COSC 460 Lecture 2;
Data Storage

Professor Michael Hay
Fall 2018

Credits: Slides adapted from Gehrke, Franklin, Widom, Miklau, Kot, and possibly others

Recap

Relational model: data “stored” in tables
Tables are a logical description only;

Relational model does not say anything about actual
physical storage

Virtue of relational model is physical data independence:
application programs work at logical level with tables and

DBMS worries about details of mapping logical to physical
storage

Example of abstraction, a key idea in computer science.

2

Architecture of DBMS
Logical level SQL Commands |

v
Plan executor Parser Query
evalugtion
Operator eval Optimizer enginé
v
V] eSSy stuff Transaction Files and Access methods
Manager v

' Recovery
Buffer manager Manager

Heart and soul of CS lies here!
e Design good abstractions

Physical |6V6| e Engineer efficient implementations

so users of higher level abstraction

layer live happy lives!

logay

* Dive down into messy details of physical storage
* Joday: disk, files, buffer manager

* Monday: file formats (exciting!)

Memory hierarchy

CPU
~
/7
-
CACHE
~
4 Primary storage
-
MAIN MEMORY E -
Request for data Y,
MAGNETIC DISK « Secondary storage
————— ’. [J
Data satisfying request » TAPE Tertiary storage

Fig. 9.1 from Cow book

Storage hierarchy

Small, Fast
On-chip Cache
On-Board Cache

Volatile

si. Sow

Non-Volatile

6

Storing Data

* Requirements of DBMS: ability to...
* store large amounts of data,
* |n storage medium that is reliable,
* obtain fast access to data.

* Another key factor: storage media cost

ACCESS speen

e Random access”®
* Disk: 316 values/sec
e SSD: 1924 values/sec

* Memory: 36,700,000 values/sec

* Random is worst-case scenagio for disks (more later)

Rellabllity

* Disk: very reliable

* SDD: pretty reliable but some issues with wear over
time (in write-intensive environments)

* RAM: volatile! when power goes out, so does data!

Cost

GB/$1000

100000

10000

For $1000, PCConnection 1000
offers:

— ~0.08TB of RAM

— ~1TB of Solid State Disk

— ~19TB of Magnetic Disk

100

10

SSD Magnetic Disk

10

Current state

e Mest Many DBMS running today store data on magnetic disks

 Rapid changes underway

Durable Write Cache in Flash Memory SSD Anti-Caching: A New Approach to

for Relational and NoSQL Databases

Woon-Hak Kang
Sungkyunkwan University
Suwon, 440-746, Korea
woonagi319@skku.edu

Yang-Suk Kee

Samsung Semiconductor Inc.

Milpitas, USA, 95035

*
Sang-Won Lee
Sungkyunkwan University
Suwon, 440-746, Korea
swlee@skku.edu

Bongki Moon
Seoul National University
Seoul, 151-744, Korea
bkmoon@snu.ac.kr

Moonwook Oh
Samsung Electronics
Hwasung, 445-701, Korea

yangseok.ki@ssi.samsung.com mw.oh@samsung.com

ABSTRACT

In order to meet the stringent requirements of low latency
as well as high throughput, web service providers with large
data centers have been replacing magnetic disk drives with
flash memory solid-state drives (SSDs). They commonly use
relational and NoSQL database engines to manage OLTP
workloads in the warehouse-scale computing environments.
These modern database engines rely heavily on redundant
writes and frequent cache flushes to guarantee the atomicity
and durability of transactional updates. This has become
a serious bottleneck of performance in both relational and
NoSQL database engines.

This paper presents a new SSD prototype called DuraSSD
equipped with tantalum capacitors. The tantalum capacitors
make the device cache inside DuraSSD durable, and addi-
tional firmware features of DuraSSD take advantage of the
durable cache to support the atomicity and durability of
page writes. It is the first time that a flash memory SSD with
durable cache has been used to achieve an order of magni-
tude improvement in transaction throughput without com-
promising the atomicity and durability. Considerino that the
simple capacitors increase the total cost of
than one percent, DuraSSD clearly provides
means for transactional support. DuraSSD
to alleviate the problem of high tail latency
write stalls.

Categories and Subject Descriptors
0.2 [IDATABASE MANAGEMENT/: Svstems

General Terms

Design; Reliability; Performance

Keywords
Atomicity; Durability; SSD; Durable Cache

1. INTRODUCTION

In the era of warehouse-scale computing, a large-scale ap-
plication runs on hundreds or thousands of servers equipped
with their own storage and networking subsystems. When
an application is made up of many tasks running in parallel,
completion of the application is often delayed by a few tasks
experiencing a disproportionate amount of latency, thus af-
fecting negatively the overall utilization of computing re-
sources as well as the quality of services. This latency prob-
lem will be aggravated further with an increasing number of
parallel tasks, because the variance of latencies in parallel

tasks is always amplified by the system scale.
This latency concern, known as high tail latency, poses
serious challenges for online service providers operating
computers and data centers [9]. Studies on
eased server side delays show that users re-
 the speed of web services and a slower user
;s long term behavior. For example, Ama-
100ms of latency cost them one percent in
le found an extra half second in search re-
swiv geuerauon dropped traffic 20 percent. Shopzilla found
a five-second speed-up resulted in a 25 percent increase in
ws, a 7 to 12 percent increase in revenue, a 50 per-

11

Database Management System Architecture

Justin DeBrabant
Brown University
debrabant@cs.brown.edu

Michael Stonebraker
MIT CSAIL

stonebraker@csail.mit.edu

ABSTRACT

The traditional wisdom for building disk-based relational database
management systems (DBMS) is to organize data in heavily-encoded
blocks stored on disk, with a main memory block cache. In order to
improve performance given high disk latency, these systems use a
multi-threaded architecture with dynamic record-level locking that
allows multiple transactions to access the database at the same time.
Previous research has shown that this results in substantial over-
head for on-line transaction processing (OLTP) applications [15].

The next generation DBMSs seek to overcome these limitations
with architecture based on main memory resident data. To over-
come the restriction that all data fit in main memory, we propose
a new technique, called anti-caching, where cold data is moved
to disk in a transactionally-safe manner as the database grows in
size. Because data initially resides in memory, an anti-caching ar-
chitecture reverses the traditional storage hierarchy of disk-based
systems. Main memory is now the primary storage device.

We implemented a prototype of our anti-caching proposal in a
high-performance, main memory OLTP DBMS and performed a
series of experiments across a range of database sizes, workload
skews, and read/write mixes. We compared its performance with an
open-source, disk-based DBMS optionally fronted by a distributed
main memory cache. Our results show that for higher skewed
workloads the anti-caching architecture has a pe
tage over either of the other architectures tested
data size 8 x larger than memory.

1. INTRODUCTION

Historically, the internal architecture of DBM R
icated on the storage and management of data in heavily-encoded
disk blocks. In most systems, there is a header at the beginning of
each disk block to facilitate certain operations in the svstem. For

Andrew Pavlo
Brown University
pavlo@cs.brown.edu

2013

Stephen Tu
MIT CSAIL
stephentu@csail.mit.edu

Stan Zdonik
Brown University
sbz@cs.brown.edu

DBMSs invariably maintain a buffer pool of blocks in main mem-
ory for faster access. When an executing query attempts to read a
disk block, the DBMS first checks to see whether the block already
exists in this buffer pool. If not, a block is evicted to make room
for the needed one. There is substantial overhead to managing the
buffer pool, since blocks have to be pinned in main memory and the
system must maintain an eviction order policy (e.g., least recently
used). As noted in [15], when all data fits in main memory, the
cost of maintaining a buffer pool is nearly one-third of all the CPU
cycles used by the DBMS.

The expense of managing disk-resident data has fostered a class
of new DBMSs that put the entire database in main memory and
thus have no buffer pool [11]. TimesTen was an early proponent of
this approach [31], and more recent examples include H-Store [2,
18], MemSQL [3], and RAMCloud [25]. H-Store (and its com-
mercial version VoltDB [4]) performs significantly better than disk-
based DBMSs on standard OLTP benchmarks [29] because of this
main memory orientation, as well as from avoiding the overhead of
concurrency control and heavy-weight data logging [22].

The fundamental problem with main memory DBMSs, however,

is that this improved performance is only achievable when the database

is smaller than the amount of physical memory available in the sys-
tem. If the database does not fit in memory, then the operating
‘0 page virtual memory, and main memory ac-
osage faults. Because page faults are transparent
case the main memory DBMS, the execution of
led while the page is fetched from disk. This is a
1in a DBMS, like H-Store, that executes transac-
but the use of heavyweight locking and latching.
1I main memory DBMSs warn users not to ex-
ceed the amount of real memory [5]. If memory is exceeded (or
if it might be at some point in the future), then a user must either
(1) provision new hardware and migrate their database to a larger

1hIS course

* Focus on simplified model: memory and disk

e Dominant cost is IO

 WWhy what you learn will endure...

 New technologies borrow lessons learned from previous technologies

* There will likely always be some form of memory hierarchy: fast but
volatile, slow but stable (this is true even for today’s main memory DBs!)

e Study design process of DBMS:

 Make modeling assumptions

e Design algorithms under those assumptions

12

Anatomy of a disk

Cluster of 4
Sectors

Platters spin

Arm assembly moved in/out to position
a head on desired track.

Tracks under heads make a cylinder
(imaginary!)

Only one head reads/writes at a time

Read/Write
Heads

Platters

Block size is multiple of sector size
(which is fixed)

13

Block layout

* Standard block size: 4K
* Where is “next” block?
* blocks on same track, followed by
* blocks on same cylinder, followed by

* blocks on adjacent cylinder

Arm assembly

* Sequential access: reading blocks in
order according to notion of “next”

14

Disk head

v

~__

(

__—Spindle

J

Tracks

SN

Sector

q

y

Arm movement

Platters

/

Accessing a Disk Page

Time to access (read/write) a disk block:
« seek time (moving arms to position disk head on track)
 rotational delay (waiting for block to rotate under head)
* transfer time (actually moving data to/from disk surface)
Seek time and rotational delay dominate.
e Seek time varies from about 1 to 20msec
* Rotational delay varies from O to 10msec
e Transfer rate is about Tmsec per 4KB page
Key to lower |/O cost: reduce seek/rotation delays!

(Aside: if disk is shared, wait time can be a big factor t00.)

15

Retrieval rates

* Disk: sequential access is 5 orders of magnitude faster
than random!

Random, disk 316 values/sec
Sequential, disk 53.2M values/sec
Random, SSD 1924 values/sec
Sequential, SSD 42 2M values/sec
Random, memory 36.7M values/sec '
Sequential, memory 358.2M values/sec |
1|0 160 10!00 16‘ 1[|]s 1|0s 16’ 16‘

Note; Disk tests were carried outon a freshly booted machine (a Windows 2003 server with 64-GB RAM and

eight 15 000-RPM SAS disks in RAIDS configuration) to eliminate the effect of operating-system disk caching.
SSD testused a latest-generation Intel high-performance SATA SSD,

e Seqguential access reasonably high throughput (compared
to SSD and RAM)

From A. Jacobs, “The Pathologies of Big Data”,
ACM Queue Magazine, July 2009 16

Recap

Memory: tast but volatile (and expensive!)
Disk: slow but stable (and cheap!)

Disk: sequential access much taster than random
access (why?)

DBMS tries to minimize 1/O cost

17

pollev.com/cosc460

POl

Requesting data from disks can be slow. What is a
technique that can be used to improve access speed?

1) Caching
2) Pre-fetching

3) Organize “related” data
seqguentially on disk

4) All of the above

18

Architecture

File of Records

Buffer Manager

Disk space manager

OS Filesystem

Disk

I VPVIU‘VI o ¥ LAl I | VPLIIIIILUI

v

Files and Access methods

v

Buffer manager

v

Disk space manager

Index files Catalog

Data files

(details shown on board)

19

pollev.com/cosc460
moll

Which layer in DBMS architecture provides physical
data independence” |f none do, choose the layer
that comes closest.

1) OS Filesystem
2) Disk Manager
3) Buffer Manager

4) File of Records

20

Buffer Manager

(details shown on board)

Some terminology

* Disk Page - the unit of transfer between the disk and memory
o Typically set as a config parameter for the DBMS.
e Jypical value between 4 KBytes to 32 KBytes.

 Frame — a unit of memory
e Typically the same size as the Disk Page Size

o Buffer Pool — a collection of frames used by the DBMS to
temporarily keep data for use by the query processor.

 Note: sometime use the term “buffer” and “frame” synonymously.

22

pollev.com/cosc460
Question

Suppose we did not maintain dirty bit and always
assumed the page was dirty. This would require
modifying the algorithm. The result would be

1) slower

2) more prone to failure

3) both A and B

4) none of the above

23

Replacement Policies

(details shown on board)

