
COSC 460 Lecture 13:
Query Processing 3:

Joins
Professor Michael Hay

Fall 2018

 1

Join algorithms

• Nested loops: simple, page, block, index

• Sort-merge

• Hash

 2

Notation and Example

• NR = number of pages in R
• pR = number of tuples/page in R
• M = memory (number of frames in buffer pool)
• Example:

• NR = 1000, pR = 100
• NS = 500, pR = 80
• M = 102
• Assume page I/O is 10ms

 3

select *
From R, S where R.A = S.B

(Simple) nested loops

 4

for each t in R:
 for each t' in S:
 if t and t' match:
 add join(t,t') to result

Cost (on example): when R is outer relation
1000 + (100 × 1000) × 500 = 50,001,000 I/Os ≈ 140 hours

Cost analysis:
NR + (pR × NR) × NS

Poll

Simple nested loops only requires 3 pages of memory (one for R, one for S, one
for output). Now suppose we increase buffer pool to be of size M, for some M >
3. How does a larger buffer pool affect the cost of nested loops? You can
assume that the eviction policy is LRU and the pages of the “current” tuples are
pinned while the tuple is in use.

A. Cost is increased

B. Cost is unchanged

C. Cost is reduced

D. Cost is reduced when M ≥ 2 + NR.

E. Cost is reduced when M ≥ 2 + NS.

 5

Instructions: I will give you 1-2 minutes to think on your own.
Vote 1.
Then you will discuss w/ neighbor (1 min).
Vote 2.
Then we’ll discuss as class. Correct answer: E

Cost analysis of simple nested loops:
NR + (pR × NR) × NS

Page nested loops

 6

for each page p in R:
 for each page p' in S:
 for each t in p:
 for each t' in p':
 if t and t' match:
 add join(t,t') to result

Cost (on example): when R is outer relation
1000 + 1000 × 500 = 501,000 I/Os ≈ 1.4 hours

Cost analysis:
NR + NR × NS

Poll

How many pages of memory does page nested loops require?

A. M = 2

B. M = 3

C. M = min(NR, NS)

D. M = max(NR, NS)

E. M = NR + NS

 7

Instructions: I will give you 1-2 minutes to think on your own.
Vote 1.
Then you will discuss w/ neighbor (1 min).
Vote 2.
Then we’ll discuss as class. Correct answer: B

Cost analysis of page nested loops:
NR + NR × NS

Exercise

Briefly discuss whether/how you could implement
page-nested loops in ColgateDB.

 8

Instructions: discuss with neighbors.

Block nested loops

 9

for each [block of M-2 pages] in R:
 for each page p' in S:
 for each t in block:
 for each t' in p':
 if t and t' match:
 add join(t,t') to result

Cost (on example): when R is outer relation
1000 + 1000/(102-2) × 500 = 6,000 I/Os ≈ 1 minute

Cost analysis:
NR + ceiling(NR/(M-2)) × NS

Poll

Consider this variant of block-nested loops: instead of
taking a block of the outer relation, we take a block of
the inner relation. How does this change affect cost?
(Assume LRU eviction.)

A. Cost is same

B. Cost is lower

C. Cost is higher

D. Cost depends on the size of M relative to size of S
 10

Instructions: I will give you 1-2 minutes to think on your own.
Vote 1.
Then you will discuss w/ neighbor (1 min).
Vote 2.
Then we’ll discuss as class. Correct answer: D

for each each page p in R:
 for [block of M-2 pages] in S:
 for each t in block:
 for each t' in p:
 if t and t' match:
 add join(t,t') to result

Hash join

 11

Hash R on A: write results to P1(R)…PM-1(R)
Hash S on B: write results to P1(S)…PM-1(S)
Join partitions Pi(R) and Pi(S) for all i

Cost (on example):
3 × (500 + 1000) = 4,500 I/Os ≈ 45 seconds

Cost analysis:
2 × NR +  
2 × NS +  
NR + NS (best case: assumes for each pair, Pi(R) and Pi(S),
 at least one partition fits in memory)

Hash function should
partition records into
M-1 “buckets” (aka
partitions). Why M-1? 

Exercise

Suppose NR > NS. What is the minimum amount of
memory (pages in buffer pool) necessary to perform a hash
join and achieve best-case performance?

You can assume you have a “perfect” hash function and no
data skew, so each partition is (roughly) equal in size.

Hint: Your answer should be a function of NR or NS such as
(NR)2 or √NS, log(NR), and it can be approximate.

 12

Instructions: discuss with neighbors.

Cost analysis:
2 × NR +  
2 × NS +  
NR + NS (best case: assumes for each pair, Pi(R) and Pi(S),
 at least one partition fits in memory)

Sort-merge join

 13

Sort R on A: write results to temp1
Sort S on B: write results to temp2
Merge temp1 and temp2

Cost (on example): no. of passes is 2 on each relation
5 × (500 + 1000) = 7,500 I/Os ≈ 1.25 minutes

Cost analysis:
2 × NR × (no. of passes on R) +  
2 × NS × (no. of passes on S) +  
NR + NS (best case cost of merge)

Cost analysis of sort-merge:
2 × NR × (no. of passes on R) +  
2 × NS × (no. of passes on S) +  
NR + NS (best case cost of merge)

Poll

Compare sort-merge and hash join. Which of the following are true? Be
sure to be able to explain your answer!

A. Hash join is preferable when one relation is huge and the other is really
small (fits in memory).

B. Sort-merge is preferable when the join keys exhibit skew (some values
appear many, many times).

C. Sort-merge is preferable when both inputs are sorted by join key.

D. All of the above.

 14

Instructions: I will give you 1-2 minutes
to think on your own.
Vote 1.
Then you will discuss w/ neighbor (1
min).
Vote 2.
Then we’ll discuss as class.

Correct answer: D

Cost analysis of hash join:
2 × NR +  
2 × NS +  
NR + NS (best case: assumes for each pair, Pi(R) and
 Pi(S), at least one partition fits in memory)

Index nested loops

 15

// assume index over tuples of S on attribute B

for each t in R:
 probe index for t.A
 for matching tuples t’:
 add join(t,t') to result

Cost (on example): assume that R is outer and c = 2
1000 + (100 × 1000) × 2 = 201,000 I/Os ≈ 30 minutes

Cost analysis:
NR + (pR × NR) × c
where c is the cost of probing index (see prev. lectures)

