step?

• Bucketize output of mapper based on value of output key…

• Fortunately, this step is same for all map-reduce programs

• So map reduce frameworks have it built-in!

• You don't need to write this logic yourself

!21

�22

Extract (key, value) using map(); Group By key Apply reduce()

Map Reduce Programming Model

• You only need to specify two functions:

map (k, v) → [(k', v')]

reduce (k', [v']) → [v''] 
 
[…] denotes a list 

• Framework takes care of the actual execution:

• Applies your map function to every initial (k,v)

• Reshuffles the output of the map to group by k'

• Applies your reduce function

!23

Parallelism

• map() functions run in parallel, creating different intermediate
results from different inputs

• reduce() functions also run in parallel, each working on a different
output key

• All values are processed independently

• Bottleneck: reduce phase can’t start until map phase is
completely finished.

!24

Examples

• Reverse web graph

• Input: collection of web pages (url, html)

• Goal: for each url, the list of pages that link to it

• Map(url, html): for each url’ that occurs in html, emit (url’, url)

• Reduce(url, [urls of pages that link to url]): do nothing!

�25

Examples

• Inverted index

• Input: collection of web pages (url, html)

• Goal: for each word, the list of pages containing that word

• Map: for each word, emit (word, url)

• Reduce: accepts a word and list of urls; sort urls, eliminate
duplicates.

• Could augment to keep track of word positions

�26

Aside: Google rewrote their web
indexing code as a sequence of

24 map-reduce jobs

Exercises

• Input: a collection of documents

• Key: doc_id, Value: text of document

• Tasks

1. Across all documents total number of words, characters,
lines. Example:

�27

doc_id text
———————————————————————————————————————
0 quick brown fox jump
1 red fox jump quick
2 slow fox jump brown skunk

key value
————————————————
chars 63
lines 3
words 13

Exercises

• Input: a relation of web logs

• Key: tuple_id, Value: (ipaddr, url, category, timestamp)

• Tasks

1. Urls that have at least V visits (entries in log)

2. Categories that have at least S distinct urls

3. Categories that have at least S urls with at least V visits each
(hint: may require multiple rounds of map-reduce)

�28

Exercises

• Input: a friends relation Friend(user, friend)

• Key: tuple_id, Value: tuple (u,f)

• Tasks

1. For each user, number of friends

2. Set of pairs (u, fof) where u is a user and fof is a friend of a
friend

3. For each (u,f) pair, the number of mutual friends (hint: may
require multiple rounds of map-reduce)

�29

Exercises

• Input: a relation of numbers R(x)

• Key: tuple_id, Value: x

• Tasks

1. Largest number

2. select AVG(x) from R

3. select x, COUNT(x) from R group by x

4. select count(distinct x) from R

�30

