
Switchyard Documentation
Release 2017.01.4

Joel Sommers

Jan 12, 2017

CONTENTS

1 Introduction and Overview 1

2 Writing a Switchyard program 3
2.1 Introducing the “network object” . 3
2.2 Introduction to packet parsing and construction . 7
2.3 Utility functions . 11
2.4 Passing arguments into a Switchyard program . 12

3 Running in the test environment 13
3.1 Test output . 13
3.2 Verbose test output . 14
3.3 When a test fails . 15
3.4 Another example . 17
3.5 Even more verbose output . 18
3.6 If you don’t like pdb . 19
3.7 Checking code coverage . 20

4 Test scenario creation 21
4.1 Test scenario examples . 24
4.2 Compiling a test scenario . 26

5 Running in a “live” environment 27
5.1 Basic command-line recipe . 27
5.2 Including or excluding particular interfaces . 29
5.3 Firewall options . 29

6 Advanced API topics 33
6.1 Creating new packet header types . 33
6.2 Application layer socket emulation and creating full protocol stacks 38

7 Installing Switchyard 43
7.1 Operating system-specific instructions . 44

8 API Reference 45
8.1 Net object reference . 45
8.2 Interface and InterfaceType reference . 46
8.3 Ethernet and IP addresses . 47
8.4 Packet parsing and construction reference . 48
8.5 Test scenario creation . 56
8.6 Application-layer . 57
8.7 Utility functions . 59

i

9 Release notes 61
9.1 2017.01.2 . 61
9.2 2017.01.1 . 61
9.3 v2 . 61
9.4 v1 . 62

10 Acknowledgments and thanks 63

11 Indices and tables 65

Python Module Index 67

ii

CHAPTER

ONE

INTRODUCTION AND OVERVIEW

Switchyard is a framework for creating, testing, and experimenting with software implementations of
networked systems such as Ethernet switches, IP routers, firewalls and middleboxes, and end-host protocol
stacks. Switchyard can be used for system-building projects targeting layers of the network protocol stack
from layer 2 (link layer) and above. It is intended primarily for educational use and has purpose-built
testing and debugging features. Although its design favors understandability over speed, it can work quite
nicely as a prototyping environment for new kinds of networked devices.

The Switchyard framework is implemented in Python and consists of two components: a program (swyard)
which creates a runtime environment for the code that implements some networked system or device, and
a collection of library modules that can be used for a variety of tasks such as packet creation and parsing.
The networked system code is implemented in one or more Python files (which you write!) and that use
the Switchyard libraries and conform to certain conventions. The swyard runtime environment creator and
orchestrator seamlessly handles running your code either in a test setting where no actual network traffic is
generated or in a real or “live” setting in which your code can interact with other networked systems.

The Switchyard runtime environment (depicted below) provides a given networked system with 1 or more
interfaces or ports. A port may represent a wired connection to another device, or may represent a wireless
interface, or may represent a loopback1 interface. In any case, it is through these ports that packets are sent
and received. Each port has, at minimum, a name (e.g., en0) and an Ethernet address. A port may also have
an IPv4 address and subnet mask associated with it.

The typical goal of a Switchyard-based program is to receive a packet on one port, possibly modify it, then
either forward it out one or more ports or to drop the packet. The rest of this documentation is organized
around how to perform these tasks in various settings. In particular:

• The next section, writing a Switchyard program, describes how to develop a basic Switchyard program,
including what APIs are available for parsing and constructing packets and sending/receiving packets
on network interfaces.

• Following that, the next section, running in the test environment, provides details on running a Switch-
yard program in the test environment. The section after that gives details on how to write test scenarios.

• The next section describes running Switchyard in a live environment, such as on a standard Linux host
or within the Mininet emulation environment or some other kind of virtual environment.

• Advanced API topics are addressed next, such as creating new packet header types, and implementing
network protocol stacks that can interoperate with a Python socket-based program.

• An installation guide appears next.

• Finally, you can find an API Reference at the end of this documentation along with and an index.

A note to the pedantic: In this documentation we use the term packet in a generic sense to refer to what may
more traditionally be a link layer frame, a network layer packet, a transport layer segment, or an application

1 The loopback interface is a virtual interface that connects a host to itself. It is typically used to facilitate network communication
among processes on the same host.

1

Switchyard Documentation, Release 2017.01.4

Switchyard framework

recv_packet()
send_packet() ports()

The modeled
network

device, with
p ports

(8 in this
figure)

Retrieve info
about ports on

device (i.e.,
names and
addresses

assigned to
each).

Send or
receive a
packet to/

from a specific
port on the

system.

A conventional Switchyard
application implements

the core logic components of
the network device (e.g., a
hub, bridge, switch, router,

firewall, etc.)
Basic	API	calls:

layer message. Where appropriate, we use the appropriate specific term, but often resort to using packet in a
more general sense.

And one more (genuinely important) note: Switchyard is Python 3-only! You’ll get an error (or maybe
even more than one error!) if you try to use Switchyard with Python 2. Python 3.4 is required, at minimum.
An installation guide (see Installing Switchyard) is provided in this documentation to help with getting any
necessary libraries installed on your platform to make Switchyard work right.

2 Chapter 1. Introduction and Overview

CHAPTER

TWO

WRITING A SWITCHYARD PROGRAM

A Switchyard program is simply a Python program that includes a particular entrypoint function which
accepts a single parameter. The startup function can simply be named main, but can also be named
switchy_main if you like. The function must accept at least one parameter, which is a reference to the
Switchyard network object (described below). Method calls on the network object are used to send and
receive packets to and from network ports.

A Switchyard program isn’t executed directly with the Python interpreter. Instead, the program swyard is
used to start up the Switchyard framework and to load your code. When Switchyard starts your code it
looks for a function named main and invokes it, passing in the network object as the first parameter. Details
on how to start Switchyard (and thus your program) are given in the chapters on running a Switchyard in the
test environment and running Switchyard in a live environment. Note that it is possible to pass arguments into
a Switchyard program; see Passing arguments into a Switchyard program for details.

A Switchyard program will typically also import other Switchyard modules such as modules for parsing and
constructing packets, dealing with network addresses, and other functions. These modules are introduced
below and described in detail in the API reference chapter.

2.1 Introducing the “network object”

As mentioned above, a Switchyard program can simply have a main function that accepts a single argument.
The parameter passed to main is called the “network object”. It is on this object that you can call methods
for sending and receiving packets and getting information about ports on the device for which you’re
implementing the logic.

2.1.1 Sending and receiving packets

As a way to describe two of the most important methods on the network object, here is a program that
receives one packet, prints it out, sends it back out the same interface, then quits.

Notice in the code below that we only need to import switchyard.lib.userlib to get access to various
Switchyard classes and functions; generally speaking, this is the only import you should ever need for any
Switchyard program. Although you can import individual Switchyard modules separately (for the specific
module to import, see API Reference), but you will probably find that importing userlib is much easier.

from switchyard.lib.userlib import *

def main(net):
timestamp,input_port,packet = net.recv_packet()
print ("Received {} on {}".format(packet, input_port))
net.send_packet(input_port, packet)

3

Switchyard Documentation, Release 2017.01.4

This program isn’t likely to be very useful — it is just meant as an illustration of the most important two
methods on the network object:

• recv_packet(timeout=None)

Not surprisingly, this method is used to receive at most one packet from any port. The method will
block until a packet is received, unless a timeout value >=0 is given. The default is to block indefinitely.
The method returns a namedtuple of length 3, which includes a timestamp for when the packet was
received, the name of the input port on which the packet was received, and the packet itself (another
example is given below, plus see collections.namedtuple in the Python library reference).

The method raises a Shutdown exception if the Switchyard framework has been shut down. It can also
raise a NoPackets exception if no packets are received before the timeout value given to the method
expires.

• send_packet(output_port, packet)

Again, the meaning of this method call is probably not especially surprising: when called, the given
packet will be sent out the given output port. For the output_port parameter, the string name of the
port can be given, or an Interface object may also be supplied (see below for more about Interface
objects as well as the Interface and InterfaceType reference).

This method returns None. If the output_port or some detail about the given packet is invalid (e.g.,
something other than a packet is passed as the second parameter), this method raises a ValueError.

Returning briefly to the recv_packet method, observe that in the above example no arguments are given
so the call will block until a packet is received. Also, it is important to recognize that the return type of
recv_packet is a namedtuple of exactly three elements so in addition to automatically unpacking the tuple as
in the above example, you can use indexing or attribute-like syntax on the return value from recv_packet.
For example (using attribute-syntax):

from switchyard.lib.userlib import *

def main(net):
below, recvdata is a namedtuple
recvdata = net.recv_packet()
print ("At {}, received {} on {}".format(

recvdata.timestamp, recvdata.packet, recvdata.input_port))

alternatively, the above line could use indexing, although
readability suffers:
recvdata[0], recvdata[2], recvdata[1]))

net.send_packet(recvdata.input_port, recvdata.packet)

likewise, the above line could be written using indexing
but, again, readability suffers:
net.send_packet(recvdata[1], recvdata[2])

Importantly, note that in the above examples we are not handling any potential exceptions that could occur.
In particular, we really should be handling at least the situation in which the framework is shut down (and
we receive a Shutdown exception). Just for completeness, we should also handle the NoPackets exception,
although if the code is designed to block indefinitely we shouldn’t normally receive that particular exception.

Let’s rewrite the code above, and now put everything in a while loop so that we keep reading and
sending packets as long as we’re running. We will eventually turn this code into a working network hub
implementation1, but it’s currently broken because it still just sends a packet out the same port on which it

1 A hub is a network device with multiple physical ports. Any packet to arrive on a port is sent back out all ports except for the one
on which it arrived.

4 Chapter 2. Writing a Switchyard program

Switchyard Documentation, Release 2017.01.4

arrived:

from switchyard.lib.userlib import *

def main(net):
while True:

try:
timestamp,input_port,packet = net.recv_packet()

except Shutdown:
log_info ("Got shutdown signal; exiting")
break

except NoPackets:
log_info ("No packets were available.")
continue

if we get here, we must have received a packet
log_info ("Received {} on {}".format(packet, input_port))
net.send_packet(input_port, packet)

In the example above, notice that we also changed the print function calls to log_info. Switchyard uses
built-in Python logging capabilities (see logging in the Python library reference) for printing various notices
to the console. The logging functions, described below, each just accept one string parameter which is just
the text to be printed on the console.

For full details of the send_packet and recv_packet method calls, refer to Net object reference in the API
Reference section at the end of this documentation.

2.1.2 Getting information about ports (interfaces) on the device

Other methods available the network object relate to getting information about the ports/interfaces attached
to the device on which the Switchyard code is running. The two basic methods are interfaces and ports.
These methods are aliases and do exactly the same thing. In particular:

• interfaces()

This method returns a list of interfaces that are configured on the network device, as a list of Interface
objects. The alias method ports() does exactly the same thing. There is no inherent ordering to the
list of Interface objects returned.

Each Interface object has a set of properties that can be used to access various configured attributes for
the interface:

• name: returns the name of the interface (e.g., en0) as a string.

• ethaddr: returns the Ethernet address associated with the interface, as a switchyard.lib.address.
EthAddr instance.

• ipaddr: returns the IPv4 address associated with the interface, if any. This property returns an
object of type IPv4Address. If there is no address assigned to the interface, the address is 0.0.0.0. A
current limitation with the Interface implementation in Switchyard is that only one address can be
associated with an interface, and it must be an IPv4 address. Eventually, Switchyard will fully support
IPv6 addresses, and multiple IP addresses per interface.

• netmask: returns the network mask associated with the IPv4 address assigned to the interface. The
netmask defaults to 255.255.255.255 (/32) if none is specified.

• ifnum: returns an integer index associated with the interface.

• iftype: returns the type of the interface, if it can be inferred by Switchyard. The return type is a
value from the switchyard.lib.interface.InterfaceType enumerated type. The type can either be

2.1. Introducing the “network object” 5

Switchyard Documentation, Release 2017.01.4

Unknown, Loopback, Wired, or Wireless. The type is automatically set when an interface is initialized.
Note that in some cases the type can be inferred, but in others it cannot (thus the potential for an
Unknown value).

All the above properties except ifnum and iftype are modifiable. Changing them can be accomplished just
by assigning a new value to the property. Beware, though, that changing address values has no effect on
the underlying host operating system if Switchyard is run in a live environment, so you would generally be
wise to leave the addresses alone.

For full interface details, see Interface and InterfaceType reference.

As an example, to simply print out information regarding each interface defined on the current network
device you could use the following program:

def main(net):
for intf in net.interfaces():

log_info("{} has ethaddr {} and ipaddr {}/{} and is of type {}".format(
intf.name, intf.ethaddr, intf.ipaddr, intf.netmask, intf.iftype.name))

could also be:
for intf in net.ports():
...

Entirely depending on how the network device is configured, output from the above program might look
like the following:

09:10:08 2016/12/17 INFO eth0 has ethaddr 10:00:00:00:00:01 and ipaddr 172.16.42.1/255.255.255.
↪→252 and is of type Unknown
09:10:08 2016/12/17 INFO eth1 has ethaddr 10:00:00:00:00:02 and ipaddr 10.10.0.1/255.255.0.0␣
↪→and is of type Unknown
09:10:08 2016/12/17 INFO eth2 has ethaddr 10:00:00:00:00:03 and ipaddr 192.168.1.1/255.255.255.
↪→0 and is of type Unknown

The above example code was run in the Switchyard *test* environment; when a Switchyard program is run
in test mode, all interfaces will show type Unknown. Note also that there is no inherent ordering to the list of
interfaces returned.

There are a few convenience methods related to ports and interfaces, which can be used to look up a
particular interface given a name, IPv4 address, or Ethernet (MAC) address:

• interface_by_name(name): This method returns an Interface object given a string name of a inter-
face. An alias method port_by_name(name) also exists.

• interface_by_ipaddr(ipaddr): This method returns an Interface object given an IP address con-
figured on one of the interfaces. The IP address may be given as a string or as an IPv4Address object.
An alias method port_by_ipaddr(ipaddr) also exists.

• interface_by_macaddr(ethaddr): This method returns anInterfaceobject given an Ethernet (MAC)
address configured on one of the interfaces. An alias method port_by_macaddr(ethaddr) also exists.

Note that the above lookup methods raise a KeyError exception if the lookup name is invalid.

2.1.3 Other methods on the network object

Lastly, there is a shutdown method available on the network object. This method should be used by a
Switchyard program prior to exiting in order to clean up and shut down various resources.

Let’s now add a bit to the previous example program to turn it into an almost-complete implementation of
a hub. Whenever we receive a packet, we need to loop through the ports on the device and send the packet

6 Chapter 2. Writing a Switchyard program

Switchyard Documentation, Release 2017.01.4

on a port as long as the port isn’t the one on which we received the packet (lines 21-23, below):

Listing 2.1: A (nearly) full implementation of a hub.

1 from switchyard.lib.userlib import *
2

3 def main(net):
4 # add some informational text about ports on this device
5 log_info ("Hub is starting up with these ports:")
6 for port in net.ports():
7 log_info ("{}: ethernet address {}".format(port.name, port.ethaddr))
8

9 while True:
10 try:
11 timestamp,input_port,packet = net.recv_packet()
12 except Shutdown:
13 # got shutdown signal
14 break
15 except NoPackets:
16 # try again...
17 continue
18

19 # send the packet out all ports *except*
20 # the one on which it arrived
21 for port in net.ports():
22 if port.name != input_port:
23 net.send_packet(port.name, packet)
24

25 # shutdown is the last thing we should do
26 net.shutdown()

There’s still one thing missing from the above code, which is for the hub to ignore any frames that are
destined to the hub itself. That is, if an Ethernet destination address in a received frame is the same as an
Ethernet address assigned to one of the ports on the hub, the frame should not be forwarded (it can simply
be ignored). Finishing off the hub by doing this is left as an exercise.

2.2 Introduction to packet parsing and construction

This section provides an overview of packet construction and parsing in Switchyard. For full details on
these capabilities, see Packet parsing and construction reference.

Switchyard’s packet construction/parsing library is found in switchyard.lib.packet. Its design is based
on a few other libraries out there, including POX’s library2 and Ryu’s library3.

There are a few key ideas to understand when using the packet library:

• The Packet class acts as a container of headers (or rather, of header objects).

• Headers within a packet can be accessed through methods on the Packet container object, and also
by indexing. Headers are ordered starting with lowest layer protocols. For example, if a Packet has
an Ethernet header (which is likely to be the lowest layer protocol), this header can be accessed with
index 0 as in pktobj[0]. Indexes can be integers, and they can also be packet header class names
(e.g., Ethernet, IPv4, etc.). For example, to access the Ethernet header of a packet, you can write
pktobj[Ethernet].

2 https://github.com/noxrepo/pox
3 https://github.com/osrg/ryu

2.2. Introduction to packet parsing and construction 7

https://github.com/noxrepo/pox
https://github.com/osrg/ryu

Switchyard Documentation, Release 2017.01.4

• Fields in header objects are accessed through standard Python properties. The code to manipulate
header fields thus looks like it is just accessing instance variables, but “getter” and “setter” method
calls actually take place, depending on whether a property is being retrieved or assigned to.

• A packet object can be constructed by either expliciting instantiating an object and adding headers, or
it can be formed by “adding” (using the + operator) headers together, or by appending headers onto
a packet (using + or +=).

• The Switchyard framework generally automatically handles serializing and deserializing Packet objects
to and from byte sequences (i.e., wire format packets), but you can also explicitly invoke those methods
if you need to.

Packet class acts as a
container of packet

header objects.

Packet

IPv4 ICMPEthernet

Here are some examples using Ethernet, IPv4, and ICMP headers. First, let’s construct a packet object and
add these headers to the packet:

>>> from switchyard.lib.packet import *
>>> p = Packet() # construct a packet object
>>> e = Ethernet() # construct Ethernet header
>>> ip = IPv4() # construct IPv4 header
>>> icmp = ICMP() # construct ICMP header
>>> p += e # add eth header to packet
>>> p += ip # add ip header to packet
>>> p += icmp # add icmp header to packet
>>> print (p)
Ethernet 00:00:00:00:00:00->00:00:00:00:00:00 IP | IPv4 0.0.0.0->0.0.0.0 ICMP | ICMP EchoRequest 0␣
↪→0 (0 data bytes)

A shorthand for doing the above is:

>>> p = Ethernet() + IPv4() + ICMP()

The effect of the + operator with header objects as in the previous line is to construct a packet object, just as
the first example. Note that with the above one-line example, the default Ethertype for the Ethernet header
is IPv4, and the default protocol number for IPv4 is ICMP. Thus, this example is somewhat special in that
we didn’t need to modify any of the packet header fields to create a (mostly) valid packet. Lastly, note that
the order in which we add packet headers together to construct a full packet is important: lower layers (e.g.,
Ethernet) must come first, followed by other protocol headers in their correct order.

Switchyard does not ensure that a constructed Packet is sensible in any way. It is possible to put headers in
the wrong order, to supply illogical values for header elements (e.g., a protocol number in the IPv4 header
that doesn’t match the next header in the packet), and to do other invalid things. Switchyard gives you the
tools for constructing packets, but doesn’t tell you how to do so.

8 Chapter 2. Writing a Switchyard program

Switchyard Documentation, Release 2017.01.4

The num_headers Packet method returns the number of headers in a packet, which returns the expected
number for this example:

>>> p.num_headers()
3

Note that the len function on a packet returns the number of bytes that the Packet would consume if it was
in wire (serialized) format. The size method returns the same value.

>>> len(p)
42
>>> p.size()
42

(Note: Ethernet header is 14 bytes + 20 bytes IP + 8 bytes ICMP = 42 bytes.)

Packet header objects can be accessed conveniently by indexing. Standard negative indexing also works.
For example, to obtain a reference to the Ethernet header object and to inspect and modify the Ethernet
header, we might do the following:

>>> p[0] # access by index
<switchyard.lib.packet.ethernet.Ethernet object at 0x104474248>
>>> p[0].src
EthAddr('00:00:00:00:00:00')
>>> p[0].dst
EthAddr('00:00:00:00:00:00')
>>> p[0].dst = "ab:cd:ef:00:11:22"
>>> str(p[0])
'Ethernet 00:00:00:00:00:00->ab:cd:ef:00:11:22 IP'
>>> p[0].dst = EthAddr("00:11:22:33:44:55")
>>> str(p[0])
'Ethernet 00:00:00:00:00:00->00:11:22:33:44:55 IP'
>>> p[0].ethertype
<EtherType.IP: 2048>
>>> p[0].ethertype = EtherType.ARP
>>> print (p)
Ethernet 00:00:00:00:00:00->00:00:00:00:00:00 ARP | IPv4 0.0.0.0->0.0.0.0 ICMP | ICMP EchoRequest␣
↪→0 0 (0 data bytes)
>> p[0].ethertype = EtherType.IPv4 # set it back to sensible value

Note that all header field elements are accessed through properties. For Ethernet headers, there are three
properties that can be inspected and modified, src, dst and ethertype, as shown above. Notice also
that Switchyard doesn’t prevent a user from setting header fields to illogical values, e.g., when we set
the ethertype to ARP although the next header is IPv4, not ARP. All EtherType values are specified in
switchyard.lib.packet.common, and imported when the module switchyard.lib.packet is imported.

Accessing header fields in other headers works similarly. Here are examples involving the IPv4 header:

>>> p.has_header(IPv4)
True
>>> p.get_header_index(IPv4)
1
>>> str(p[1]) # access by index
'IPv4 0.0.0.0->0.0.0.0 ICMP'
>>> str(p[IPv4]) # access by header type
'IPv4 0.0.0.0->0.0.0.0 ICMP'
>>> p[IPv4].protocol
<IPProtocol.ICMP: 1>
>>> p[IPv4].src

2.2. Introduction to packet parsing and construction 9

Switchyard Documentation, Release 2017.01.4

IPv4Address('0.0.0.0')
>>> p[IPv4].dst
IPv4Address('0.0.0.0')
>>> p[IPv4].dst = '149.43.80.13'

IPv4 protocol values are specified in switchyard.lib.packet.common, just as with EtherType values.
Note, however, that you do not need to explicitly import this module if you import switchyard.lib.
userlib — packet-related classes and enumerations are imported when importing userlib. The full set
of properties that can be manipulated in the IPv4 header as well as all other headers is described in the
reference documentation for the packet library.

Lastly, an example with the ICMP header shows some perhaps now familiar patterns. The main difference
with ICMP is that the “data” portion of an ICMP packet changes, depending on the ICMP type. For example,
if the type is 8 (ICMP echo request) the ICMP data becomes an object that allows the identifier and sequence
values to be inspected and modified.

>>> p.has_header(ICMP)
True
>>> p.get_header_index(ICMP)
2
>>> p[2] # access by index; notice no conversion to string
<switchyard.lib.packet.icmp.ICMP object at 0x104449c78>
>>> p[ICMP] # access by header type
<switchyard.lib.packet.icmp.ICMP object at 0x104449c78>
>>> p[ICMP].icmptype
<ICMPType.EchoRequest: 8>
>>> p[ICMP].icmpcode
<EchoRequest.EchoRequest: 0>
>>> p[ICMP].icmpdata
<switchyard.lib.packet.icmp.ICMPEchoRequest object at 0x1044742c8>
>>> icmp.icmpdata.sequence
0
>>> icmp.icmpdata.identifier
0
>>> icmp.icmpdata.identifier = 42
>>> icmp.icmpdata.sequence = 13
>>> print (p)
Ethernet 00:00:00:00:00:00->00:11:22:33:44:55 IP | IPv4 0.0.0.0->149.43.80.13 ICMP | ICMP␣
↪→EchoRequest 42 13 (0 data bytes)

By default, no “payload” data are included in with an ICMP header, but we can change that using the data
property on the icmpdata part of the header:

>>> icmp.icmpdata.data = "hello, world"
>>> print (p)
Ethernet 00:00:00:00:00:00->00:11:22:33:44:55 IP | IPv4 0.0.0.0->149.43.80.13 ICMP | ICMP␣
↪→EchoRequest 42 13 (12 data bytes)

Python keyword argument syntax can be used to assign values to header fields when a header object is
constructed. This kind of syntax can make packet construction a bit more compact and streamlined. For
example, if we wanted to make a UDP packet with some payload, we could do something like the following:

>>> e = Ethernet(src="11:22:33:44:55:66", dst="66:55:44:33:22:11", ethertype=EtherType.IP)
>>> ip = IPv4(src="1.2.3.4", dst="4.3.2.1", protocol=IPProtocol.UDP, ttl=32)
>>> udp = UDP(src=1234, dst=4321)
>>> p = e + ip + udp + b"this is some application payload!"
>>> print(p)

10 Chapter 2. Writing a Switchyard program

Switchyard Documentation, Release 2017.01.4

Ethernet 11:22:33:44:55:66->66:55:44:33:22:11 IP | IPv4 1.2.3.4->4.3.2.1 UDP | UDP 1234->4321 |␣
↪→RawPacketContents (33 bytes) b'this is so'...
>>>

Finally, to serialize the packet into a wire format sequence of bytes, we can use the to_bytes() method:

>>> p.to_bytes()
b'\x00\x11
↪→"3DU\x00\x00\x00\x00\x00\x00\x08\x00E\x00\x00(\x00\x00\x00\x00\x00\x01\xba\xd6\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\xb7|\x00*\x00\rhello,
↪→ world'

Switchyard normally handles deserialization automatically, but there is a from_bytes(raw) method available
that accepts a raw bytes object and reconstructs packet header attributes. It either succeeds or throws an
exception. It returns any bytes that were not necessary for reconstructing the header.

As mentioned above, Switchyard does not require packets to be correctly constructed (e.g., there may be a
TCP header in a packet without any IP header). As a result, while serialization will often succeed even if
the packet is malformed, whereas deserialization often will not. The reason is that in deserialization, the
contents of bytes earlier in a packet are necessary for determining how to reconstruct later headers and
attributes in a packet (e.g., the ethertype attribute in the Ethernet header is necessary for determining
which header comes next).

Other header classes that are available in Switchyard include Arp, UDP, TCP, IPv6, and ICMPv6. Again, see
the packet library reference documentation for details on these header classes, and full documentation for all
classes.

2.3 Utility functions

There are a few additional utility functions that are useful when developing a Switchyard program related
to logging and debugging.

2.3.1 Logging functions

Switchyard uses Python’s standard logging facilities and provides four convenience functions. Each of
these functions takes a string as a parameter and prints it to the console as a logging message. The only
difference with the functions relates to the logging level (see logging in the Python library reference), and
whether the output is colored to visually highlight a problem. The default logging level is INFO within
Switchyard. If you wish to include debugging messages, you can use the -d flag for the various invocation
programs (e.g., swyard), as described in Running in the test environment and Running in a “live” environment.

log_debug(str)
Write a debugging message to the log using the log level DEBUG.

log_info(str)
Write a debugging message to the log using the log level INFO.

log_warn(str)
Write a debugging message to the log using the log level WARNING. Output is colored magenta.

log_failure(str)
Write a debugging message to the log using the log level CRITICAL. Output is colored red.

While you can still use the built-in print function to write messages to the console, using the log functions
provides a much more structured way of writing information to the screen.

2.3. Utility functions 11

Switchyard Documentation, Release 2017.01.4

2.3.2 Invoking the debugger

Although a longer discussion of debugging is included in a later section, it is worth mentioning that there is
a built-in function named debugger that can be used anywhere in Switchyard code to immediately invoke
the standard Python pdb debugger.

For example, if we add a call to debugger() in the example code above just after the try/except block, then
run the code in a test environment, the program pauses immediately after the call to debugger and the pdb
prompt is shown:

after hub code is started in test environment,
some output is shown, followed by this:

> /Users/jsommers/Dropbox/src/switchyard/xhub.py(29)main()
-> for port in net.ports():
(Pdb) list
24
25 debugger()
26
27 # send the packet out all ports *except*
28 # the one on which it arrived
29 -> for port in net.ports():
30 if port.name != input_port:
31 net.send_packet(port.name, packet)
32

As you can see, the program is paused on the next executable line following the call to debugger(). At this
point, any valid pdb commands can be given to inspect or alter program state. Once again, see later sections
for details on running Switchyard code in a live environment and on other debugging capabilities.

2.4 Passing arguments into a Switchyard program

It is possible to pass in additional arguments to a Switchyard program via its main function. To accept
additional arguments into your main function, you should at least add a *args parameter. You can optionally
also accept keyword-style arguments by including a **kwargs parameter. For example, here is the initial
part of a main function which accepts both:

def main(netobj, *args, **kwargs):
args is a list of arguments
kwargs is a dictionary of key-value keyword arguments

As noted in the code comment, the parameter *args will collect any non-keyword arguments into a list and
the parameter **kwargs will collect any keyword-style arguments into a dictionary. Note that all argument
values are passed in as strings, so your program may need to do some type conversion.

To pass arguments into your main function from invoking swyard on the command line, use the -g option.
This option accepts a string, which should include all arguments to be passed to your main function, each
separated by spaces. For keyword-style arguments, you can use the syntax param=value. Any space-
separated strings that do not include the = character as passed into the arglist (args). For example, to pass
in the value 13 and the keyword parameter debug=True, you could use the following command-line:

$ swyard -g "13 debug=True" ... (other arguments to swyard)

When invoking your main function, args would have a single value (the string '13') and kwargs would be
the dictionary {'debug': 'True'} (notice that True would be a string since all arguments end up being
passed in as strings).

12 Chapter 2. Writing a Switchyard program

CHAPTER

THREE

RUNNING IN THE TEST ENVIRONMENT

To run Switchyard in test mode, a test scenario file is needed. This file includes specifications of various
events (sending particularly crafted packets, receiving packets, etc.) that a Switchyard program is expected
to do if it behaves correctly. Also needed, of course, is the Switchyard program you wish to test. The test
scenario files may be regular Python (.py) files, but they may alternatively have an extension .srpy if they
have been compiled. For details on creating and compiling test scenarios, see Test scenario creation.

Let’s say your program is named myhub.py. To invoke Switchyard in test mode and subject your program
to a set of tests, at minimum you would invoke swyard as follows:

$ swyard -t hubtests.srpy myhub

Note that the -t option puts swyard in test mode. The argument to the -t option should be the name of
the test scenario to be executed, and the final argument is the name of your code. It doesn’t matter whether
you include the .py extension on the end of your program name, so:

$ swyard -t hubtests.srpy myhub.py

would work the same as above.

3.1 Test output

When you run swyard in test mode and all tests pass, you’ll see something similar to the following:

Listing 3.1: Abbreviated (normal) test output.

Results for test scenario hub tests: 8 passed, 0 failed, 0 pending

Passed:
1 An Ethernet frame with a broadcast destination address

should arrive on eth1
2 The Ethernet frame with a broadcast destination address

should be forwarded out ports eth0 and eth2
3 An Ethernet frame from 20:00:00:00:00:01 to

30:00:00:00:00:02 should arrive on eth0
4 Ethernet frame destined for 30:00:00:00:00:02 should be

flooded out eth1 and eth2
5 An Ethernet frame from 30:00:00:00:00:02 to

20:00:00:00:00:01 should arrive on eth1
6 Ethernet frame destined to 20:00:00:00:00:01 should be

flooded out eth0 and eth2
7 An Ethernet frame should arrive on eth2 with destination

address the same as eth2's MAC address

13

Switchyard Documentation, Release 2017.01.4

8 The hub should not do anything in response to a frame
arriving with a destination address referring to the hub
itself.

All tests passed!

Note that the above output is an abbreviated version of test output and is normally shown in colored text
when run in a capable terminal.

3.2 Verbose test output

If you invoke swyard with the -v (verbose) option, the test output includes quite a bit more detail:

Listing 3.2: Verbose test output.

Results for test scenario hub tests: 8 passed, 0 failed, 0 pending

Passed:
1 An Ethernet frame with a broadcast destination address

should arrive on eth1
Expected event: recv_packet Ethernet
30:00:00:00:00:02->ff:ff:ff:ff:ff:ff IP | IPv4
172.16.42.2->255.255.255.255 ICMP | ICMP EchoRequest 0 0 (0
data bytes) on eth1

2 The Ethernet frame with a broadcast destination address
should be forwarded out ports eth0 and eth2

Expected event: send_packet(s) Ethernet
30:00:00:00:00:02->ff:ff:ff:ff:ff:ff IP | IPv4
172.16.42.2->255.255.255.255 ICMP | ICMP EchoRequest 0 0 (0
data bytes) out eth0 and Ethernet
30:00:00:00:00:02->ff:ff:ff:ff:ff:ff IP | IPv4
172.16.42.2->255.255.255.255 ICMP | ICMP EchoRequest 0 0 (0
data bytes) out eth2

3 An Ethernet frame from 20:00:00:00:00:01 to
30:00:00:00:00:02 should arrive on eth0

Expected event: recv_packet Ethernet
20:00:00:00:00:01->30:00:00:00:00:02 IP | IPv4
192.168.1.100->172.16.42.2 ICMP | ICMP EchoRequest 0 0 (0
data bytes) on eth0

...

Note that the above output has been truncated — output would normally be shown for all tests. When
invoked with the verbose option, individual tests show exactly what packets would be expected (either as
input to a device or as output from it).

Test scenario descriptions that drive test executions as shown here are composed of a series of test expectations.
Test expectations may be that a packet is received on a particular port, or that a packet is emitted out one or
more ports, or that the user code calls recv_packet but times out (and thus nothing is received). Both the
abbreviated and verbose test output shown above contain brief descriptions of the nature of each test. In
the verbose output, packet details related to each test are also shown. Reading this information can help to
understand what the tests are trying to accomplish, especially when a test expectation fails.

14 Chapter 3. Running in the test environment

Switchyard Documentation, Release 2017.01.4

3.3 When a test fails

If some test expectation is not met, then the output indicates that something has gone wrong and, by default,
Switchyard gives the user the standard Python pdb debugger prompt. The motivation for immediately
putting the user in pdb is to enable just-in-time debugging. If the test output is read carefully and can be
used to identify a flaw by inspecting code and data at the time of failure, then this should help to facilitate
the development/testing/debugging cycle. At least that’s the hope.

Say that we’ve done something wrong in our code which causes a test expectation to fail. The output we
see might be similar to the following (note that to create the output below, we’ve used the full set of hub
device tests, but the code we’ve used is the broken code we started with in Writing a Switchyard program that
sends any packet back out the same port that it arrived on):

Listing 3.3: Normal (abbreviated) test output when one test fails.

Results for test scenario hub tests: 1 passed, 1 failed, 6 pending

Passed:
1 An Ethernet frame with a broadcast destination address

should arrive on eth1

Failed:
The Ethernet frame with a broadcast destination address
should be forwarded out ports eth0 and eth2

Expected event: send_packet(s) Ethernet
30:00:00:00:00:02->ff:ff:ff:ff:ff:ff IP | IPv4 | ICMP out
eth0 and Ethernet 30:00:00:00:00:02->ff:ff:ff:ff:ff:ff IP |
IPv4 | ICMP out eth2

Pending (couldn't test because of prior failure):
1 An Ethernet frame from 20:00:00:00:00:01 to

30:00:00:00:00:02 should arrive on eth0
2 Ethernet frame destined for 30:00:00:00:00:02 should be

flooded out eth1 and eth2
3 An Ethernet frame from 30:00:00:00:00:02 to

20:00:00:00:00:01 should arrive on eth1
4 Ethernet frame destined to 20:00:00:00:00:01 should be

flooded out eth0 and eth2
5 An Ethernet frame should arrive on eth2 with destination

address the same as eth2's MAC address
6 The hub should not do anything in response to a frame

arriving with a destination address referring to the hub
itself.

... (output continues)

Notice in the first line of output that Switchyard shows how many tests pass, how many have failed, and
how many are pending. The pending category simply means that tests cannot be run because some earlier
test failed. In the example above, the output from swyard clearly shows which test fails; when that happens,
some additional explanatory text is shown, and a debugger session is started as close as possible to the
point of failure. When not run in verbose mode, Switchyard will show abbreviated test descriptions for any
passed tests and any pending tests, but the failed test will show everything.

Following the overall test results showing passed, failed, and pending tests, some summary information is

3.3. When a test fails 15

Switchyard Documentation, Release 2017.01.4

displayed about the test failure, and a debugging session is started. By default, Switchyard uses Python’s
built-in pdb debugger. At the very end of the output, a stack trace is shown and a debugger prompt is
displayed:

Listing 3.4: Additional output from a test failure. Notice the error diagnosis in the output below, as well as
how Switchyard invokes the debugger (pdb) at the point of failure.

**
Your code didn't crash, but a test failed.
**

This is the Switchyard equivalent of the blue screen of death.
As far as I can tell, here's what happened:

Expected event:
The Ethernet frame with a broadcast destination address
should be forwarded out ports eth0 and eth2

Failure observed:
You called send_packet with an unexpected output port eth1.
Here is what Switchyard expected: send_packet(s) Ethernet
30:00:00:00:00:02->ff:ff:ff:ff:ff:ff IP | IPv4
172.16.42.2->255.255.255.255 ICMP | ICMP EchoRequest 0 0 (0
data bytes) out eth0 and Ethernet
30:00:00:00:00:02->ff:ff:ff:ff:ff:ff IP | IPv4
172.16.42.2->255.255.255.255 ICMP | ICMP EchoRequest 0 0 (0
data bytes) out eth2.

You can rerun with the -v flag to include full dumps of packets that
may have caused errors. (By default, only relevant packet context may
be shown, not the full contents.)

I'm throwing you into the Python debugger (pdb) at the point of failure.
If you don't want pdb, use the --nopdb flag to avoid this fate.

> /Users/jsommers/Dropbox/src/switchyard/switchyard/llnettest.py(95)send_packet()
-> SwitchyardTestEvent.EVENT_OUTPUT, device=devname, packet=pkt)
> /Users/jsommers/Dropbox/src/switchyard/documentation/code/inout1.py(6)main()
-> net.send_packet(input_port, packet)
(Pdb)

Again, notice that the last couple lines show a (partial) stack trace. These lines can help a bit to understand
the context of the error, but it is often helpful to show the source code around the failed code in light of
the error diagnosis under “Failure observed”, which says that we called send_packet with an unexpected
output port. If we keep reading the diagnosis, we see that the packet was expected to be forwarded out
two ports (eth0 and eth2), but was instead sent on eth1. Showing the source code can be accomplished with
pdb‘s list command:

Listing 3.5: Output from pdb when listing the source code at the point of failure.

(Pdb) list
8
9 # alternatively, the above line could use indexing, although
10 # readability suffers:
11 # recvdata[0], recvdata[2], recvdata[1]))
12
13 -> net.send_packet(recvdata.input_port, recvdata.packet)

16 Chapter 3. Running in the test environment

Switchyard Documentation, Release 2017.01.4

14
15 # likewise, the above line could be written using indexing
16 # but, again, readability suffers:
17 # net.send_packet(recvdata[1], recvdata[2])

[EOF]
(Pdb)

Between thinking about the observed failure and viewing the code, we might realize that we have foolishly
sent the frame out the same interface on which it arrived.

3.4 Another example

To give a slightly different example, let’s say that we’re developing the code for a network hub, and because
we love sheep, we decide to set every Ethernet source address to ba:ba:ba:ba:ba:ba. When we execute
Switchyard in test mode (e.g., swyard -t hubtests.py baaadhub.py), we get the following output:

Listing 3.6: Test output for an example in which all Ethernet source addresses have been hijacked by sheep.

Results for test scenario hub tests: 1 passed, 1 failed, 6 pending

Passed:
1 An Ethernet frame with a broadcast destination address

should arrive on eth1

Failed:
The Ethernet frame with a broadcast destination address
should be forwarded out ports eth0 and eth2

Expected event: send_packet(s) Ethernet
30:00:00:00:00:02->ff:ff:ff:ff:ff:ff IP | IPv4
172.16.42.2->255.255.255.255 ICMP | ICMP EchoRequest 0 0 (0
data bytes) out eth0 and Ethernet
30:00:00:00:00:02->ff:ff:ff:ff:ff:ff IP | IPv4
172.16.42.2->255.255.255.255 ICMP | ICMP EchoRequest 0 0 (0
data bytes) out eth2

Pending (couldn't test because of prior failure):
1 An Ethernet frame from 20:00:00:00:00:01 to

30:00:00:00:00:02 should arrive on eth0
2 Ethernet frame destined for 30:00:00:00:00:02 should be

flooded out eth1 and eth2
3 An Ethernet frame from 30:00:00:00:00:02 to

20:00:00:00:00:01 should arrive on eth1
4 Ethernet frame destined to 20:00:00:00:00:01 should be

flooded out eth0 and eth2
5 An Ethernet frame should arrive on eth2 with destination

address the same as eth2's MAC address
6 The hub should not do anything in response to a frame

arriving with a destination address referring to the hub
itself.

**
Your code didn't crash, but a test failed.
**

3.4. Another example 17

Switchyard Documentation, Release 2017.01.4

This is the Switchyard equivalent of the blue screen of death.
As far as I can tell, here's what happened:

Expected event:
The Ethernet frame with a broadcast destination address
should be forwarded out ports eth0 and eth2

Failure observed:
You called send_packet and while the output port eth0 is ok,
an exact match of packet contents failed. In the Ethernet
header, src is wrong (is ba:ba:ba:ba:ba:ba but should be
30:00:00:00:00:02).

... output continues ...

In this case, we can see that the first section is basically the same as with the other erroneous code, but the
failure description is different: Switchyard tells us that in the Ethernet header, the src attribute was wrong.
If, at the pdb prompt, we type list, we see our wooly problem:

Listing 3.7: Pdb source code listing showing the point of test failure.

(Pdb) list
28 else:
29 for intf in my_interfaces:
30 if dev != intf.name:
31 log_info ("Flooding packet {} to {}".format(packet, intf.name))
32 eth.src = 'ba:ba:ba:ba:ba:ba' # sheep!
33 -> net.send_packet(intf, packet)
34 net.shutdown()

[EOF]
(Pdb)

So, although the error diagnosis cannot generally state why a problem has happened, it can sometimes be
quite specific about what has gone wrong. That, coupled with showing the source code context, can be very
helpful for tracking down bugs. It might also be helpful to note that at the pdb prompt, you can inspect
any variable in order to figure out what’s happened, walk up and down the call stack and execute arbitrary
Python statements in order to try to determine what has happened. Debuggers can be a little bit daunting,
but they’re incredibly helpful tools.

See also:

To learn more about pdb and the various commands and capabilities it has, refer to the Python library
documentation (there’s a section specifically on pdb). There are other debuggers out there with additional
features, but pdb is always available with any Python distribution so it is worth acquainting yourself with it.

3.5 Even more verbose output

If you’d like even more verbose output, you can add the -v (verbose) and/or -d (debug) flags to swyard.
The -d flag may be more trouble than it’s worth since it enables all DEBUG-level log messages to be printed
to the console. If you’re really stuck trying to figure out what’s going on, however, this may be useful.

18 Chapter 3. Running in the test environment

Switchyard Documentation, Release 2017.01.4

3.6 If you don’t like pdb

If you don’t appreciate being dumped into the pdb debugger when something fails (maybe you’re a cretin
who really just likes printf-style debugging?), you can add the --nopdb flag to swyard. With the --nopdb
option, Switchyard will print out information about test failure, but you’ll go straight back to a command-
line prompt.

If you’d like to use a debugger, but just not pdb, you can use the --nohandle (or -e) option to tell Switchyard
not to trap any exceptions, but to let them be raised normally. You can then catch any exceptions using
an alterative debugger. For example, if you’d like to use the PuDB debugger, you could invoke swyard as
follows:

$ python3 -m pudb.run swyard --nohandle ...

where the ellipsis is replaced with other command-line arguments to swyard.

3.6.1 Debugging Switchyard code

When running Switchyard, especially in test mode, it is often very helpful to use the interactive Python
debugger as you work out problems and figure things out. With the import of switchyard.lib.userlib
you get a function named debugger. You can insert calls to the debugger function where ever you want to
have an interactive debugger session start up. For example, we could create a simple program that starts
up a debugger session when ever we receive a packet:

from switchyard.lib.userlib import *

def main(net):
while True:

try:
timestamp,input_port,packet = net.recv_packet(timeout=1.0)

except NoPackets:
timeout waiting for packet arrival
continue

except Shutdown:
we're done; bail out of while loop
break

invoke the debugger every time we get here, which
should be for every packet we receive!
debugger()
hdrs = packet.num_headers()

before exiting our main function,
perform shutdown on network
net.shutdown()

If we run the above program, we will stop at the line after the call to debugger:

Listing 3.8: When the debugger() call is added to a Switchyard program, execution is halted at the next line
of code.
> /users/jsommers/dropbox/src/switchyard/documentation/code/enterdebugger.py(17)main()
-> hdrs = packet.num_headers()
(Pdb) list
12 break
13

3.6. If you don’t like pdb 19

Switchyard Documentation, Release 2017.01.4

14 # invoke the debugger every time we get here, which
15 # should be for every packet we receive!
16 debugger()
17 -> hdrs = packet.num_headers()
18
19 # before exiting our main function,
20 # perform shutdown on network
21 net.shutdown()

[EOF]
(Pdb)

Note: There are currently a couple limitations when entering pdb through a call to debugger(). First, if
you attempt to exit pdb while the Switchyard program is still running, an exception from pdb‘s base class
(Bdb) will get raised. Thus, it may take a couple invocations of the quit command to actually exit. Second,
only the pdb debugger may be invoked through a call to debugger.

As noted above, if there is a runtime error in your code, Switchyard will automatically dump you into the
Python debugger (pdb) to see exactly where the program crashed and what may have caused it. You can
use any Python commands to inspect variables, and try to understand the state of the program at the time
of the crash.

3.7 Checking code coverage

If you want to check which lines of code are covered by one or more test scenarios, you can install and use
the coverage package. This can be helpful for seeing which lines of your code are not being exercised by
tests, and how you might focus additional testing effort.

To install:

$ pip3 install coverage

To gather code coverage information, you can invoke swyard using coverage. coverage appears to work
best if you give the full path name of swyard, which is what the following command line will do (using
backtick-substitution for the which swyard command). You can use command-line options to swyard as
you normally would:

$ coverage run `which swyard` -v -d -t testscenario.py yourcode.py

Once you’ve created the coverage information you can display a report. The html report will nicely show
exactly which lines of your code were executed during a test and which weren’t. To avoid seeing coverage
information for irrelevant files, you should explicitly tell coverage which files you want to include in the
report.

$ coverage html --include yourcode.py

After running the above command, you can open the file index.html within the htmlcov folder. Clicking
on a file name will show detailed coverage information.

20 Chapter 3. Running in the test environment

CHAPTER

FOUR

TEST SCENARIO CREATION

Writing tests to determine whether a piece of code behaves as expected is an important part of the software
development process. With Switchyard, it is possible to create a set of tests that verify whether a program
attempts to receive packets when it should and sends the right packet(s) out the right ports. This section
describes how to construct such tests.

A test scenario is Switchyard’s term for a series of tests that verify a program’s behavior. A test scenario is
simply a Python source code file that includes a particular variable name (symbol) called scenario, which
must refer to an instance of the class TestScenario. A TestScenario object contains the basic configuration
for an imaginary network device along with an ordered series of test expectations. These expectations may
be one of three types:

• that a particular packet should arrive on a particular interface/port,

• that a particular packet should be emitted out one or more ports, and

• that the user program should time out when calling recv_packet because no packets are available.

To start off, here is an example of an empty test scenario:

Listing 4.1: An empty test scenario.

from switchyard.lib.userlib import *

scenario = TestScenario("test example")

If we run swyard in test mode using this test description and any Switchyard program, here’s the output we
should see:

Results for test scenario test example: 0 passed, 0 failed, 0 pending

All tests passed!

Notice that in the above example code, we assigned the instance of the TestScenario class to a variable
named scenario. An assignment to this variable name is required. If it is not found, you’ll get an
ImportError exception. Notice also that there’s one parameter to TestScenario: this value can be any
meaningful description of the test scenario.

There are two methods on TestScenario that are used to configure the test environment:

• add_interface(name, macaddr, ipaddr=None, netmask=None, **kwargs)

This method adds an interface/port to an imaginary network device that is the subject of the test
scenario. For example, if you are creating a test for an IP router and you want to verify that a packet
received on one port is forwarded out another (different) port on the device, you will need to add at

21

Switchyard Documentation, Release 2017.01.4

least two interfaces. Arguments to the add_interface method are used to specify the interface’s name
(e.g., en0), its hardware Ethernet (MAC) address, and its (optional) IP address and netmask.

Two optional keyword arguments can also be given: ifnum can be used to explicitly specify the
number (integer) associated with this interface, and iftype can be used to explicitly indicate the type
of the interface. A value from the enumeration InterfaceType must be used, e.g., Wired, Wireless,
Loopback, or Unknown. The type of an interface defaults to InterfaceType.Unknown.

• add_file(filename, text)

It is sometimes necessary to make sure that certain text files are available during a test that a user
program expects, e.g., a static forwarding table for an IP router. This method can be used to specify
that a file with the name filename and with contents text should be written to the current directory
when the test scenario is run.

There is one method that creates a new test expectation in the test scenario:

• expect(expectation_object, description)

This method adds a new expected event to the test scenario. The first parameter must be an object of
type PacketInputEvent, PacketInputTimeoutEvent, or PacketOutputEvent (each described below).
The order in which expectations are added to a test scenario is critical: be certain that they’re added
in the right order for the test you want to accomplish!

The description parameter is a short text description of what this test step is designed to accomplish. In
swyard test output, this description is what is printed for each step in both the abbreviated and verbose
output: make sure it is descriptive enough so that the purpose of the test can be easily understood.
At the same time, try to keep the text short so that it isn’t overwhelming to a reader.

The three event classes set up the specific expectations for each test, as described next.

• PacketInputEvent(portname, packet, display=None, copyfromlastout=None)

Create an expectation that a particular packet will arrive and be received on a port named portname.
The packet must be an instance of the Switchyard Packet class. The portname is just a string like
eth0. This port/interface must have previously be configured in the test scenario using the method
add_interface (see above).

The display argument indicates whether a particular header in the packet should be emphasized on
output when Switchyard shows test output to a user. By default, all headers are shown. If a test creator
wants to ignore the Ethernet header but emphasize the IPv4 header, he/she could use the argument
display=IPv4. That is, the argument is just the class name of the packet header to be emphasized.

The copyfromlastout argument can be used to address the situation in which a test scenario author
wants to construct an incoming packet (that will be received by recv_packet) which has the same
values in some packet header fields as the most recent packet emitted. For example, when creating
a protocol stack, an application (socket) program might emit a packet with a source port number
assigned by the socket emulation module. The destination port number in an arriving packet needs
to be the same as the packet that was previously emitted in order for it to be handed to the correct
application program. Thus, the copyfromlastout can be used to copy one or more packet header
attributes from the last emitted packet to header fields in an incoming packet.

copyfromlastout can take a tuple of 5 elements: the interface/port name out which the packet was
sent, a header class name and attribute to copy from, and a header class name and attribute to copy to.
For example, if we wanted to copy the UDP source port value from the last packet emitted out port
en1 to the UDP destination port of the packet to be received, we could use the following:

PacketInputEvent('en1', pkt, copyfromlastout('en1', UDP, 'src', UDP, 'dst'))

Note that we would need to have created a Packet object named pkt which included a UDP header
for this example to work correctly.

22 Chapter 4. Test scenario creation

Switchyard Documentation, Release 2017.01.4

• PacketInputTimeoutEvent(timeout)

Create an expectation that the Switchyard user program will call recv_packet but time out prior to
receiving anything. The timeout value is the number of seconds to wait within the test framework
before raising the NoPackets exception in the user code. In order for this test expectation to pass, the
user code must correctly handle the exception and must not emit a packet.

To force a NoPackets exception, the timeout value given to this event must be greater than the timeout
value used in a call to recv_packet. Note also that the test framework will pause for the entire duration
of the given timeout. If a user program calls net.recv_packet(timeout=1.0) but the timeout given
for a PacketInputTimeoutEvent is 5 seconds, the call to recv_packet will appear to have blocked for
5 seconds, not 1.

• PacketOutputEvent(*args, display=None, exact=True, predicates=[], wildcard=[])

Create an expectation that the user program will emit packets out one or more ports/interfaces. The
only required arguments are args, which must be an even number of arguments. For each pair of
arguments given, the first is a port name (e.g., en0) and the second is a reference to a packet object.
Normally, a test wishes to establish that the same packet has been emitted out multiple interfaces. To
do that, you could simply write:

p = Packet()
fill in some packet headers ...
PacketOutputEvent('en0', pkt, 'en1', pkt, 'en2', pkt)

The above code expects that the same packet (named pkt) will be emitted out three interfaces (en0,
en1, and en2).

By default, the PacketOutputEvent class looks for an exact match between the reference packet sup-
plied to PacketOutputEvent and the packet that the user code actually emits. In some cases, this
isn’t appropriate or even possible. For example, you may want to verify that packets are forwarded
correctly using standard IP (longest prefix match) forwarding rules, but you may not know the pay-
load contents of a packet because another test element may modify them. As another example, in
IP forwarding you know that the TTL (time-to-live) should be decremented by one, but the specific
value in an outgoing packet depends on the value on the incoming packet, which the test framework
may not know in advance. To handle these situations, you can supply exact, wildcard(s), and/or
predicate(s) keyword arguments, as detailed below.

– Exact vs. subset matching: Setting exact to True or False determines whether all packet header
attributes are compared (exact=True) or whether a limited subset are compared (exact=False).

The set of header fields that are compared when exact=False is specified are: Ethernet source and
destination addresses, Ethernet ethertype field, Vlan vlanid and ethertype field, ARP target and
sender protocol and hardware addresses (four fields), IPv4/IPv6 source and destination addresses
and protocol, and TCP/UDP src/dst port numbers (or ICMP/ICMPv6 icmptype/icmpcode fields).
Note that in subset matching no packet payloads are compared.

– Wildcard fields: In addition to specifying the exact keyword parameter, it is possible to specify
that some additional header fields should be wildcarded. That is, the wildcarded header fields are
allowed to contain any value. Wildcards are specified using a tuple of two elements: a header
class name and a field name.

A single wildcard can be supplied (i.e., one 2-tuple) with the wildcard keyword parameter, or a
list of 2-tuples can be supplied with the wildcards keyword. For example, the following line of
code uses subset matching (exact=False) and one wildcard. For this example, assume that the
packet pkt contains Ethernet, IPv4, and UDP headers:

PacketOutputEvent('en0', pkt, exact=False, wildcard=(IPv4, 'src'))

23

Switchyard Documentation, Release 2017.01.4

Note that for the above example, the only fields compared in the IPv4 header would be the
destination address and protocol field (since other fields are already ignored with exact=False).

Here is another example that ignores source addresses in the Ethernet, IPv4 and UDP fields,
leaving only two fields in the Ethernet header to be compared (dst and ethertype), two fields to
be compared in the IPv4 header (dst and protocol) and one field in UDP (dst). Again, assume
that the packet pkt contains Ethernet, IPv4, and UDP headers:

PacketOutputEvent('en0', pkt, exact=False, wildcards=[(Ethernet, 'src'), (IPv4, 'src'),␣
↪→(UDP, 'src')])

Note: Switchyard previously allowed certain strings (modeled on the Openflow 1.0 specification)
to be used to indicate wildcarded fields. These strings can no longer be used in the current version of
Switchyard. To specify wildcarded fields, you must use the (hdrclass, attribute) syntax.

– Predicate functions: Lastly, predicate functions can be supplied to make arbitrary tests against
packets. The predicate keyword argument can take a single lambda function in the form of a
string, and the predicates keyword argument can take a list of lambda functions, each as strings.
Each lambda given must take a single argument (the packet object to be inspected) and must
yield a boolean value. (Note that internally, each lambda definition is eval‘ed by Switchyard.)

Here is one example that checks whether the IPv4 ttl field is between 32 and 34, inclusive. Note
that this line of code contains a single predicate function as a string:

PacketOutputEvent('en1', pkt, exact=False, predicate='''lambda p: p.has_header(IPv4) and␣
↪→32 <= p[IPv4].ttl <= 34''')

To provide multiple predicates, just use the predicates (plural) keyword and provide a list of
lambdas-as-strings.

4.1 Test scenario examples

First, here is an example of a test scenario in which a packet is constructed and is expected to be received
on port eth1, then sent back out the same port, unmodified. Notice in the example that the name scenario
is required.

Listing 4.2: A test scenario in which a packet is received then sent back out the same port.

from switchyard.lib.userlib import *

scenario = TestScenario("in/out test scenario example")

only one interface on this imaginary device
scenario.add_interface('eth0', 'ab:cd:ef:ab:cd:ef', '1.2.3.4', '255.255.0.0',

iftype=InterfaceType.Wired)

construct a packet to be received
p = Ethernet(src="00:11:22:33:44:55", dst="66:55:44:33:22:11") + \

IPv4(src="1.1.1.1", dst="2.2.2.2", protocol=IPProtocol.UDP) + \
UDP(src=5555, dst=8888) + b'some payload'

expect that the packet is received
scenario.expect(PacketInputEvent('eth0', p),

"A udp packet should arrive on eth0")

24 Chapter 4. Test scenario creation

Switchyard Documentation, Release 2017.01.4

and expect that the packet is sent right back out
scenario.expect(PacketOutputEvent('eth0', p, exact=True),

"The udp packet should be emitted back out eth0")

Here is an additional example with a bit more complexity. The context for this example might be that we
are implementing an IPv4 router. First, notice that we include in the scenario a static forwarding table file
(forwarding_table.txt) to be written out when the scenario is executed. We construct a packet destined
to a particular IP address and create an expectation that it arrives on port eth0. We then construct an
expectation that the packet should be forwarded out port eth2 (note that according to the forwarding table,
any packets destined to 2.0.0.0/8 should be forwarded out that port). We also include a predicate function
to test that the IPv4 ttl is decremented by 1. Note that if we did not include this predicate, any ttl value
would be accepted since we have specified exact=False. Note also that if we had set exact=True we would
almost certainly need to wildcard several fields, e.g., checksums in the IPv4 and UDP headers, and would
still need to include a predicate to check that ttl has been properly decremented. Furthermore, if we were
writing a test scenario for an IP router, we would also want to include expectations that the correct ARP
messages were sent in order to obtain the hardware address corresponding to the next hop IP address.

Listing 4.3: A simplified IP forwarding test scenario.

from switchyard.lib.userlib import *

scenario = TestScenario("packet forwarding example")

three interfaces on this device
scenario.add_interface('eth0', 'ab:cd:ef:ab:cd:ef', '1.2.3.4', '255.255.0.0')
scenario.add_interface('eth1', '00:11:22:ab:cd:ef', '5.6.7.8', '255.255.0.0')
scenario.add_interface('eth2', 'ab:cd:ef:00:11:22', '9.10.11.12', '255.255.255.0')

add a forwarding table file to be written out when the test
scenario is executed
scenario.add_file('forwarding_table.txt', '''
network subnet-mask next-hop port
2.0.0.0 255.0.0.0 9.10.11.13 eth2
3.0.0.0 255.255.0.0 5.6.100.200 eth1
''')

construct a packet to be received
p = Ethernet(src="00:11:22:33:44:55", dst="66:55:44:33:22:11") + \

IPv4(src="1.1.1.1", dst="2.2.2.2", protocol=IPProtocol.UDP, ttl=61) + \
UDP(src=5555, dst=8888) + b'some payload'

expect that the packet is received
scenario.expect(PacketInputEvent('eth0', p),

"A udp packet destined to 2.2.2.2 arrives on port eth0")

and subsequently forwarded out the correct port; employ
subset (exact=False) matching, along with a check that the
IPv4 TTL was decremented exactly by 1.
scenario.expect(PacketOutputEvent('eth2', p, exact=False,

predicate='''lambda pkt: pkt.has_header(IPv4) and pkt[IPv4].ttl == 60'''),
"The udp packet destined to 2.2.2.2 should be forwarded out port eth2, with an appropriately␣

↪→decremented TTL.")

4.1. Test scenario examples 25

Switchyard Documentation, Release 2017.01.4

4.2 Compiling a test scenario

A test scenario can be run directly with swyard or it can be compiled into a form that can be distributed
without giving away the code which was used to construct it. Compiled test scenario files are, by default,
given a .srpy extension; uncompiled test scenarios should just be regular Python (.py) files.

To compile a test scenario, you can simply invoke swyard with the -c flag, as follows:

swyard -c code/testscenario2.py

The output from this command should be a new file named code/testscenario2.srpy containing the
obfuscated test scenario. This file can be used as the argument to the -t option when later running a
Switchyard program against those tests.

Note: Note that if a scenario is compiled using a different version of Python than the one used to run a test
scenario (especially a different major version, e.g., 3.4 vs. 3.5), you may get some mysterious errors. The
errors are due to the fact that serialized representations of Python objects may change from one version
to the next; if there are any changes, then the version used to run the test cannot correctly deserialize the
various objects stored in the test scenario.

26 Chapter 4. Test scenario creation

CHAPTER

FIVE

RUNNING IN A “LIVE” ENVIRONMENT

Switchyard programs can be either run in an isolated test environment, as described above, or on a live host
operating system. Switchyard currently supports Linux and macOS hosts for live execution.

Note: Switchyard uses the libpcap library for receiving and sending packets, which generally requires root
privileges. Although hosts can be configured so that root isn’t required for using libpcap, this documenta-
tion does not include instructions on how to do so. The discussion below assumes that you are gaining root
privileges by using the sudo (i.e., “do this as superuser”) program. Contrary to popular belief, sudo cannot
make you a sandwich.

5.1 Basic command-line recipe

The basic recipe for running Switchyard on a live host is pretty simple. If we wanted to run the sniff.py
Switchyard program (available in the examples folder in the Switchyard github repository) and use all
available network interfaces on the system, we could do the following:

$ sudo swyard sniff.py

Again, note that the above line uses sudo to gain the necessary privileges to be able to send and receive
“live” packets on a host.

Note: If you can an error when attempting to run swyard with sudo such as this:

sudo: swyard: command not found

you will need to either create a shell script which activates your Python virtual environment and run that
script with sudo, or run swyard from a root shell (e.g., by running sudo -s. If doing the latter, you will
still need to activate the Python virtual environment once you start the root shell, after which you can run
swyard as normal. If using Switchyard in Mininet, in any shell you open (e.g., using the xterm command,
which opens a root shell on a virtual host in Mininet) you’ll need to activate the Python virtual environment
prior to running swyard.

The sniff.py program will simply print out the contents of any packet received on any interface while the
program runs. To stop the program, type Control+c.

Here’s an example of what output from running sniff.py might look like. Note that the following example
was run on a macOS host and that the text times/dates have been changed:

27

Switchyard Documentation, Release 2017.01.4

Listing 5.1: Example of Switchyard output from running in a live environment on a macOS host.

00:00:56 2016/12/00 INFO Enabling pf: No ALTQ support in kernel; ALTQ related functions␣
↪→disabled; pf enabled; Token : 15170097737539790927
00:00:56 2016/12/00 INFO Using network devices: en1 en0 en2
00:00:56 2016/12/00 INFO My interfaces: ['en0', 'en1', 'en2']
00:00:56 2016/12/00 INFO 1482563936.430: en0 Ethernet a4:71:74:49:e2:e6->ac:bc:32:c2:b6:59 IP␣
↪→| IPv4 104.84.41.100->192.168.0.102 TCP | TCP 443->51094 (A 1772379675:466295739) |␣
↪→RawPacketContents (1448 bytes) b'\x17\x03\x03\x0c-\xc5\xeap\xd1L'...
00:00:56 2016/12/00 INFO 1482563936.430: en0 Ethernet a4:71:74:49:e2:e6->ac:bc:32:c2:b6:59 IP␣
↪→| IPv4 104.84.41.100->192.168.0.102 TCP | TCP 443->51094 (A 1772381123:466295739) |␣
↪→RawPacketContents (1448 bytes) b'\xca5K\xfb\x88\x01\xec\xb4\xf0\x84'...
00:00:56 2016/12/00 INFO 1482563936.430: en0 Ethernet a4:71:74:49:e2:e6->ac:bc:32:c2:b6:59 IP␣
↪→| IPv4 104.84.41.100->192.168.0.102 TCP | TCP 443->51094 (PA 1772382571:466295739) |␣
↪→RawPacketContents (226 bytes) b'\xb1\x9d\xad8g]\xc3\xech\x9e'...

... (more packets, removed for this example)

^C
00:00:58 2016/12/00 INFO Releasing pf: No ALTQ support in kernel; ALTQ related functions␣
↪→disabled; disable request successful. 1 more pf enable reference(s) remaining, pf still enabled.

Note in particular a few things about the above example:

• First, when started in a live setting, Switchyard saves then clears any current host firewall settings. The
saved firewall settings are restored when Switchyard exits (see the final log line, above).

The default behavior of Switchyard is to block all traffic. This behavior may be undesirable in different
situations and can be changed through theswyard command line option-f or--firewall, as described
below.

Switchyard’s manipulation of the host operating system firewall is intended to prevent the host from
receiving any traffic that should be the sole domain of Switchyard. For example, if you are creating
a Switchyard-based IP router, you want Switchyard, not the host, to be responsible for receiving and
forwarding traffic. As another example, if you are implementing a protocol stack for a particular
UDP-based application, you will want to prevent the host from receiving any of that UDP traffic.

Note that on macOS Switchyard configures host firewall settings using pfctl and on Linux Switchyard
uses iptables.

• By default, Switchyard finds and uses all interfaces on the host that are (1) determined to be “up”
(according to libpcap), and (2) not a localhost interface. In the above example run, Switchyard finds
and uses three interfaces (en0, en1, and en2).

• The above example shows three packets that were observed by Switchyard, each arriving on interface
en0. Notice that the three packets each contain Ethernet, IPv4 and TCP packet headers, as well as
payload (in the form of RawPacketContents objects at the end of each packet).

Here is an example of running the Switchyard example sniff.py program on a Linux host (note again that
the text times/dates have been changed):

Listing 5.2: Example of Switchyard output from running in a live environment on a Linux host.

00:00:11 2016/12/00 INFO Saving iptables state and installing switchyard rules
00:00:11 2016/12/00 INFO Using network devices: enp0s3
00:00:11 2016/12/00 INFO My interfaces: ['enp0s3']
00:00:15 2016/12/00 INFO 1482564855.115: enp0s3 Ethernet 08:00:27:bb:27:89->01:00:5e:00:00:fb␣
↪→IP | IPv4 10.0.2.15->224.0.0.251 UDP | UDP 5353->5353 | RawPacketContents (45 bytes) b
↪→'\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00'...

28 Chapter 5. Running in a “live” environment

Switchyard Documentation, Release 2017.01.4

00:00:16 2016/12/00 INFO 1482564856.172: enp0s3 Ethernet 08:00:27:bb:27:89->33:33:00:00:00:fb␣
↪→IPv6 | IPv6 fe80::a00:27ff:febb:2789->ff02::fb UDP | UDP 5353->5353 | RawPacketContents (45␣
↪→bytes) b'\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00'...

... (more packets, removed for this example)

^C
00:00:23 2016/12/00 INFO Restoring saved iptables state

Comparing the above output to the earlier macOS output, observe that:

• The firewall save/restore log lines (first and last) are somewhat different, reflecting the fact that
iptables is used on Linux instead of pf.

• There is one interface found and used by Switchyard: enp0s3.

• Two packets are included in the output above: an IPv4 UDP packet and an IPv6 UDP packet.

As with running Switchyard in a test environment, you may wish to use the -v and/or -d options to increase
Switchyard’s output verbosity or to include debugging messages, respectively.

5.2 Including or excluding particular interfaces

When running Switchyard in a virtual machine environment such as on a Mininet container host, it is
often the case that you want Switchyard to “take over” all available network interfaces on the host. When
running Switchyard in other environments, however, you may want to restrict the interfaces that it uses.
You may even want Switchyard to use the localhost interface (typically named lo0 or lo). There are two
command-line options that can be used for these purposes.

-i <interface-name>
Explicitly include the given interface for use by Switchyard. This option can be used more than once
to include more than one interface.

If this option is given, only the interfaces specified by -i options will be used by Switchyard. If no -i
option is specified, Switchyard uses all available interfaces except the localhost interface.

To use a localhost interface, you must explicitly include it using this option. If you explicitly include
the localhost interface, you can still explicitly include other interfaces.

-x <interface-name>
Explicitly exclude the given interface for use by Switchyard. This option can be used more than once
to exclude more than one interface.

Switchyard’s behavior with this option is to first discover all interfaces available on the host, then to
remove any specified by -x.

Note that given the semantics described above, it generally makes sense only to specify one of -i or -x.

5.3 Firewall options

As noted above, Switchyard’s default behavior is to prevent the host operating system from receiving any
traffic while Switchyard is running. This may be undesirable in certain situations, and the -f or --firewall
options to swyard are available to change this behavior.

The -f and --firewall options accept a single rule as a parameter (which in many cases needs to be quoted
in the shell). The rule syntax is proto[:port], where the [:port] part is optional and proto may be one

5.2. Including or excluding particular interfaces 29

Switchyard Documentation, Release 2017.01.4

of tcp, udp, icmp, none or all. If all is specified, the port part should not be included; all will block all
traffic on the interfaces used by Switchyard. If none is specified, again, no port should be specified; none
will cause no rules to be installed to block traffic. Here are some examples:

tcp Block the host from receiving all TCP traffic

tcp:8000 Block the host from receiving TCP traffic on port 8000

icmp Block the host from receiving all ICMP traffic

udp:4567 Block the host from receiving UDP traffic on port 4567

none Do not block any traffic.

all Block the host from receiving all traffic. This is the default behavior.

If the -v (verbose) option is given to swyard, the host firewall module will print (to the log) firewall settings
that have been enabled. Here are two examples from running swyard in a live environment (on macOS with
the pf firewall). First, an example showing Switchyard blocking all traffic on two interfaces:

Listing 5.3: Running Switchyard in a live environment (macOS) with -v flag: notice log line indicating
firewall rules installed (2nd line, 2 rules).

$ sudo swyard -i lo0 -i en0 -v sniff.py
11:39:58 2016/12/00 INFO Enabling pf: No ALTQ support in kernel; ALTQ related functions␣
↪→disabled; pf enabled; Token : 16107925605825483691;
11:39:58 2016/12/00 INFO Rules installed: block drop on en0 all
block drop on lo0 all
11:39:58 2016/12/00 INFO Using network devices: en0 lo0
11:39:58 2016/12/00 INFO My interfaces: ['en0', 'lo0']
^C11:40:00 2016/12/00 INFO Releasing pf: No ALTQ support in kernel; ALTQ related functions␣
↪→disabled; disable request successful. 4 more pf enable reference(s) remaining, pf still enabled.;

Here is an example showing Switchyard blocking all ICMP, all TCP, and UDP port 8888:

Listing 5.4: Running Switchyard in a live environment (macOS) with -v flag: notice log line indicating
firewall rules installed (2nd line, 3 rules).

$ sudo swyard -i lo0 --firewall icmp --firewall tcp --firewall 'udp:8888' -v sniff.py
11:43:46 2016/12/00 INFO Enabling pf: No ALTQ support in kernel; ALTQ related functions␣
↪→disabled; pf enabled; Token : 16107925605472991531;
11:43:46 2016/12/00 INFO Rules installed: block drop on lo0 proto icmp all
block drop on lo0 proto tcp all
block drop on lo0 proto udp from any port = 8888 to any port = 8888
11:43:46 2016/12/00 INFO Using network devices: lo0
11:43:46 2016/12/00 INFO My interfaces: ['lo0']
^C11:43:48 2016/12/00 INFO Releasing pf: No ALTQ support in kernel; ALTQ related functions␣
↪→disabled; disable request successful. 4 more pf enable reference(s) remaining, pf still enabled.;

And finally, the same example as previous, but on Linux with iptables:

Listing 5.5: Running Switchyard in a live environment (Linux) with -v flag: notice log line indicating
firewall rules installed (2nd line, 3 rules).

swyard -v sniff.py --firewall icmp --firewall udp:8888 --firewall tcp
19:53:42 2016/12/00 INFO Saving iptables state and installing switchyard rules
19:53:42 2016/12/00 INFO Rules installed: Chain PREROUTING (policy ACCEPT)
target prot opt source destination
DROP icmp -- 0.0.0.0/0 0.0.0.0/0
DROP udp -- 0.0.0.0/0 0.0.0.0/0 udp dpt:8888
DROP tcp -- 0.0.0.0/0 0.0.0.0/0

30 Chapter 5. Running in a “live” environment

Switchyard Documentation, Release 2017.01.4

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
19:53:42 2016/12/00 INFO Using network devices: enp0s3
19:53:42 2016/12/00 INFO My interfaces: ['enp0s3']
^C19:53:45 2016/12/00 INFO Restoring saved iptables state

Note: When using a loopback interface, there are a couple things to be aware of. First, while Switchyard
normally uses libpcap for sending and receiving packets, a raw socket is used for sending packets on the
localhost interface. This is done due to limitations on some operating systems, notably Linux. Receiving
packets is still done with libpcap, though on different operating systems you may observe that packets are
encapsulated differently. In particular, on Linux, an Ethernet header with zeroed addresses is used, while
on macOS the BSD Null header is used, which just consists of a protocol number (i.e., the ethertype value
normally found in the Ethernet header).

5.3. Firewall options 31

Switchyard Documentation, Release 2017.01.4

32 Chapter 5. Running in a “live” environment

CHAPTER

SIX

ADVANCED API TOPICS

This section introduces two additional, and slightly advanced topics related to Switchyard APIs: creating
new packet header types and using Switchyard’s application-layer socket emulation capabilities.

6.1 Creating new packet header types

For some Switchyard programs, it can be useful to create new packet header types. For example, say you
want to implement a simplified dynamic routing protocol within an IP router. You might want to be able
to create a new packet header for your routing protocol, and have those packet headers integrate well with
the existing Switchyard Packet class. Similarly, say you want to implement a simplified Ethernet spanning
tree protocol: being able to create a new packet header for carrying spanning tree information would be
helpful.

Before discussing how to create a new packet header class that integrates well with the rest of Switchyard,
it is important to note that it is not strictly required to create a new packet header class for either of the
above example projects. Instead, you could use the existing RawPacketContents header, which has one
attribute (data), a bytes object. To use a RawPacketContents header, you would need to handle all packing
(“serialization”) and unpacking (“deserialization”) of header fields to and from the bytes object explicitly in
your code. While this approach “works”, it leads to a less cohesive and encapsulated design and to code
that may be a bit more difficult to debug because it is not well-integrated into Switchyard.

If you want to work with Switchyard’s packet header and packet classes, there are two main steps to take:

• First, create a new class that derives from PacketHeaderBase. There are two required methods
(to_bytes() and from_bytes()) that you’ll need to write, and some other things to be aware of when
writing this class.

• Second, some configuration to the packet header class that appears before your header in a normal
packet needs to be done. This is just a matter of a couple method calls to do the configuration.

These steps are described below along with short examples and a longer (full) example follows.

6.1.1 Creating a new packet header class

As mentioned above, to create a new packet header class you must create a class that derives from
PacketHeaderBase. There are two required methods to implement:

to_bytes() This method returns a serialized packet header in the form of a bytes object. One of the easiest
ways to “pack” a set of values into a bytes object is to use Python’s structmodule (refer to the Python
library documentation for details). The examples in this section use struct.

from_bytes(raw) This method accepts a bytes object as a parameter and returns a bytes object. It populates
attributes in the packet header by unpacking the bytes object. The method should raise an exception

33

Switchyard Documentation, Release 2017.01.4

if there aren’t enough bytes to fully reconstruct the packet header. Any part of the bytes object passed
as a parameter that aren’t used (i.e., there are more bytes passed in to the method than are necessary to
reconstruct the header) should be returned by the method. As with the to_bytes() method, Python’s
struct module is useful for performing the unpacking.

There is one restriction when implementing a new packet header class:

• The __init__ method should only take optional parameters. Switchyard assumes that a packet header
object can be constructed which assigns attributes to reasonable default values, thus no explicit
initialization parameters can be required by the constructor (__init__). Moreover, for compatibility
with keyword-style attribute assignment in packet header classes, a kwargs parameter should be
included and passed to the base class initialization method call and this call to the base class must
come last in the __init__ method.

Below is an example of a new packet header called UDPPing that contains a single attribute: sequence.
This packet header is designed to be included in a packet following a UDP header. Besides implementing
an __init__ method (which optionally accepts an initial sequence value) and the two required methods,
there are property getter and setter methods for sequence and a string conversion magic method. Note that
we’ve decided to store the sequence value as a network-byte-order (big endian) unsigned 16 bit value (this
is what the !H signifies for _PACKFMT: refer to the struct Python library documentation):

from switchyard.lib.userlib import *
import struct

class UDPPing(PacketHeaderBase):
_PACKFMT = "!H"

def __init__(self, seq=0, **kwargs):
self._sequence = int(seq)
PacketHeaderBase.__init__(self, **kwargs)

def to_bytes(self):
raw = struct.pack(self._PACKFMT, self._sequence)
return raw

def from_bytes(self, raw):
packsize = struct.calcsize(self._PACKFMT)
if len(raw) < packsize:

raise ValueError("Not enough bytes to unpack UDPPing")
attrs = struct.unpack(self._PACKFMT, raw[:packsize])
self.sequence = attrs[0]
return raw[packsize:]

@property
def sequence(self):

return self._sequence

@sequence.setter
def sequence(self, value):

self._sequence = int(value)

def __str__(self):
return "{} seq: {}".format(self.__class__.__name__, self.sequence)

Given the way the UDPPing packet header class has been defined, we can either set the sequence explicitly
with the property setter, pass a value into the __init__ method, or use keyword syntax:

34 Chapter 6. Advanced API topics

Switchyard Documentation, Release 2017.01.4

>>> up1 = UDPPing()
>>> print(up1)
UDPPing seq: 0
>>> up2 = UDPPing()
>>> up2.sequence = 13
>>> print(up2)
UDPPing seq: 13
>>> up3 = UDPPing(sequence=42)
>>> print(up3)
UDPPing seq: 0

If we now create a full Packet object, we might do something like the following. Note that our code both
serializes and deserializes the packet. We do this to test (at least in a limited way) that our to_bytes() and
from_bytes() methods work as expected. Here is the code:

UDP_PING_PORT = 12345
pkt = Ethernet(src="11:22:11:22:11:22",

dst="22:33:22:33:22:33") + \
IPv4(src="1.2.3.4", dst="5.6.7.8",

protocol=IPProtocol.UDP, ttl=64) + \
UDP(src=55555, dst=UDP_PING_PORT) + \
UDPPing(42)

print("Before serialize/deserialize:", pkt)
xbytes = pkt.to_bytes()
reanimated_pkt = Packet(raw=xbytes)
print("After deserialization:", reanimated_pkt)

And here is the output:

Before serialize/deserialize: Ethernet 11:22:11:22:11:22->22:33:22:33:22:33 IP | IPv4 1.2.3.4->5.6.
↪→7.8 UDP | UDP 55555->12345 | UDPPing seq: 42
After deserialization: Ethernet 11:22:11:22:11:22->22:33:22:33:22:33 IP | IPv4 1.2.3.4->5.6.7.8␣
↪→UDP | UDP 55555->12345 | RawPacketContents (2 bytes) b'\x00*'

Notice that the first line of output shows the full packet as we expect, including the final UDPPing header.
The next line to follow, however, shows that the packet has been reconstructed with the final header as
RawPacketContents, not UDPPing. What happened?

6.1.2 Configuring the lower-layer header class

What happened in the above example is that Switchyard does not have enough information to know that the
bytes that follow the UDP header should be interpreted as the contents of a UDPPing packet. It is possible,
however, to give this information to Switchyard.

Switchyard assumes that there exists one attribute in a packet header that can be used to determine how
to map values of that attribute to a packet header class. Not surprisingly, these mappings are stored in the
form of a Python dictionary. For example, by default the Ethernet class is configured to use the value of
the ethertype attribute as a lookup key to determine the type of the packet header that follows. It contains
a few initial mappings, including a mapping from EtherType.IP to IPv4. Similarly, the IPv4 class uses
values in the protocol attribute as keys to look up the packet header type that should come next.

Switchyard contains methods to make it possible to change the attribute on which lookups are performed,
to add new mappings from a value on the mapped attribute to a packet header class, and to completely
(re)initialize the mappings from attribute values to packet header classes. Noting that one should, of course,
use care when modifying any existing mappings or when modifying the attribute on which mappings are
performed, here are the three class methods available on PacketHeaderBase-derived classes:

6.1. Creating new packet header types 35

Switchyard Documentation, Release 2017.01.4

set_next_header_class_key(attr) This method is used to specify the attribute on which lookups to
determine the next header class should be performed. Switchyard-provided header classes contain
sensible defaults for this value. For example, with Ethernet and Vlan this attribute is preconfigured as
ethertype, for IPv4 this attribute is configured as protocol, and for IPv6 it is nextheader. There is no
default configuration set for UDP or TCP, but the natural choice would be dst (i.e., to use the destination
port as the key). Most other headers are configured with the empty string, indicating that no “next
header” is assumed by Switchyard. In that case, Switchyard will construct a RawPacketHeader object
containing the remaining bytes.

add_next_header_class(attr, hdrcls) This method is used to add a new attribute value-header class
mapping to the next header mapping dictionary.

set_next_header_map(mapdict) This method can be used to replace any previous dictionary with a new
one. Switchyard-provided header classes are configured with sensible defaults. Use with care, since a
replacement of a next header class mapping in a highly dependend-upon header class (e.g, IPv4) will
likely break lots of things.

Note: A key limitation of Switchyard, currently, is that arbitrary values for core protocol number enumer-
ations (in particular, EtherType and IPProtocol) cannot be dynamically added and/or modified because
Python’s enum types are constant once created. This makes it impossible, at present, to use arbitrary protocol
numbers for new layer 3 or 4 protocols and packet header types. This will be changed in a future version
of Switchyard. In the meantime, a workaround is to use an existing protocol number which is not used in
the next header map. For example, if you are implementing a routing protocol on top of IPv4, you could
use IPProtocol.OSPF as the protocol number for your (non-OSPF) protocol since Switchyard does not have
any current mapping between that protocol number and a packet header class.

Building on the previous example with UDPPing, if we add two lines of code to specify that the destination
port should be used as a key to look up the correct next header in a packet, and to register a particular
UDP destination port as being associated with the UDPPing protocol, the final couple bytes can get properly
interpreted and deserialized into the right packet header (notice the first two lines of code, which are the
only differences with the previous example):

UDP.add_next_header_class(UDP_PING_PORT, UDPPing)
UDP.set_next_header_class_key('dst')
pkt = Ethernet(src="11:22:11:22:11:22",

dst="22:33:22:33:22:33") + \
IPv4(src="1.2.3.4", dst="5.6.7.8",

protocol=IPProtocol.UDP, ttl=64) + \
UDP(src=55555, dst=UDP_PING_PORT) + \
UDPPing(sequence=13)

print("Before serialize/deserialize:", pkt)
xbytes = pkt.to_bytes()
reanimated_pkt = Packet(raw=xbytes)
print("After deserialization:", reanimated_pkt)

Here is the output, showing

Before serialize/deserialize: Ethernet 11:22:11:22:11:22->22:33:22:33:22:33 IP | IPv4 1.2.3.4->5.6.
↪→7.8 UDP | UDP 55555->12345 | UDPPing seq: 13
After deserialization: Ethernet 11:22:11:22:11:22->22:33:22:33:22:33 IP | IPv4 1.2.3.4->5.6.7.8␣
↪→UDP | UDP 55555->12345 | UDPPing seq: 13

36 Chapter 6. Advanced API topics

Switchyard Documentation, Release 2017.01.4

6.1.3 One more example

Here is one additional example. Say that we want to implement a simplified Ethernet spanning tree protocol
and want to create a packet header that includes an identifier for the root note and an integer value which
indicates the number of hops to the root. We could do the following:

from switchyard.lib.userlib import *
import struct

class SpanningTreeMessage(PacketHeaderBase):
_PACKFMT = "6sxB"

def __init__(self, root="00:00:00:00:00:00", **kwargs):
self._root = EthAddr(root)
self._hops_to_root = 0
PacketHeaderBase.__init__(self, **kwargs)

def to_bytes(self):
raw = struct.pack(self._PACKFMT, self._root.raw, self._hops_to_root)
return raw

def from_bytes(self, raw):
packsize = struct.calcsize(self._PACKFMT)
if len(raw) < packsize:

raise ValueError("Not enough bytes to unpack SpanningTreeMessage")
xroot,xhops = struct.unpack(self._PACKFMT, raw[:packsize])
self._root = EthAddr(xroot)
self.hops_to_root = xhops
return raw[packsize:]

@property
def hops_to_root(self):

return self._hops_to_root

@hops_to_root.setter
def hops_to_root(self, value):

self._hops_to_root = int(value)

@property
def root(self):

return self._root

def __str__(self):
return "{} (root: {}, hops-to-root: {})".format(

self.__class__.__name__, self.root, self.hops_to_root)

Here is some example code for how we might use this class. Note that since we are creating a protocol
header that should follow the Ethernet header, we must (due to a current limitation with Switchyard) use
an existing ethertype value. We are reusing the value EtherType.SLOW for no particular reason other than
it is presently unused by Switchyard:

spm = SpanningTreeMessage("00:11:22:33:44:55", hops_to_root=1)
print(spm)

Ethernet.add_next_header_class(EtherType.SLOW, SpanningTreeMessage)
pkt = Ethernet(src="11:22:11:22:11:22",

dst="22:33:22:33:22:33",
ethertype=EtherType.SLOW) + spm

6.1. Creating new packet header types 37

Switchyard Documentation, Release 2017.01.4

print(pkt)
xbytes = pkt.to_bytes()
p = Packet(raw=xbytes)
print(p)

6.2 Application layer socket emulation and creating full protocol
stacks

It is possible within Switchyard to implement a program that resembles a full end-host protocol stack. The
protocol stack can be used along with Switchyard’s socket emulation library to execute nearly unmodified
Python UDP socket programs. In this section, we discuss (1) additional API calls used to receive messages
“down” from socket applications as well as deliver messages “up” to socket applications, (2) usage of
and limitations with Switchyard’s socket emulation library, and (3) additional command-line options with
swyard for executing a socket application along with a protocol stack program.

A general picture of using Switchyard to execute a protocol stack and a socket application is shown below.
Note that the figure shows two components that are provided (or controlled) by Switchyard, and two
components that must be written or provided by a user of Switchyard.

Switchyard socket emulation layer

Network interfaces (real, or simulated for tests)

Switchyard program: a protocol stack implementation

Use net object for sending and receiving packets to/from network
interfaces. Use ApplicationLayer methods for delivering/receving

messages to/from an application.

A (nearly) unmodified Python socket program.

Instead of import socket,
import switchyard.lib.socket

Switchyard
components

Components that
a Switchyard user
needs to write/

provide

6.2.1 API calls for delivering/receiving messages to/from applications

To deliver messages to or receive messages from a socket application, a Switchyard user must use two static
methods on the ApplicationLayer class. These methods are similar in many ways to the two methods on
the net object used to send and receive packets. The application-related methods are:

ApplicationLayer.send_to_app(proto, local_addr, remote_addr, data) This method is used to pass
a message received on the network up to an application. Theprotoparameter is the IP protocol number
of the packet from which the data was received. local_addr and remote_addr are 2-tuples consisting
of an IP address and port. This method returns a boolean value: if there is a socket associated with
the address information given, True is returned. Otherwise, False is returned.

38 Chapter 6. Advanced API topics

Switchyard Documentation, Release 2017.01.4

Note that if there is no socket associated with the address information given, a log warning is also
emitted.

ApplicationLayer.recv_from_app(timeout=None) This method is used to receive an application message
to be sent on the network. It takes an optional timeout argument which indicates the number of seconds
to wait until giving up and raising a NoPackets exception. This exception is a bit of a misnomer here,
but it is used for consistency with net.recv_packet(). If None is passed as a timeout value, this
method will block until a message is available.

If a message is available, this method returns two items in the form of a tuple: a flow address and the
data to be sent. The flow address consists of 5 items in the form of a tuple: the IP protocol value, a
remote IP address and port, and the local IP address and port.

Note: if an application socket is unbound, the local IP address will be 0.0.0.0. The protocol stack
implementation is responsible for using a valid IP address in any outgoing packet (specifically, it
should use the address assigned to the interface out which the packet is emitted).

In sum, there are 4 API calls that must be used to move packets and data through a protocol stack imple-
mentation, as shown in the figure below.

Switchyard program
(e.g., a protocol stack implementation)

Use net.send_packet(…)
to send a packet out a
network interface/port.

application layer

network port(s)

Use
ApplicationLayer.send_to_app(…)
to deliver a message to a socket

application.

Use
ApplicationLayer.recv_from_app(…)
to receive a message from a socket

application.

Use net.recv_packet(…)
to receive a packet from
a network interface/port.

Using a similar pattern as with a “regular” Switchyard program, it is possible to service both of the incoming
data channels (i.e., either packets received from a network port, or messages received from an application),
as follows:

from switchyard.lib.userlib import *

class ProtocolStack(object):
def __init__(self, net):

self._net = net

def handle_app_data(self, appdata):
do something to handle application data here, likely
resulting in an eventual call to self._net.send_packet()

def handle_network_data(self, netdata):
do something with network data here, likely resulting
in an eventual call to ApplicationLayer.send_to_app()

def main_loop(self):

6.2. Application layer socket emulation and creating full protocol stacks 39

Switchyard Documentation, Release 2017.01.4

while True:
appdata = None
try:

appdata = ApplicationLayer.recv_from_app(timeout=0.1)
except NoPackets:

pass
except Shutdown:

break
if appdata is not None:

handle_app_data(net, intf, appdata)

netdata = None
try:

netdata = net.recv_packet(timeout=0.1)
except NoPackets:

pass
except Shutdown:

break
if netdata is not None:

handle_network_data(netdata)

def main(net):
stack = ProtocolStack(net)
stack.main_loop()
net.shutdown()

Note: Although the protocol stack example above uses a single Python thread to service both the from-
network and from-application queues, it is possible to use multiple Python threads. The socket emulation
library (discussed next) is threadsafe, as is the library code that handles sending/receiving packets on
network ports.

6.2.2 Switchyard’s socket emulation library

Switchyard provides a module similar to Python’s built-in socket module that contains clones of many of
the methods, functions and other items in the built-in module. We refer to the Switchyard socket module
as an emulation module since it emulates the semantics of methods in the built-in module. The only line
of code required to take advantage of Switchyard’s socket emulation module is the import line. Instead
of using importing a module named socket, you must import a module named switchyard.lib.socket.
The from ... import * idiom is generally discouraged in Python, and a way to avoid this while isolating
the change in a socket application to a single line is to do the following:

instead of:
import socket

to use Switchyard's socket emulation module, do:
import switchyard.lib.socket as socket

When using the suggested modification above, any use of attributes within the socket module (either built-
in or emulated) can just be prefixed with socket. as normal. Note that in the code below, bytes objects are
sent and received using sendto and recvfrom. (This same code is available in the examples folder in the
Switchyard github repo.)

40 Chapter 6. Advanced API topics

Switchyard Documentation, Release 2017.01.4

#!/usr/bin/env python3

import socket
import switchyard.lib.socket as socket

HOST = '127.0.0.1'
PORT = 10000
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.settimeout(2.0)

print("Sending message to server at {},{}".format(HOST,PORT))
s.sendto(b'Hello, stack', (HOST,PORT))
try:

data,addr = s.recvfrom(1024)
print('Client socket application received message from {}: {}'.format(repr(addr),data.decode(

↪→'utf8')))
except:

print("Timeout")

s.close()

There are some key limitations and other issues to be aware of with Switchyard’s socket emulation compo-
nent:

• The most important limitation is that only UDP sockets are supported. Attempting to create any
other type of socket will result in failure. Other socket types and support for using arbitrary protocol
numbers may be supported in the future. As a result, there are a few socket object method calls that
are not supported, such as listen and accept.

• The create_connection and socketpair calls are not available.

• The getsockopt and setsockopt calls are not currently supported, but may be in a future version.

• The various DNS-related calls in the socket module (e.g., gethostbyname, etc.) are available and
simply handed off to the built-in socket module. Switchyard does not implement any DNS capability
directly. Same for the byte-ordering calls (e.g., ntohs, ntohl, etc.)

• Switchyard attempts to be careful about choosing a local (ephemeral) port number for use, but its
approach isn’t fool-proof. There may be problems that arise due to a host OS using a local port that
was already being used by Switchyard, but these situations should be rare in occurrence.

Note: Switchyard implements the socket layer by attempting to mirror, as closely as possible, the same
constants, classes, and functions in the built-in socket module. It maintains a shared (threadsafe) queue that
handles all data passed down from a socket application, and creates a separate queue for each socket for
handling data being passed up to an application. As a result, Switchyard can support an application using
multiple sockets at the same time (as long as they’re all UDP!).

6.2.3 Starting socket applications with swyard

There is one additional command-line option for swyard when using a socket emulation application. The
-a is used to specify the name of a file that contains the application-layer socket program.

The -a option can be used in conjunction with a Switchyard test scenario. If you want to test that a socket
application emits a packet, then receives a packet from some “remote” host, you could create an expectation
that a packet is emitted and an expectation that some other packet is received. You may need to use the

6.2. Application layer socket emulation and creating full protocol stacks 41

Switchyard Documentation, Release 2017.01.4

copyfromlastout argument when creating the PacketInputEvent, since the test scenario may not actually
know what local port is being used by an application (among other things).

For example, to run a particular test scenario as well as an application program, the command line might
look like the following:

$ swyard -a clientapp_udpstackex.py -t udpstack_tests.py udpstack.py

Note that the Python files used in the command line above are available in the examples folder of the
Switchyard github repo.

To run in live mode, simply remove the -t option. Note that there is a server program in the examples
folder that can be run with this code in live mode: you can see that the Switchyard-based UDP stack and
associated client-side program can interact correctly with a “regular” Python UDP-based server program.

One final limitation to be aware of: only one socket application can be started by Switchyard at a time. This
limitation may change in a future version.

Finally, note that Switchyard currently does not have any capabilities for testing the behavior of an
application-layer socket program. The application code could use calls to assert() to verify that cer-
tain things happen as expected within the application, but there are no specific Switchyard features to help
with this.

Note: When using Switchyard to create a protocol stack and run a socket-based application on a standard
commodity operating system (e.g., a desktop/laptop Linux or macOS system), you may need to be careful
about configuring the host firewall settings when starting Switchyard in real/live mode. In particular, any
packets that you want Switchyard to handle should be explicitly blocked from the host operating system (or
the host OS may respond in addition to Switchyard responding). It may also be helpful to explicitly bind
your application socket to a particular port in order to limit the number of protocols and/or ports that need
to be blocked from the host OS.

Note that when Switchyard is started with the -a flag and is thus starting an application-layer socket
program, its default behavior with respect to the firewall is different. Normally, Switchyard blocks the host
OS from receiving any traffic, but when executing an application-layer program no traffic is blocked, by
default.

Refer to the section on Firewall options for command-line options to swyard to ensure that you block the
correct traffic.

42 Chapter 6. Advanced API topics

CHAPTER

SEVEN

INSTALLING SWITCHYARD

Switchyard has been tested and developed on the following operating systems:

• macOS 10.10 and later

• Ubuntu LTS releases from 14.04 and later

• Fedora 21

Note that these are all Unix-based systems. Switchyard may be enhanced in the future to support Windows-
based systems. Ubuntu (current LTS) and macOS receive the most testing of Unix-based operating systems.

—

The steps for getting Switchyard up and running are as follows:

0. Install Python 3.4 or later, if you don’t already have it.

1. Install any necessary libraries for your operating system.

2. Create an Python “virtual environment” for installing Python modules (or install the modules to your
system Python)

3. Install Switchyard.

For step 0, you’re on your own. Go to https://www.python.org/downloads/, or install packages via your
OS’es package system, or use homebrew if you’re on a Mac. Have fun.

The specific libraries necessary for different OSes (step 1) are described below, but steps 2 and 3 are the same
for all operating systems and are covered next.

The recommended install procedure is to create a Python virtual environment for installing Switchyard and
other required Python modules. One way to create a new virtual environment is to execute the following
at a command line (in the folder in which you want to create the virtual environment):

$ python3 -m venv syenv

This command will create a new virtual environment called syenv. Once that’s done, you can “activate”
that environment and install Switchyard as follows:

$ source ./syenv/bin/activate
(syenv)$ python3 -m pip install switchyard

That’s it. Once you’ve done that, the swyard program should be on your PATH (you can check by typing
which swyard). If you no longer want to use the Python virtual environment you’ve created, you can just
type deactivate.

43

https://www.python.org/downloads/

Switchyard Documentation, Release 2017.01.4

7.1 Operating system-specific instructions

7.1.1 MacOS X

The easiest way to get Switchyard running in macOS is to install homebrew. You can use brew to install
Python 3. You should also brew to install the libpcap package. That should be all that is necessary.

7.1.2 Ubuntu

For Ubuntu systems, you’ll need to use apt-get or something similar to install the following packages:

libffi-dev libpcap-dev python3-dev python3-pip python3-venv

7.1.3 Fedora/RedHat

For Fedora and RedHat-based systems, you’ll need to use yum or something similar to install a similar set of
packages as with Ubuntu (but with the right name changes for the way packages are identified on Fedora):

libffi-devel libpcap-devel python3-devel python3-pip python3-virtualenv

44 Chapter 7. Installing Switchyard

CHAPTER

EIGHT

API REFERENCE

Before getting into all the details, it is important to note that all the below API features can be imported
through the module switchyard.lib.userlib. This is a wrapper module to facilitate easy import of the
various modules, functions, classes, and other items needed from the perspective of a user program in
Switchyard.

Unless you are concerned about namespace pollution, importing all Switchyard symbols into your program
can be done with the following:

from switchyard.lib.userlib import *

8.1 Net object reference

The net object is used for sending and receiving packets on network interfaces/ports. The API documentation
below is for a base class that defines the various methods on a net object; there are two classes that derive
from this base class which help to implement Switchyard’s test mode and Switchyard’s live network mode.

class switchyard.llnetbase.LLNetBase(name=None)
Base class for the low-level networking library in Python. “net” objects are constructed from classes
derived from this class.

An object of this class is passed into the main function of a user’s Switchyard program. Using methods
on this object, a user can send/receive packets and query the device for what interfaces are available
and how they are configured.

interface_by_ipaddr(ipaddr)
Given an IP address, return the interface that ‘owns’ this address

interface_by_macaddr(macaddr)
Given a MAC address, return the interface that ‘owns’ this address

interface_by_name(name)
Given a device name, return the corresponding interface object

interfaces()
Return a list of interfaces incident on this node/router. Each item in the list is an Interface object,
each of which includes name, ethaddr, ipaddr, and netmask attributes.

port_by_ipaddr(ipaddr)
Alias for interface_by_ipaddr

port_by_macaddr(macaddr)
Alias for interface_by_macaddr

45

Switchyard Documentation, Release 2017.01.4

port_by_name(name)
Alias for interface_by_name

ports()
Alias for interfaces() method.

recv_packet(timeout=None)
Receive a packet on any port/interface. If a non-None timeout is given, the method will block for
up to timeout seconds. If no packet is available, the exception NoPackets will be raised. If the
Switchyard framework is being shut down, the Shutdown exception will be raised. If a packet is
available, the ReceivedPacket named tuple (timestamp, input_port, packet) will be returned.

send_packet(output_port, packet)
Send a packet out the given output port/interface. Returns None.

testmode
Returns True if running in test mode and False if running in live/real mode.

8.2 Interface and InterfaceType reference

The InterfaceType enumeration is referred to by the Interface class, which encapsulates information
about a network interface/port. The InterfaceType defines some basic options for types of interfaces:

class switchyard.lib.interface.InterfaceType
An enumeration.

Unknown=1

Loopback=2

Wired=3

Wireless=4

The Interface class is used to encapsulate information about a network interface:

class switchyard.lib.interface.Interface(name, ethaddr, ipaddr=None, netmask=None,
ifnum=None, iftype=<InterfaceType.Unknown: 1>)

ethaddr
Get the Ethernet address associated with the interface

ifnum
Get the interface number (integer) associated with the interface

iftype
Get the type of the interface as a value from the InterfaceType enumeration.

ipaddr
Get the IPv4 address associated with the interface

ipinterface
Returns the address assigned to this interface as an IPInterface object. (see documentation for
the built-in ipaddress module).

name
Get the name of the interface

netmask
Get the IPv4 subnet mask associated with the interface

46 Chapter 8. API Reference

Switchyard Documentation, Release 2017.01.4

8.3 Ethernet and IP addresses

Switchyard uses the built-in ipaddress module to the extent possible. Refer to the Python library docu-
mentation for details on the IPv4Address class and related classes. As noted in the source code, the EthAddr
class based on source code from the POX Openflow controller.

class switchyard.lib.address.EthAddr(addr=None)
An Ethernet (MAC) address type.

isBridgeFiltered()
Checks if address is an IEEE 802.1D MAC Bridge Filtered MAC Group Address

This range is 01-80-C2-00-00-00 to 01-80-C2-00-00-0F. MAC frames that have a destination MAC
address within this range are not relayed by bridges conforming to IEEE 802.1D

isGlobal()
Returns True if this is a globally unique (OUI enforced) address.

isLocal()
Returns True if this is a locally-administered (non-global) address.

isMulticast()
Returns True if this is a multicast address.

is_bridge_filtered

is_global

is_local

is_multicast

packed

raw
Returns the address as a 6-long bytes object.

toRaw()

toStr(separator=’:’)
Returns the address as string consisting of 12 hex chars separated by separator.

toTuple()
Returns a 6-entry long tuple where each entry is the numeric value of the corresponding byte of
the address.

There are two enumeration classes that hold special values for the IPv4 and IPv6 address families. Note that
since these classes derive from enum, you must use name to access the name attribute and value to access
the value (address) attribute.

class switchyard.lib.address.SpecialIPv4Addr
An enumeration.

IP_ANY = ip_address("0.0.0.0")

IP_BROADCAST = ip_address("255.255.255.255")

class switchyard.lib.address.SpecialIPv6Addr
An enumeration.

UNDEFINED = ip_address('::')

ALL_NODES_LINK_LOCAL = ip_address('ff02::1')

ALL_ROUTERS_LINK_LOCAL = ip_address('ff02::2')

8.3. Ethernet and IP addresses 47

Switchyard Documentation, Release 2017.01.4

ALL_NODES_INTERFACE_LOCAL = ip_address('ff01::1')

ALL_ROUTERS_INTERFACE_LOCAL = ip_address('ff01::2')

8.4 Packet parsing and construction reference

class switchyard.lib.packet.Packet(raw=None, first_header=None)
Base class for packet headers.

The Packet class acts as a container for packet headers. The + and += operators are defined for use with
the Packet class to add on headers (to the end of the packet). Indexing can also be done with Packet
objects to access individual header objects. Indexes may be integers (from 0 up to, but not including,
the number of packet headers), or indexes may also be packet header class names. Exceptions are
raised for invaliding indexing of either kind.

The optional raw parameter can accept a bytes object, which assumed to be a serialized packet to
be reconstructed. The optional parameter first_header indicates the first header of the packet to be
reconstructed, which defaults to Ethernet.

>>> p = Packet()
>>> p += Ethernet()
>>> p[0]
<switchyard.lib.packet.ethernet.Ethernet object at 0x10632bb08>
>>> p[Ethernet]
<switchyard.lib.packet.ethernet.Ethernet object at 0x10632bb08>
>>> str(p)
'Ethernet 00:00:00:00:00:00->00:00:00:00:00:00 IP'
>>> str(p[0])
'Ethernet 00:00:00:00:00:00->00:00:00:00:00:00 IP'
>>> str(p[Ethernet])
'Ethernet 00:00:00:00:00:00->00:00:00:00:00:00 IP'
>>>

add_header(ph)
Add a PacketHeaderBase derived class object, or a raw bytes object as the next “header” item
in this packet. Note that ‘header’ may be a slight misnomer since the last portion of a packet is
considered application payload and not a header per se.

add_payload(ph)
Alias for add_header

static from_bytes(raw, first_header)
Create a new packet by parsing the contents of a bytestring

get_header(hdrclass, returnval=None)
Return the first header object that is of class hdrclass, or None if the header class isn’t found.

get_header_by_name(hdrname)
Return the header object that has the given (string) header class name. Returns None if no such
header exists.

get_header_index(hdrclass, startidx=0)
Return the first index of the header class hdrclass starting at startidx (default=0), or -1 if the
header class isn’t found in the list of headers.

has_header(hdrclass)
Return True if the packet has a header of the given hdrclass, False otherwise.

48 Chapter 8. API Reference

Switchyard Documentation, Release 2017.01.4

headers()
Return a list of packet header names in this packet.

insert_header(idx, ph)
Insert a PacketHeaderBase-derived object at index idx the list of headers. Any headers previously
in the Packet from index idx:len(ph) are shifted to make room for the new packet.

num_headers()
Return the number of headers in the packet.

prepend_header(ph)
Insert a PacketHeader object at the beginning of this packet (i.e., as the first header of the packet).

size()
Return the packed length of this header

to_bytes()
Returns serialized bytes object representing all headers/ payloads in this packet

To delete/remove a header, you can use the del operator as if the packet object is a Python list:

>>> del p[0] # delete/remove first header in packet
>>>

You can assign new header objects to a packet by integer index, but not by packet header class index:

>>> p[0] = Ethernet() # assign a new Ethernet header to index 0
>>>

8.4.1 Header classes

In this section, detailed documentation for all packet header classes is given. For each header class, there
are three common instance methods that may be useful and which are not documented below for clarity.
They are defined in the base class PacketHeaderBase. Note that any new packet header classes that derive
from PacketHeaderBase must implement these three methods.

class switchyard.lib.packet.PacketHeaderBase(**kwargs)
Base class for packet headers.

from_bytes(raw)
Reconstruct the attributes of a header given the bytes object named raw. The method returns any
bytes that are not used to reconstruct a header. An exception (typically a ValueError) is raised if
there is some kind of problem deserializing the bytes object into packet header attributes.

size()
Returns the number of bytes that the header would consist of when serialized to wire format

to_bytes()
Return a ‘packed’ byte-level representation of this packet header.

There are also three common class methods that are used when creating a new packet header class (see
Creating new packet header types).

class switchyard.lib.packet.PacketHeaderBase(**kwargs)
Base class for packet headers.

classmethod add_next_header_class(attr, hdrcls)
Add a new mapping between a next header type value and a Python class that implements that
header type.

8.4. Packet parsing and construction reference 49

Switchyard Documentation, Release 2017.01.4

classmethod set_next_header_class_key(attr)
Indicate which attribute is used to decide the type of packet header that comes after this one. For
example, the IPv4 protocol attribute.

classmethod set_next_header_map(mapdict)
(Re)initialize a dictionary that maps a “next header type” attribute to a Python class that imple-
ments that header type.

8.4.2 Ethernet header

class switchyard.lib.packet.Ethernet(**kwargs)
Represents an Ethernet header with fields src (source Ethernet address), dst (destination Ethernet
address), and ethertype (type of header to come in the packet after the Ethernet header). All valid
ethertypes are defined below.

dst

ethertype

src

class switchyard.lib.packet.common.EtherType
An enumeration.

IP = 0x0800

IPv4 = 0x0800

ARP = 0x0806

x8021Q = 0x8100

IPv6 = 0x86dd

SLOW = 0x8809

MPLS = 0x8847

x8021AD = 0x88a8

LLDP = 0x88cc

x8021AH = 0x88e7

IEEE8023 = 0x05dc

The EtherType class is derived from the built-in Python Enumerated class type. Note that some values
start with ‘x’ since they must start with an alphabetic character to be valid in the enum.

By default, the Ethernet header addresses are all zeroes (“00:00:00:00:00:00”), and the ethertype is IPv4.
Here is an example of creating an Ethernet header and setting the header fields to non-default values:

>>> e = Ethernet()
>>> e.src = "de:ad:00:00:be:ef"
>>> e.dst = "ff:ff:ff:ff:ff:ff"
>>> e.ethertype = EtherType.ARP

As with all packet header classes, keyword parameters can be used to initialize header attributes:

>>> e = Ethernet(src="de:ad:00:00:be:ef", dst="ff:ff:ff:ff:ff:ff", ethertype=EtherType.ARP)

50 Chapter 8. API Reference

Switchyard Documentation, Release 2017.01.4

8.4.3 ARP (address resolution protocol) header

class switchyard.lib.packet.Arp(**kwargs)

hardwaretype

operation

protocoltype

senderhwaddr

senderprotoaddr

targethwaddr

targetprotoaddr

class switchyard.lib.packet.common.ArpOperation
An enumeration.

Request = 1

Reply = 2

The Arp class is used for constructing ARP (address resolution protocol) requests and replies. The
hardwaretype property defaults to Ethernet, so you don’t need to set that when an Arp object is in-
stantiated. The operation can be set using the enumerated type ArpOperation, as indicated above. The
remaining fields hold either EthAddr or IPv4Address objects, and can be initialized using string represen-
tations of Ethernet or IPv4 addresses as appropriate. Below is an example of creating an ARP request. You
can assume in the example that the senders Ethernet and IPv4 addresses are srchw and srcip, respectively.
You can also assume that the IPv4 address for which we are requesting the Ethernet address is targetip.

ether = Ethernet()
ether.src = srchw
ether.dst = 'ff:ff:ff:ff:ff:ff'
ether.ethertype = EtherType.ARP
arp = Arp(operation=ArpOperation.Request,

senderhwaddr=srchw,
senderprotoaddr=srcip,
targethwaddr='ff:ff:ff:ff:ff:ff',
targetprotoaddr=targetip)

arppacket = ether + arp

8.4.4 IP version 4 header

class switchyard.lib.packet.IPv4(**kwargs)
Represents an IP version 4 packet header. All properties relate to specific fields in the header and can
be inspected and/or modified.

Note that the field named “hl” (“h-ell”) stands for “header length”. It is the size of the header in
4-octet quantities. It is a read-only property (cannot be set).

Note also that some IPv4 header option classes are available in Switchyard, but are currently undoc-
umented.

dscp

dst

8.4. Packet parsing and construction reference 51

Switchyard Documentation, Release 2017.01.4

ecn

flags

fragment_offset

hl

ipid

options

protocol

src

tos

total_length

ttl

class switchyard.lib.packet.common.IPProtocol
An enumeration.

ICMP = 1

TCP = 6

UDP = 17

The IPProtocol class derives from the Python 3-builtin Enumerated class type. There are other protocol
numbers defined. See switchyard.lib.packet.common for all defined values.

A just-constructed IPv4 header defaults to having all zeroes for the source and destination addresses
(‘0.0.0.0’) and the protocol number defaults to ICMP. An example of creating an IPv4 header and setting
various fields is shown below:

>>> ip = IPv4()
>>> ip.srcip = '10.0.1.1'
>>> ip.dstip = '10.0.2.42'
>>> ip.protocol = IPProtocol.UDP
>>> ip.ttl = 64

8.4.5 UDP (user datagram protocol) header

class switchyard.lib.packet.UDP(**kwargs)
The UDP header contains just source and destination port fields.

dst

src

To construct a packet that includes an UDP header as well as some application data, the same pattern of
packet construction can be followed:

>>> p = Ethernet() + IPv4(protocol=IPProtocol.UDP) + UDP()
>>> p[UDP].src = 4444
>>> p[UDP].dst = 5555
>>> p += b'These are some application data bytes'
>>> print (p)

52 Chapter 8. API Reference

Switchyard Documentation, Release 2017.01.4

Ethernet 00:00:00:00:00:00->00:00:00:00:00:00 IP | IPv4 0.0.0.0->0.0.0.0 UDP | UDP 4444->5555 |␣
↪→RawPacketContents (37 bytes) b'These are '...
>>>

Note that we didn’t set the IP addresses or Ethernet addresses above, but did set the IP protocol to correctly
match the next header (UDP). Adding a payload to a packet is as simple as tacking on a Python bytes object.
You can also construct a RawPacketContents header, which is just a packet header class that wraps a set of
raw bytes.

8.4.6 TCP (transmission control protocol) header

class switchyard.lib.packet.TCP(**kwargs)
Represents a TCP header. Includes properties to access/modify TCP header fields.

ACK

CWR

ECE

FIN

NS

PSH

RST

SYN

URG

ack

dst

flags

flagstr

offset

options

seq

src

urgent_pointer

window

Setting TCP header flags can be done by assigning 1 to any of the mnemonic flag properties:

>>> t = TCP()
>>> t.SYN = 1

To check whether a flag has been set, you can simply inspect the the flag value:

>>> if t.SYN:
>>> ...

8.4. Packet parsing and construction reference 53

Switchyard Documentation, Release 2017.01.4

8.4.7 ICMP (Internet control message protocol) header

class switchyard.lib.packet.ICMP(**kwargs)
A mother class for all ICMP message types. It holds a reference to another object that contains the
specific ICMP data (icmpdata), given a particular ICMP type. Just setting the icmptype causes the
data object to change (the change happens automatically when you set the icmptype). The icmpcode
field will also change, but it only changes to some valid code given the new icmptype.

Represents an ICMP packet header.

icmpcode

icmpdata

icmptype

class switchyard.lib.packet.common.ICMPType
An enumeration.

EchoReply = 0

DestinationUnreachable = 3

SourceQuench = 4

Redirect = 5

EchoRequest = 8

TimeExceeded = 11

The icmptype and icmpcode header fields determine the value stored in the icmpdata property. When the
icmptype is set to a new value, the icmpdata field is automatically set to the correct object.

>>> i = ICMP()
>>> print (i)
ICMP EchoRequest 0 0 (0 data bytes)
>>> i.icmptype = ICMPType.TimeExceeded
>>> print (i)
ICMP TimeExceeded:TTLExpired 0 bytes of raw payload (b'') OrigDgramLen: 0
>>> i.icmpcode
<ICMPCodeTimeExceeded.TTLExpired: 0>
>>> i.icmpdata
<switchyard.lib.packet.icmp.ICMPTimeExceeded object at 0x10d3a3308>

Notice above that when the icmptype changes, other contents in the ICMP header object change appropri-
ately.

To access and/or modify the payload (i.e., data) that comes after the ICMP header, use icmpdata.data. This
object is a raw bytes object and can be accessed and or set. For example, with many ICMP error messages,
up to the first 28 bytes of the “dead” packet should be included, starting with the IPv4 header. To do that,
you must set the icmpdata.data attribute with the byte-level representation of the IP header data you want
to include, as follows:

>>> i.icmpdata.data
b''
>>> i.icmpdata.data = pkt.to_bytes()[:28]
>>> i.icmpdata.origdgramlen = len(pkt)
>>> print (i)
ICMP TimeExceeded:TTLExpired 28 bytes of raw payload (b'E\x00\x00\x14\x00\x00\x00\x00\x00\x01')␣
↪→OrigDgramLen: 42
>>>

54 Chapter 8. API Reference

Switchyard Documentation, Release 2017.01.4

In the above code segment, pkt should be a Packet object that just contains the IPv4 header and any
subsequent headers and data. It must not include an Ethernet header. If you need to strip an Ethernet
header, you can get its index (pkt.get_header_index(Ethernet)), then remove the header by index (del
pkt[index]).

Notice that above, the to_bytes method returns the byte-level representation of the IP header we’re includ-
ing as the payload. The to_bytes method can be called on any packet header, or on an packet object (in
which case all packet headers will be byte-serialized).

To set the icmpcode, a dictionary called ICMPTypeCodeMap is defined in switchyard.lib.packet. Keys in
the dictionary are of type ICMPType, and values for each key is another enumerated type indicating the valid
codes for the given type.

>>> from switchyard.lib.packet import *
>>> ICMPTypeCodeMap[ICMPType.DestinationUnreachable]
<enum 'DestinationUnreachable'>

Just getting the dictionary value isn’t particularly helpful, but if you coerce the enum to a list, you can see
all valid values:

>>> list(ICMPTypeCodeMap[ICMPType.DestinationUnreachable])
[<DestinationUnreachable.ProtocolUnreachable: 2>,

<DestinationUnreachable.SourceHostIsolated: 8>,
<DestinationUnreachable.FragmentationRequiredDFSet: 4>,
<DestinationUnreachable.HostUnreachable: 1>,
<DestinationUnreachable.DestinationNetworkUnknown: 6>,
<DestinationUnreachable.NetworkUnreachableForTOS: 11>,
<DestinationUnreachable.HostAdministrativelyProhibited: 10>,
<DestinationUnreachable.DestinationHostUnknown: 7>,
<DestinationUnreachable.HostPrecedenceViolation: 14>,
<DestinationUnreachable.PrecedenceCutoffInEffect: 15>,
<DestinationUnreachable.NetworkAdministrativelyProhibited: 9>,
<DestinationUnreachable.NetworkUnreachable: 0>,
<DestinationUnreachable.SourceRouteFailed: 5>,
<DestinationUnreachable.PortUnreachable: 3>,
<DestinationUnreachable.CommunicationAdministrativelyProhibited: 13>,
<DestinationUnreachable.HostUnreachableForTOS: 12>]

Another example, but with the much simpler EchoRequest:

>>> list(ICMPTypeCodeMap[ICMPType.EchoRequest])
[<EchoRequest.EchoRequest: 0>]

If you try to set the icmpcode to an invalid value, an exception will be raised:

>>> i = ICMP()
>>> i.icmptype = ICMPType.DestinationUnreachable
>>> i.icmpcode = 44
Traceback (most recent call last):
...
>>>

You can either (validly) set the code using an integer, or a valid enumerated type value:

>>> i.icmpcode = 2
>>> print(i)
ICMP DestinationUnreachable:ProtocolUnreachable 0 bytes of raw payload (b'') NextHopMTU: 0
>>> i.icmpcode = ICMPTypeCodeMap[i.icmptype].HostUnreachable

8.4. Packet parsing and construction reference 55

Switchyard Documentation, Release 2017.01.4

>>> print (i)
ICMP DestinationUnreachable:HostUnreachable 0 bytes of raw payload (b'') NextHopMTU: 0

Below are shown the ICMP data classes, as well as any properties that can be inspected and/or modified on
them.

class switchyard.lib.packet.ICMPEchoReply

data

identifier

sequence

class switchyard.lib.packet.ICMPDestinationUnreachable

data

nexthopmtu

origdgramlen

class switchyard.lib.packet.ICMPSourceQuench

data

class switchyard.lib.packet.ICMPRedirect

data

redirectto

class switchyard.lib.packet.ICMPEchoRequest

data

identifier

sequence

class switchyard.lib.packet.ICMPTimeExceeded

data

origdgramlen

8.5 Test scenario creation

class switchyard.lib.testing.TestScenario(name)
Test scenario definition. Given a list of packetio event objects, generates input events and tests/verifies
output events.

add_file(fname, text)

56 Chapter 8. API Reference

Switchyard Documentation, Release 2017.01.4

add_interface(interface_name, macaddr, ipaddr=None, netmask=None, **kwargs)
Add an interface to the test scenario.

(str, str/EthAddr, str/IPAddr, str/IPAddr) -> None

expect(event, description)
Add a new event and description to the expected set of events to occur for this test scenario.

(Event object, str) -> None

interfaces()

name

ports()
Alias for interfaces() method.

class switchyard.lib.testing.PacketInputEvent(device, packet, display=None, copyfrom-
lastout=None)

Test event that models a packet arriving at a router/switch (e.g., a packet that we generate).

match(evtype, **kwargs)
Does event type match me? PacketInputEvent currently ignores any additional arguments.

class switchyard.lib.testing.PacketInputTimeoutEvent(timeout)
Test event that models a timeout when trying to receive a packet. No packet arrives, so the switchy
app should handle a NoPackets exception and continue

match(evtype, **kwargs)
Does event type match me? PacketInputEvent currently ignores any additional arguments.

class switchyard.lib.testing.PacketOutputEvent(*args, **kwargs)
Test event that models a packet that should be emitted by a router/switch.

match(evtype, **kwargs)
Does event type match me? PacketOutputEvent requires two additional keyword args: device
(str) and packet (packet object).

8.6 Application-layer

Two static methods on the ApplicationLayer class are used to send messages up a socket application and
to receive messages from socket applications.

class switchyard.lib.socket.ApplicationLayer

static recv_from_app(timeout=None)
Called by a network stack implementer to receive application-layer data for sending on to a
remote location.

Can optionally take a timeout value. If no data are available, raises NoPackets exception.

Returns a 2-tuple: flowaddr and data. The flowaddr consists of 5 items: protocol, localaddr,
localport, remoteaddr, remoteport.

static send_to_app(proto, local_addr, remote_addr, data)
Called by a network stack implementer to push application-layer data “up” from the stack.

Arguments are protocol number, local_addr (a 2-tuple of IP address and port), remote_addr (a
2-tuple of IP address and port), and the message.

8.6. Application-layer 57

Switchyard Documentation, Release 2017.01.4

Returns True if a socket was found to which to deliver the message, and False otherwise. When
False is returned, a log warning is also emitted.

Switchyard’s socket emulation module is intended to follow, relatively closely, the methods and attributes
available in the built-in socket module.

class switchyard.lib.socket.socket(family, socktype, proto=0, fileno=0)
A socket object, emulated by Switchyard.

accept()
Not implemented.

bind(address)
Alter the local address with which this socket is associated. The address parameter is a 2-tuple
consisting of an IP address and port number.

NB: this method fails and returns -1 if the requested port to bind to is already in use but does not
check that the address is valid.

close()
Close the socket.

connect(address)
Set the remote address (IP address and port) with which this socket is used to communicate.

connect_ex(address)
Set the remote address (IP address and port) with which this socket is used to communicate.

family
Get the address family of the socket.

getpeername()
Return a 2-tuple containing the remote IP address and port associated with the socket, if any.

getsockname()
Return a 2-tuple containing the local IP address and port associated with the socket.

getsockopt(level, option, buffersize=0)
Not implemented.

gettimeout()
Obtain the currently set timeout value.

listen(backlog)
Not implemented.

proto
Get the protocol of the socket.

recv(buffersize, flags=0)
Receive data on the socket. The buffersize and flags arguments are currently ignored. Only
returns the data.

recv_into(*args)
Not implemented.

recvfrom(buffersize, flags=0)
Receive data on the socket. The buffersize and flags arguments are currently ignored. Returns
the data and an address tuple (IP address and port) of the remote host.

recvfrom_into(*args)
Not implemented.

58 Chapter 8. API Reference

Switchyard Documentation, Release 2017.01.4

recvmsg(*args)
Not implemented.

send(data, flags=0)
Send data on the socket. A call to connect() must have been previously made for this call to
succeed. Flags is currently ignored.

sendall(*args)
Not implemented.

sendmsg(*args)
Not implemented.

sendto(data, *args)
Send data on the socket. Accepts the same parameters as the built-in socket sendto: data[, flags],
address where address is a 2-tuple of IP address and port. Any flags are currently ignored.

setblocking(flags)
Set whether this socket should block on a call to recv*.

setsockopt(*args)
Not implemented.

settimeout(timeout)
Set the timeout value for this socket.

shutdown(flag)
Shut down the socket. This is currently implemented by calling close().

timeout
Obtain the currently set timeout value.

type
Get the type of the socket.

8.7 Utility functions

switchyard.lib.logging.log_failure(s)
Convenience function for failure message.

switchyard.lib.logging.log_warn(s)
Convenience function for warning message.

switchyard.lib.logging.log_info(s)
Convenience function for info message.

switchyard.lib.logging.log_debug(s)
Convenience function for debugging message.

switchyard.lib.debugging.debugger()
Invoke the interactive debugger. Can be used anywhere within a Switchyard program.

8.7. Utility functions 59

Switchyard Documentation, Release 2017.01.4

60 Chapter 8. API Reference

CHAPTER

NINE

RELEASE NOTES

The headings below refer either to branches on Switchyard’s github repo (v1 and v2) or tags (2017.01.1).

9.1 2017.01.2

Add the capability to pass arguments to a Switchyard program via -g option to swyard. Switchyard parses
and assembles *args and **kwargs to pass into the user code, being careful to only pass them if the code
can accept them.

9.2 2017.01.1

Major revision; expansion of types of exercises supported (notably application-layer programs via socket
emulation) and several non-backward compatible API changes. Simplified user code import (single import
of switchyard.lib.userlib). Installation via standard setuptools, so easily installed via easy_install or pip.
Major revision of documentation. Lots of new tests were written, bringing test coverage above 90%.
Expansion of exercises is still in progress.

Some key API changes to be aware of:

• the Scenario class is renamed TestScenario. The PacketOutputEvent previously allowed Openflow 1.0-
like wildcard strings to specify wildcards for matching packets; these strings are no longer supported.
To specify wildcards, a tuple of (classname,attribute) must be used; refer to Test scenario creation, above.

• recv_packet always returns a timestamp now; it returns a 3-tuple (named tuple) of timestamp, in-
put_port and packet.

• The only import required by user code is switchyard.lib.userlib, although individual imports are still
fine (just more verbose).

• Instead of invoking srpy.py, a swyard program is installed during the new install process. swyard
has a few command-line changes compared with srpy.py. In particular, the -s option has gone away;
to run Switchyard with a test, just use the -t option with the scenario file as the argument.

9.3 v2

Complete rewrite of v1. Moved to Python 3 and created packet parsing libraries, new libpcap interface
library (pcapffi). Redesigned test scenario modules and an expanded of publicly available exercises. Used
at Colgate twice and University of Wisconsin-Madison twice. Available on the v2 branch on github.

61

Switchyard Documentation, Release 2017.01.4

9.4 v1

First version, which used the POX packet parsing libraries and had a variety of limitations. Implemented
in Python 2 and used at Colgate once. Available on the v1 branch on github, but very much obsolete.

62 Chapter 9. Release notes

CHAPTER

TEN

ACKNOWLEDGMENTS AND THANKS

Once again, I gratefully acknowledge support from the NSF. The materials here are based upon work
supported by the National Science Foundation under grant CNS-1054985 (“CAREER: Expanding the func-
tionality of Internet routers”). Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author and do not necessarily reflect the views of the National Science
Foundation.

Thanks to Colgate COSC465 students from Spring 2014 and Spring 2015 for being guinea pigs and giving
feedback for the very first versions of Switchyard. Thanks also to Prof. Paul Barford and CS640 students at
the University of Wisconsin for using and providing feedback on Switchyard.

Thanks to those students who have contributed fixes and made suggestions for improvements. In particular:

• Thanks to Saul Shanabrook for several specific suggestions and bug reports that have led to improve-
ments in Switchyard.

• Thanks to Xuyi Ruan for identifying and suggesting a fix to bugs on one of the documentation
diagrams.

• Thanks to Sean Wilson for a bug fix on an infinitely recursive property setter. Oops, but this dumb
bug motivated me to significantly improve test coverage, so there’s that.

• Thanks to Leon Yang for identifying a problem with kwarg processing for ICMP.

63

Switchyard Documentation, Release 2017.01.4

64 Chapter 10. Acknowledgments and thanks

CHAPTER

ELEVEN

INDICES AND TABLES

• genindex

• modindex

• search

I gratefully acknowledge support from the NSF. The materials here are based upon work supported by the
National Science Foundation under grant CNS-1054985 (“CAREER: Expanding the functionality of Internet
routers”).

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author and do not necessarily reflect the views of the National Science Foundation.

65

Switchyard Documentation, Release 2017.01.4

66 Chapter 11. Indices and tables

PYTHON MODULE INDEX

s
switchyard.lib.userlib, 45

67

INDEX

Symbols
-i <interface-name>

command line option, 29
-x <interface-name>

command line option, 29
‘‘log_debug‘‘, 5
‘‘log_failure‘‘, 5
‘‘log_info‘‘, 5
‘‘log_warn‘‘, 5
‘‘recv_packet‘‘, 4

A
accept() (switchyard.lib.socket.socket method), 58
ACK (switchyard.lib.packet.TCP attribute), 53
ack (switchyard.lib.packet.TCP attribute), 53
add_file() (switchyard.lib.testing.TestScenario

method), 56
add_header() (switchyard.lib.packet.Packet

method), 48
add_interface() (switchyard.lib.testing.TestScenario

method), 56
add_next_header_class() (switch-

yard.lib.packet.PacketHeaderBase class
method), 49

add_payload() (switchyard.lib.packet.Packet
method), 48

application layer, 38
ApplicationLayer (class in switchyard.lib.socket), 57
Arp (class in switchyard.lib.packet), 51
ArpOperation (class in switch-

yard.lib.packet.common), 51

B
bind() (switchyard.lib.socket.socket method), 58

C
close() (switchyard.lib.socket.socket method), 58
command line option

-i <interface-name>, 29
-x <interface-name>, 29

connect() (switchyard.lib.socket.socket method), 58

connect_ex() (switchyard.lib.socket.socket method),
58

CWR (switchyard.lib.packet.TCP attribute), 53

D
data (switchyard.lib.packet.ICMPDestinationUnreachable

attribute), 56
data (switchyard.lib.packet.ICMPEchoReply at-

tribute), 56
data (switchyard.lib.packet.ICMPEchoRequest at-

tribute), 56
data (switchyard.lib.packet.ICMPRedirect attribute),

56
data (switchyard.lib.packet.ICMPSourceQuench at-

tribute), 56
data (switchyard.lib.packet.ICMPTimeExceeded at-

tribute), 56
debugger() (in module switchyard.lib.debugging),

59
dscp (switchyard.lib.packet.IPv4 attribute), 51
dst (switchyard.lib.packet.Ethernet attribute), 50
dst (switchyard.lib.packet.IPv4 attribute), 51
dst (switchyard.lib.packet.TCP attribute), 53
dst (switchyard.lib.packet.UDP attribute), 52

E
ECE (switchyard.lib.packet.TCP attribute), 53
ecn (switchyard.lib.packet.IPv4 attribute), 51
end-host protocol stack, 38
EthAddr (class in switchyard.lib.address), 47
ethaddr (switchyard.lib.interface.Interface at-

tribute), 46
Ethernet (class in switchyard.lib.packet), 50
EtherType (class in switchyard.lib.packet.common),

50
ethertype (switchyard.lib.packet.Ethernet attribute),

50
expect() (switchyard.lib.testing.TestScenario

method), 57

F
family (switchyard.lib.socket.socket attribute), 58

68

Switchyard Documentation, Release 2017.01.4

FIN (switchyard.lib.packet.TCP attribute), 53
flags (switchyard.lib.packet.IPv4 attribute), 52
flags (switchyard.lib.packet.TCP attribute), 53
flagstr (switchyard.lib.packet.TCP attribute), 53
fragment_offset (switchyard.lib.packet.IPv4 at-

tribute), 52
from_bytes() (switchyard.lib.packet.Packet static

method), 48
from_bytes() (switch-

yard.lib.packet.PacketHeaderBase
method), 49

G
get_header() (switchyard.lib.packet.Packet method),

48
get_header_by_name() (switch-

yard.lib.packet.Packet method), 48
get_header_index() (switchyard.lib.packet.Packet

method), 48
getpeername() (switchyard.lib.socket.socket

method), 58
getsockname() (switchyard.lib.socket.socket

method), 58
getsockopt() (switchyard.lib.socket.socket method),

58
gettimeout() (switchyard.lib.socket.socket method),

58

H
hardwaretype (switchyard.lib.packet.Arp attribute),

51
has_header() (switchyard.lib.packet.Packet

method), 48
headers() (switchyard.lib.packet.Packet method), 48
hl (switchyard.lib.packet.IPv4 attribute), 52

I
ICMP (class in switchyard.lib.packet), 54
icmpcode (switchyard.lib.packet.ICMP attribute), 54
icmpdata (switchyard.lib.packet.ICMP attribute), 54
ICMPDestinationUnreachable (class in switch-

yard.lib.packet), 56
ICMPEchoReply (class in switchyard.lib.packet), 56
ICMPEchoRequest (class in switchyard.lib.packet),

56
ICMPRedirect (class in switchyard.lib.packet), 56
ICMPSourceQuench (class in switchyard.lib.packet),

56
ICMPTimeExceeded (class in switchyard.lib.packet),

56
ICMPType (class in switchyard.lib.packet.common),

54
icmptype (switchyard.lib.packet.ICMP attribute), 54

identifier (switchyard.lib.packet.ICMPEchoReply at-
tribute), 56

identifier (switchyard.lib.packet.ICMPEchoRequest
attribute), 56

ifnum (switchyard.lib.interface.Interface attribute),
46

iftype (switchyard.lib.interface.Interface attribute),
46

insert_header() (switchyard.lib.packet.Packet
method), 49

Interface (class in switchyard.lib.interface), 46
interface_by_ipaddr() (switch-

yard.llnetbase.LLNetBase method), 45
interface_by_macaddr() (switch-

yard.llnetbase.LLNetBase method), 45
interface_by_name() (switch-

yard.llnetbase.LLNetBase method), 45
interfaces() (switchyard.lib.testing.TestScenario

method), 57
interfaces() (switchyard.llnetbase.LLNetBase

method), 45
InterfaceType (class in switchyard.lib.interface), 46
ipaddr (switchyard.lib.interface.Interface attribute),

46
ipid (switchyard.lib.packet.IPv4 attribute), 52
ipinterface (switchyard.lib.interface.Interface at-

tribute), 46
IPProtocol (class in switchyard.lib.packet.common),

52
IPv4 (class in switchyard.lib.packet), 51
is_bridge_filtered (switchyard.lib.address.EthAddr

attribute), 47
is_global (switchyard.lib.address.EthAddr at-

tribute), 47
is_local (switchyard.lib.address.EthAddr attribute),

47
is_multicast (switchyard.lib.address.EthAddr at-

tribute), 47
isBridgeFiltered() (switchyard.lib.address.EthAddr

method), 47
isGlobal() (switchyard.lib.address.EthAddr

method), 47
isLocal() (switchyard.lib.address.EthAddr method),

47
isMulticast() (switchyard.lib.address.EthAddr

method), 47

L
listen() (switchyard.lib.socket.socket method), 58
LLNetBase (class in switchyard.llnetbase), 45
log_debug() (built-in function), 11
log_debug() (in module switchyard.lib.logging), 59
log_failure() (built-in function), 11
log_failure() (in module switchyard.lib.logging), 59

Index 69

Switchyard Documentation, Release 2017.01.4

log_info() (built-in function), 11
log_info() (in module switchyard.lib.logging), 59
log_warn() (built-in function), 11
log_warn() (in module switchyard.lib.logging), 59
logging, 5

M
main, 3, 12
match() (switchyard.lib.testing.PacketInputEvent

method), 57
match() (switchyard.lib.testing.PacketInputTimeoutEvent

method), 57
match() (switchyard.lib.testing.PacketOutputEvent

method), 57

N
name (switchyard.lib.interface.Interface attribute),

46
name (switchyard.lib.testing.TestScenario attribute),

57
named tuple, 4
netmask (switchyard.lib.interface.Interface at-

tribute), 46
new packet header types, 33
nexthopmtu (switch-

yard.lib.packet.ICMPDestinationUnreachable
attribute), 56

NS (switchyard.lib.packet.TCP attribute), 53
num_headers() (switchyard.lib.packet.Packet

method), 49

O
offset (switchyard.lib.packet.TCP attribute), 53
operation (switchyard.lib.packet.Arp attribute), 51
options (switchyard.lib.packet.IPv4 attribute), 52
options (switchyard.lib.packet.TCP attribute), 53
origdgramlen (switch-

yard.lib.packet.ICMPDestinationUnreachable
attribute), 56

origdgramlen (switch-
yard.lib.packet.ICMPTimeExceeded at-
tribute), 56

P
packed (switchyard.lib.address.EthAddr attribute),

47
Packet (class in switchyard.lib.packet), 48
packet headers, 33
PacketHeaderBase (class in switchyard.lib.packet),

49
PacketInputEvent (class in switchyard.lib.testing), 57
PacketInputTimeoutEvent (class in switch-

yard.lib.testing), 57

PacketOutputEvent (class in switchyard.lib.testing),
57

port_by_ipaddr() (switchyard.llnetbase.LLNetBase
method), 45

port_by_macaddr() (switch-
yard.llnetbase.LLNetBase method), 45

port_by_name() (switchyard.llnetbase.LLNetBase
method), 45

ports() (switchyard.lib.testing.TestScenario method),
57

ports() (switchyard.llnetbase.LLNetBase method),
46

prepend_header() (switchyard.lib.packet.Packet
method), 49

proto (switchyard.lib.socket.socket attribute), 58
protocol (switchyard.lib.packet.IPv4 attribute), 52
protocoltype (switchyard.lib.packet.Arp attribute),

51
PSH (switchyard.lib.packet.TCP attribute), 53

R
raw (switchyard.lib.address.EthAddr attribute), 47
recv() (switchyard.lib.socket.socket method), 58
recv_from_app() (switch-

yard.lib.socket.ApplicationLayer static
method), 57

recv_into() (switchyard.lib.socket.socket method), 58
recv_packet() (switchyard.llnetbase.LLNetBase

method), 46
recvfrom() (switchyard.lib.socket.socket method), 58
recvfrom_into() (switchyard.lib.socket.socket

method), 58
recvmsg() (switchyard.lib.socket.socket method), 58
redirectto (switchyard.lib.packet.ICMPRedirect at-

tribute), 56
RST (switchyard.lib.packet.TCP attribute), 53

S
send() (switchyard.lib.socket.socket method), 59
send_packet() (switchyard.llnetbase.LLNetBase

method), 46
send_to_app() (switch-

yard.lib.socket.ApplicationLayer static
method), 57

sendall() (switchyard.lib.socket.socket method), 59
senderhwaddr (switchyard.lib.packet.Arp at-

tribute), 51
senderprotoaddr (switchyard.lib.packet.Arp at-

tribute), 51
sendmsg() (switchyard.lib.socket.socket method), 59
sendto() (switchyard.lib.socket.socket method), 59
seq (switchyard.lib.packet.TCP attribute), 53
sequence (switchyard.lib.packet.ICMPEchoReply at-

tribute), 56

70 Index

Switchyard Documentation, Release 2017.01.4

sequence (switchyard.lib.packet.ICMPEchoRequest
attribute), 56

set_next_header_class_key() (switch-
yard.lib.packet.PacketHeaderBase class
method), 49

set_next_header_map() (switch-
yard.lib.packet.PacketHeaderBase class
method), 50

setblocking() (switchyard.lib.socket.socket method),
59

setsockopt() (switchyard.lib.socket.socket method),
59

settimeout() (switchyard.lib.socket.socket method),
59

shutdown() (switchyard.lib.socket.socket method),
59

size() (switchyard.lib.packet.Packet method), 49
size() (switchyard.lib.packet.PacketHeaderBase

method), 49
socket (class in switchyard.lib.socket), 58
socket emulation, 38
SpecialIPv4Addr (class in switchyard.lib.address),

47
SpecialIPv6Addr (class in switchyard.lib.address),

47
src (switchyard.lib.packet.Ethernet attribute), 50
src (switchyard.lib.packet.IPv4 attribute), 52
src (switchyard.lib.packet.TCP attribute), 53
src (switchyard.lib.packet.UDP attribute), 52
switchy_main, 3
Switchyard program arguments, 3, 12
switchyard.lib.userlib (module), 45
swyard, 3
swyard_main, 12
SYN (switchyard.lib.packet.TCP attribute), 53

T
targethwaddr (switchyard.lib.packet.Arp attribute),

51
targetprotoaddr (switchyard.lib.packet.Arp at-

tribute), 51
TCP (class in switchyard.lib.packet), 53
testmode (switchyard.llnetbase.LLNetBase at-

tribute), 46
TestScenario (class in switchyard.lib.testing), 56
timeout (switchyard.lib.socket.socket attribute), 59
to_bytes() (switchyard.lib.packet.Packet method), 49
to_bytes() (switchyard.lib.packet.PacketHeaderBase

method), 49
toRaw() (switchyard.lib.address.EthAddr method),

47
tos (switchyard.lib.packet.IPv4 attribute), 52
toStr() (switchyard.lib.address.EthAddr method), 47

total_length (switchyard.lib.packet.IPv4 attribute),
52

toTuple() (switchyard.lib.address.EthAddr method),
47

ttl (switchyard.lib.packet.IPv4 attribute), 52
type (switchyard.lib.socket.socket attribute), 59

U
UDP (class in switchyard.lib.packet), 52
URG (switchyard.lib.packet.TCP attribute), 53
urgent_pointer (switchyard.lib.packet.TCP at-

tribute), 53

W
window (switchyard.lib.packet.TCP attribute), 53

Index 71

	Introduction and Overview
	Writing a Switchyard program
	Introducing the ``network object''
	Introduction to packet parsing and construction
	Utility functions
	Passing arguments into a Switchyard program

	Running in the test environment
	Test output
	Verbose test output
	When a test fails
	Another example
	Even more verbose output
	If you don't like pdb
	Checking code coverage

	Test scenario creation
	Test scenario examples
	Compiling a test scenario

	Running in a ``live'' environment
	Basic command-line recipe
	Including or excluding particular interfaces
	Firewall options

	Advanced API topics
	Creating new packet header types
	Application layer socket emulation and creating full protocol stacks

	Installing Switchyard
	Operating system-specific instructions

	API Reference
	Net object reference
	Interface and InterfaceType reference
	Ethernet and IP addresses
	Packet parsing and construction reference
	Test scenario creation
	Application-layer
	Utility functions

	Release notes
	2017.01.2
	2017.01.1
	v2
	v1

	Acknowledgments and thanks
	Indices and tables
	Python Module Index

