COSC 460 Lecture 14:
lransactions 1

Professor Michael Hay
Fall 2018



Architecture of DBMS

SQL Commands
v
Plan executor Parser Query
evaluation
Operator eval Optimizer engine
v
Transaction Files and Access methods
Manager )
g Recovery
Lock Buffer manager <> [
Manager v
Cocumency Disk space manager

Index files Catalog
Data files




Attribute-level inconsistency

update college
S1: set enrollment = enrollment + 100
where cname = ‘colgate’

concurrent with. ..

update college
S2: set enrollment = enrollment + 150
where cname = ‘colgate’




Tuple-level Inconsistency

update apply
S set major = ‘cs’
where sid = 123

concurrent with. ..

update apply
S2: set decision = 'y’
where sid = 123




lable-level Inco

S:

S2:

Example: Alice and Kate both
have GPA = 3.8 but are from
‘large” high schools (> 2500

students).

update apply Inconsistent outcome: Alice

set decision = ‘y’ rejected; Kate accepted!

where sid i1in (select sid
from student where gpa > 3.9)

concurrent with. ..

update student
set gpa = (1.1) * gpa
where sizehs > 2500




Multi-statement
iInconsistency

Example 4

insert into archive (select *
| from apply
Group 1: where decision = 'n’);
delete from apply where decision = ‘n’;
concurrent with. ..
| select count(*) from apply;
Group 2: select count(*) from archive;

6



Concurrency and
iInconsistency

Give an example of an

inconsistent state that could S update R

arise from concurrently set A = A+l
executing the two statements

shown. Suppose R is a concurrent with. ..

relation with a single attribute A
and two tuples, as shown update R

helow. . S2: set A = 2+%A




Concurrency &
lnconsistency

* |n previous examples, inconsistency was caused by
concurrency

* (Goal: execute sequence of SQL statements so they
appear to be running in isolation

e Solutions

 Simple (but bad): execute in isolation (serial order)

* Better: enable concurrency whenever safe to do so
(locking, details soon!)



lInconsistency
due to system ftailure

insert into archive (select *

from apply

where decision = 'n’);
delete from apply where decision = ‘n’;

Group:

Suppose system crashes after
insert but before delete?




Inconsistency and failure

* |n previous example, inconsistency was caused
by system failure

* (Goals:
* Guarantee “all or nothing” execution
* (Guarantee that changes persist in database

e Solution: logging (details later) + stable storage

10



Iransactions

Transaction a sequence of SQL operations treated as a unit.

Transactions appear to run in isolation

Transaction either runs to completion or not at all

ACID Properties
e Atomicity

o Consistency
 |solation

e Durabillity

11

BEGIN TRANSACTION;
insert into archive
(select *

from apply

where decision = 'n’);
delete from apply
where decision = 'n’;

COMMIT;




ACID properties

* Isolation: varying degrees of isolation supported in
DBMSs (e.qg., “REPEATABLE READ”, “READ

COMMITTED”)
* We will focus on serializability
* Serializability: operations from different

transactions may be interleaved but execution must
be equivalent to some serial order

12



|solated transactions

Result IS same whether
T1then T2 or T2 then T1.

update college

T1: set enrollment = enrollment + 100
where cname = ‘colgate’
concurrent with. ..
update college

12: set enrollment = enrollment + 150
where cname = ‘colgate’

13




|solated transactions

Result Is same whether

T ik

update apply
T1: set major = ‘cs’
where sid = 123

concurrent with. ..

update apply
12: set decision = 'y’
where sid = 123

14



|solated transactions

Result can be different!
T1then 12: Kate and Alice rejected

Example 3 12 then T1: Kate and Alice accepted
While different, both are consistent.

update apply
T1: set decision = 'y’

where sid in (select sid

from student where gpa > 3.9)

concurrent with. ..

update student
) set gpa = (1.1) * gpa
where sizehs > 2500

15



| SO ‘ ate d tr @ Result can be different!

11 then T2: archive count includes
updated records

Example 4 T2 then T1: archive count does not
include updated records

insert into archive (select *

from apply

where decision = 'n’);
delete from apply where decision = ‘n’;

T1:

concurrent with. ..

select count(*) from apply;
select count(*) from archive;

12:

16



R(A)

POl

Suppose R is a relation with a 6
single attribute A and two tuples,

as shown. Suppose the two
statements shown are executed

in isolation. Which of the S1: update R
following states is impossible” set A = A+l

A. {1113}

B. {12, 14} concurrent with. ..
C. {11,14}

D. {12,13] . update R

E. more than one of above S2: cot A = 2%A

17



ACID properties

e Durability: if system crashes after transaction
commits, all effects of transaction persist in
database.

e Atomicity: each transaction is "all-or-nothing’, it
either runs to completion and commits, or it fails
and all partial changes are undone.

18



Atomic transactions

BEGIN TRANSACTION;
insert into archive (select *

from apply

where decision = 'n’);
delete from apply where decision = 'n’;
COMMIT;

Suppose system crashes after Rollback: undoing
effects of a partially

insert but before delete? completed transaction.

19



Instructions: / will give you 1-2

. minutes to think on your own.
Without

Then you will discuss w/ neighbor
(1 min).

i Vote 2.
d U ra b I ‘ Ity Tgei we'll discuss as class.

Suppose our DBMS supports

atomicity and isolation but not

durability. Which of the following O 1
states of R is not possible?

update R
set A = A+l

A. {11,13} |
B. {12, 14} concurrent with. ..
C. {10,12}

D. {11,12} gD update R

E. more than one of above ' set A = 2*A

Assume R is a relation with a single
attribute A and two tuples, as show.




ACID properties

e Consistency: if DB is in a consistent state when
each transaction starts, it will be in consistent state
when transaction ends

e User responsible for writing semantically correct
transactions (i.e., consistent with real world)

o |ft
Se
CO

ransaction is consistent and DBMS ensures
rlalizability, then DB always appears to be in a
nsistent state.

21



