COSC 460 Lecture 16:
Transactions 3: Two
Phase Locking

Professor Michael Hay
Fall 2018

RECAP

Iransactions

Transaction a sequence of SQL operations treated as a unit.
Transactions appear to run in isolation
Transaction either runs to completion or not at all

ACID Properties

BEGIN TRANSACTION;
o Atomicity insert into archive
(select *
o Consistency from app]_y
| where decision = 'n’);
* Isolation delete from apply
. where decision = 'n’;
e Durability COMMIT

RECAP

|solation

* (Goal: develop ways to Isolation. We will worry
about A,C, and D later.

e Plan:

1. See what isolation looks like (serializable
schedules, confict-serializable schedules, ...)

2. See how to ensure isolation (locking protocols)

RECAP

Serializable schedules

 Schedule S’ is serializable if it is equivalent to
some serial schedule S.

RECAP

Conftlict serializable

e A schedule S’ is conflict serializable if it is conflict
equivalent to SOME serial schedule S.

* Conflict equivalent: every pair of conflicting
statements is ordered in the same way

RECAP

Conflict equivalent

 Schedule S is conflict equivalent to S’ if every pair
of conflicting statements is ordered Iin the same way

T1 |-

R(A)
W(A)
R(A) R(B)
(B)

=
>
=

= 3
> >

RECAP

Conflict equivalent

 Schedule S is conflict equivalent to S’ if every pair
of conflicting statements is ordered Iin the same way

W(A)
\ R(A) Not conflict equivalent
to any serial schedule

Concurrency control

* How ensure serializability?
* [wo high-level strategies

* Optimistic: detect “bad” schedules and abort
offending transactions

* Pessimistic: prevent “bad” schedules through
locking protocol

| ock Management

* Each “item” has lock.
* Responsibilities of transaction:
 Requestlock before R or W
e Wait until request is granted
* Release lock when done
* Responsibilities of lock manager:
e Grant/deny requests
e Maintain status of locks and lock requests (details later)

9

Example

* 1 transfers between T1
accounts L(A)
« [2 displays total account A=A+100
balance U(A)
* |s this schedule serializable’?
Locking alone is L(B)
not enough! Need 5 =B-100

locking protocol U(B)

10

L(A)
|

|
L(B)
print(A+B)
U(A), U(B)

Iwo phase locking

 2PL: a transaction cannot acquire additional locks
once it has released any lock

* (Growing phase (acquiring locks)
* Shrinking phase (releasing locks)

* Lockpoint: time at which transaction T acquired its
last lock

11

Exercise

e |s this schedule feasible
under the 2PL protocol?

* |f not, why not?

e | SO, Is It a serializable
schedule”?

12

L(A)

A=A+100
U(A)

L(B)

B=B-100
U(B)

T2

L(A)
|
|
temp = A
U(A)
L(B)

temp += B
U(B)

print(temp)

Exercise

e [1and T2 are the same as In

the previous example except for L(A)
the order of the operations in
red. A=A+100
L(B
* |s this schedule feasible under U((A))
the 2PL protocol?
* |f not, why not?
B=B-100
e |f so, is it a serializable U(B)

schedule?

13

temp = A
L(B)
I
I
U(A)
temp +=B
U(B)
print(temp)

2PL — Contlict serializability

* Any 2PL schedule is conflict equivalent to the

schedule where transactions are ordered by
lockpoint

* Proof sketch: proof by contraction. Suppose
schedule is 2PL but not conflict serializable.

14

lncreasing concurrency

» Observation: reads do * Upgrades/downgrades

not conflict with each

Sther * Upgrade: have shared,

get exclusive

* Associate "permission”

e D de: h
with each lock request: PWHYrate. Nave

exclusive, allow shared

* Ronly = shared lock » 2PL: upgrade only

during growing;
downgrade only during
shrinking

e R&W— exclusive lock

15

Lock Requests and Priority

Example 1

* [3Isrequesting a

shared lock while T1 is S(A) "
waliting on an upgrade.

Should T3 be granted R(A)

the lock? X(A)

Concern with granting

lock to T3: T1 might
starve. Make T3 walt.

16

Lock Requests and Priority

Example 2

* [1Isrequesting an S(A)

upgrade lock while T3 Is S(A)
waliting on an exclusive. X(A)

Should T1 be granted RA)
the lock? X(A)

R(A)

print(A)
Concern with making U(A)

T1 wait: deadlock.

17

| OcK management

e Lock Table: maps item to Handling lock request:
LockTableEntry
o |f request is upgrade, put at front
o LockTableEntry of queue; else, put at end
e Current lock type: shared/ e Only transaction at front of
exclusive/none gueue can be granted lock!
e Current lock holders * Whether to grant lock depends
on current lock type/holders, and
e Requests: list of (transaction, permissions being requested

Dermissions) pairs

| e |f granted: update entry, check
ColgateDB: transactions manage request queue

their own requests via shared lock

« Handling lock release: update entry,

table. We do not have separate check request queue

thread “managing” lock table.

Lock Requests and Priority

Example 1
Revisited

* [3Isrequesting a

S(A)
shared lock while T1 is S(A)
waliting on an upgrade.
Should T3 be grantea RA)
the lock? X(A)
No. T1 is at front of S(A)

gueue. T3 must walit.

19

Lock Requests and Priority

* [1Isrequesting an

upgrade lock while T3 Is S(A)
waiting on an exclusive.

Should T1 be granted R(A)
the lock? X(A)

Yes! T1 upgrade request
jumps to front of queue.

T1 gets lock when T2
releases. 13 waits for T1.

20

Example 2
Revisited

R(A)
print(A)
U(A)

Deadlock

* [1 transfers money from L(A)
B to A. L(B)
A=A+100
e [2 transfers money from B=B+50
A to B. L(A)
L(B) A=A-50
B=B-100 U(A),U(B)

Deadlock! (Grayed out [N

events never happen)

21

