

Switchyard documentation

	Introduction and Overview

	Writing a Switchyard program
	Introducing the “network object”

	Introduction to packet parsing and construction

	Utility functions

	Passing arguments into a Switchyard program

	Running in the test environment
	Test output

	Verbose test output

	When a test fails

	Another example

	Even more verbose output

	If you don’t like pdb

	Checking code coverage

	Test scenario creation
	Test scenario examples

	Compiling a test scenario

	Running in a “live” environment
	Basic command-line recipe

	Including or excluding particular interfaces

	Firewall options

	Advanced API topics
	Creating new packet header types

	Application layer socket emulation and creating full protocol stacks

	Installing Switchyard
	Operating system-specific instructions

	API Reference
	Net object reference

	Interface and InterfaceType reference

	Ethernet and IP addresses

	Packet parsing and construction reference

	Test scenario creation

	Application-layer

	Utility functions

	Release notes
	2017.01.2

	2017.01.1

	v2

	v1

	Acknowledgments and thanks

Indices and tables

	Index

	Module Index

	Search Page

I gratefully acknowledge support from the NSF. The materials here are based upon work supported by the National Science Foundation under grant CNS-1054985 (“CAREER: Expanding the functionality of Internet routers”).

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

Introduction and Overview

Switchyard is a framework for creating, testing, and experimenting with software implementations of networked systems such as Ethernet switches, IP routers, firewalls and middleboxes, and end-host protocol stacks. Switchyard can be used for system-building projects targeting layers of the network protocol stack from layer 2 (link layer) and above. It is intended primarily for educational use and has purpose-built testing and debugging features. Although its design favors understandability over speed, it can work quite nicely as a prototyping environment for new kinds of networked devices.

The Switchyard framework is implemented in Python and consists of two components: a program (swyard) which creates a runtime environment for the code that implements some networked system or device, and a collection of library modules that can be used for a variety of tasks such as packet creation and parsing. The networked system code is implemented in one or more Python files (which you write!) and that use the Switchyard libraries and conform to certain conventions. The swyard runtime environment creator and orchestrator seamlessly handles running your code either in a test setting where no actual network traffic is generated or in a real or “live” setting in which your code can interact with other networked systems.

The Switchyard runtime environment (depicted below) provides a given networked system with 1 or more interfaces or ports. A port may represent a wired connection to another device, or may represent a wireless interface, or may represent a loopback [1] interface. In any case, it is through these ports that packets are sent and received. Each port has, at minimum, a name (e.g., en0) and an Ethernet address. A port may also have an IPv4 address and subnet mask associated with it.

[image: _images/srpyarch.png]

The typical goal of a Switchyard-based program is to receive a packet on one port, possibly modify it, then either forward it out one or more ports or to drop the packet. The rest of this documentation is organized around how to perform these tasks in various settings. In particular:

	The next section, writing a Switchyard program, describes how to develop a basic Switchyard program, including what APIs are available for parsing and constructing packets and sending/receiving packets on network interfaces.

	Following that, the next section, running in the test environment, provides details on running a Switchyard program in the test environment. The section after that gives details on how to write test scenarios.

	The next section describes running Switchyard in a live environment, such as on a standard Linux host or within the Mininet emulation environment or some other kind of virtual environment.

	Advanced API topics are addressed next, such as creating new packet header types, and implementing network protocol stacks that can interoperate with a Python socket-based program.

	An installation guide appears next.

	Finally, you can find an API Reference at the end of this documentation along with and an index.

A note to the pedantic: In this documentation we use the term packet in a generic sense to refer to what may more traditionally be a link layer frame, a network layer packet, a transport layer segment, or an application layer message. Where appropriate, we use the appropriate specific term, but often resort to using packet in a more general sense.

And one more (genuinely important) note: Switchyard is Python 3-only! You’ll get an error (or maybe even more than one error!) if you try to use Switchyard with Python 2. Python 3.4 is required, at minimum. An installation guide (see Installing Switchyard) is provided in this documentation to help with getting any necessary libraries installed on your platform to make Switchyard work right.

Footnotes

	[1]	The loopback interface is a virtual interface that connects a host to itself. It is typically used to facilitate network communication among processes on the same host.

Writing a Switchyard program

A Switchyard program is simply a Python program that includes a particular entrypoint function which accepts a single parameter. The startup function can simply be named main, but can also be named switchy_main if you like. The function must accept at least one parameter, which is a reference to the Switchyard network object (described below). Method calls on the network object are used to send and receive packets to and from network ports.

A Switchyard program isn’t executed directly with the Python interpreter. Instead, the program swyard is used to start up the Switchyard framework and to load your code. When Switchyard starts your code it looks for a function named main and invokes it, passing in the network object as the first parameter. Details on how to start Switchyard (and thus your program) are given in the chapters on running a Switchyard in the test environment and running Switchyard in a live environment. Note that it is possible to pass arguments into a Switchyard program; see Passing arguments into a Switchyard program for details.

A Switchyard program will typically also import other Switchyard modules such as modules for parsing and constructing packets, dealing with network addresses, and other functions. These modules are introduced below and described in detail in the API reference chapter.

Introducing the “network object”

As mentioned above, a Switchyard program can simply have a main function that accepts a single argument. The parameter passed to main is called the “network object”. It is on this object that you can call methods for sending and receiving packets and getting information about ports on the device for which you’re implementing the logic.

Sending and receiving packets

As a way to describe two of the most important methods on the network object, here is a program that receives one packet, prints it out, sends it back out the same interface, then quits.

Notice in the code below that we only need to import switchyard.lib.userlib to get access to various Switchyard classes and functions; generally speaking, this is the only import you should ever need for any Switchyard program. Although you can import individual Switchyard modules separately (for the specific module to import, see API Reference), but you will probably find that importing userlib is much easier.

from switchyard.lib.userlib import *

def main(net):
 timestamp,input_port,packet = net.recv_packet()
 print ("Received {} on {}".format(packet, input_port))
 net.send_packet(input_port, packet)

This program isn’t likely to be very useful — it is just meant as an illustration of the most important two methods on the network object:

	recv_packet(timeout=None)

Not surprisingly, this method is used to receive at most one packet from any port. The method will block until a packet is received, unless a timeout value >=0 is given. The default is to block indefinitely. The method returns a namedtuple of length 3, which includes a timestamp for when the packet was received, the name of the input port on which the packet was received, and the packet itself (another example is given below, plus see collections.namedtuple in the Python library reference).

The method raises a Shutdown exception if the Switchyard framework has been shut down. It can also raise a NoPackets exception if no packets are received before the timeout value given to the method expires.

	send_packet(output_port, packet)

Again, the meaning of this method call is probably not especially surprising: when called, the given packet will be sent out the given output port. For the output_port parameter, the string name of the port can be given, or an Interface object may also be supplied (see below for more about Interface objects as well as the Interface and InterfaceType reference).

This method returns None. If the output_port or some detail about the given packet is invalid (e.g., something other than a packet is passed as the second parameter), this method raises a ValueError.

Returning briefly to the recv_packet method, observe that in the above example no arguments are given so the call will block until a packet is received. Also, it is important to recognize that the return type of recv_packet is a namedtuple of exactly three elements so in addition to automatically unpacking the tuple as in the above example, you can use indexing or attribute-like syntax on the return value from recv_packet. For example (using attribute-syntax):

from switchyard.lib.userlib import *

def main(net):
 # below, recvdata is a namedtuple
 recvdata = net.recv_packet()
 print ("At {}, received {} on {}".format(
 recvdata.timestamp, recvdata.packet, recvdata.input_port))

 # alternatively, the above line could use indexing, although
 # readability suffers:
 # recvdata[0], recvdata[2], recvdata[1]))

 net.send_packet(recvdata.input_port, recvdata.packet)

 # likewise, the above line could be written using indexing
 # but, again, readability suffers:
 # net.send_packet(recvdata[1], recvdata[2])

Importantly, note that in the above examples we are not handling any potential exceptions that could occur. In particular, we really should be handling at least the situation in which the framework is shut down (and we receive a Shutdown exception). Just for completeness, we should also handle the NoPackets exception, although if the code is designed to block indefinitely we shouldn’t normally receive that particular exception.

Let’s rewrite the code above, and now put everything in a while loop so that we keep reading and sending packets as long as we’re running. We will eventually turn this code into a working network hub implementation [1], but it’s currently broken because it still just sends a packet out the same port on which it arrived:

from switchyard.lib.userlib import *

def main(net):
 while True:
 try:
 timestamp,input_port,packet = net.recv_packet()
 except Shutdown:
 log_info ("Got shutdown signal; exiting")
 break
 except NoPackets:
 log_info ("No packets were available.")
 continue

 # if we get here, we must have received a packet
 log_info ("Received {} on {}".format(packet, input_port))
 net.send_packet(input_port, packet)

In the example above, notice that we also changed the print function calls to log_info. Switchyard uses built-in Python logging capabilities (see logging in the Python library reference) for printing various notices to the console. The logging functions, described below, each just accept one string parameter which is just the text to be printed on the console.

For full details of the send_packet and recv_packet method calls, refer to Net object reference in the API Reference section at the end of this documentation.

Getting information about ports (interfaces) on the device

Other methods available the network object relate to getting information about the ports/interfaces attached to the device on which the Switchyard code is running. The two basic methods are interfaces and ports. These methods are aliases and do exactly the same thing. In particular:

	interfaces()

This method returns a list of interfaces that are configured on the network device, as a list of Interface objects. The alias method ports() does exactly the same thing. There is no inherent ordering to the list of Interface objects returned.

Each Interface object has a set of properties that can be used to access various configured attributes for the interface:

	name: returns the name of the interface (e.g., en0) as a string.

	ethaddr: returns the Ethernet address associated with the interface, as a switchyard.lib.address.EthAddr instance.

	ipaddr: returns the IPv4 address associated with the interface, if any. This property returns an object of type IPv4Address. If there is no address assigned to the interface, the address is 0.0.0.0. A current limitation with the Interface implementation in Switchyard is that only one address can be associated with an interface, and it must be an IPv4 address. Eventually, Switchyard will fully support IPv6 addresses, and multiple IP addresses per interface.

	netmask: returns the network mask associated with the IPv4 address assigned to the interface. The netmask defaults to 255.255.255.255 (/32) if none is specified.

	ifnum: returns an integer index associated with the interface.

	iftype: returns the type of the interface, if it can be inferred by Switchyard. The return type is a value from the switchyard.lib.interface.InterfaceType enumerated type. The type can either be Unknown, Loopback, Wired, or Wireless. The type is automatically set when an interface is initialized. Note that in some cases the type can be inferred, but in others it cannot (thus the potential for an Unknown value).

All the above properties except ifnum and iftype are modifiable. Changing them can be accomplished just by assigning a new value to the property. Beware, though, that changing address values has no effect on the underlying host operating system if Switchyard is run in a live environment, so you would generally be wise to leave the addresses alone.

For full interface details, see Interface and InterfaceType reference.

As an example, to simply print out information regarding each interface defined on the current network device you could use the following program:

def main(net):
 for intf in net.interfaces():
 log_info("{} has ethaddr {} and ipaddr {}/{} and is of type {}".format(
 intf.name, intf.ethaddr, intf.ipaddr, intf.netmask, intf.iftype.name))

 # could also be:
 # for intf in net.ports():
 # ...

Entirely depending on how the network device is configured, output from
the above program might look like the following:

09:10:08 2016/12/17 INFO eth0 has ethaddr 10:00:00:00:00:01 and ipaddr 172.16.42.1/255.255.255.252 and is of type Unknown
09:10:08 2016/12/17 INFO eth1 has ethaddr 10:00:00:00:00:02 and ipaddr 10.10.0.1/255.255.0.0 and is of type Unknown
09:10:08 2016/12/17 INFO eth2 has ethaddr 10:00:00:00:00:03 and ipaddr 192.168.1.1/255.255.255.0 and is of type Unknown

The above example code was run in the Switchyard *test* environment; when a Switchyard program is run in test mode, all interfaces will show type Unknown. Note also that there is no inherent ordering to the list of interfaces returned.

There are a few convenience methods related to ports and interfaces,
which can be used to look up a particular interface given a name, IPv4 address,
or Ethernet (MAC) address:

	interface_by_name(name): This method returns an Interface object given a string name
of a interface. An alias method port_by_name(name) also exists.

	interface_by_ipaddr(ipaddr): This method returns an Interface object given an IP address configured on one of the interfaces. The IP address may be given as a string or as an IPv4Address object. An alias method port_by_ipaddr(ipaddr) also exists.

	interface_by_macaddr(ethaddr): This method returns an Interface object given an Ethernet (MAC) address configured on one of the interfaces. An alias method port_by_macaddr(ethaddr) also exists.

Note that the above lookup methods raise a KeyError exception if the lookup name is invalid.

Other methods on the network object

Lastly, there is a shutdown method available on the network object. This method should be used by a Switchyard program prior to exiting in order to clean up and shut down various resources.

Let’s now add a bit to the previous example program to turn it into an almost-complete implementation of a hub. Whenever we receive a packet, we need to loop through the ports on the device and send the packet on a port as long as the port isn’t the one on which we received the packet (lines 21-23, below):

A (nearly) full implementation of a hub.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	from switchyard.lib.userlib import *

def main(net):
 # add some informational text about ports on this device
 log_info ("Hub is starting up with these ports:")
 for port in net.ports():
 log_info ("{}: ethernet address {}".format(port.name, port.ethaddr))

 while True:
 try:
 timestamp,input_port,packet = net.recv_packet()
 except Shutdown:
 # got shutdown signal
 break
 except NoPackets:
 # try again...
 continue

 # send the packet out all ports *except*
 # the one on which it arrived
 for port in net.ports():
 if port.name != input_port:
 net.send_packet(port.name, packet)

 # shutdown is the last thing we should do
 net.shutdown()

There’s still one thing missing from the above code, which is for the hub to ignore any frames that are destined to the hub itself. That is, if an Ethernet destination address in a received frame is the same as an Ethernet address assigned to one of the ports on the hub, the frame should not be forwarded (it can simply be ignored). Finishing off the hub by doing this is left as an exercise.

Introduction to packet parsing and construction

This section provides an overview of packet construction and parsing in Switchyard. For full details on these capabilities, see Packet parsing and construction reference.

Switchyard’s packet construction/parsing library is found in switchyard.lib.packet. Its design is based on a few other libraries out there, including POX’s library [2] and Ryu’s library [3].

There are a few key ideas to understand when using the packet library:

	The Packet class acts as a container of headers (or rather, of header objects).

	Headers within a packet can be accessed through methods on the Packet container object, and also by indexing. Headers are ordered starting with lowest layer protocols. For example, if a Packet has an Ethernet header (which is likely to be the lowest layer protocol), this header can be accessed with index 0 as in pktobj[0]. Indexes can be integers, and they can also be packet header class names (e.g., Ethernet, IPv4, etc.). For example, to access the Ethernet header of a packet, you can write pktobj[Ethernet].

	Fields in header objects are accessed through standard Python properties. The code to manipulate header fields thus looks like it is just accessing instance variables, but “getter” and “setter” method calls actually take place, depending on whether a property is being retrieved or assigned to.

	A packet object can be constructed by either expliciting instantiating an object and adding headers, or it can be formed by “adding” (using the + operator) headers together, or by appending headers onto a packet (using + or +=).

	The Switchyard framework generally automatically handles serializing and deserializing Packet objects to and from byte sequences (i.e., wire format packets), but you can also explicitly invoke those methods if you need to.

[image: _images/packet.png]

Here are some examples using Ethernet, IPv4, and ICMP headers. First, let’s construct a packet object and add these headers to the packet:

>>> from switchyard.lib.packet import *
>>> p = Packet() # construct a packet object
>>> e = Ethernet() # construct Ethernet header
>>> ip = IPv4() # construct IPv4 header
>>> icmp = ICMP() # construct ICMP header
>>> p += e # add eth header to packet
>>> p += ip # add ip header to packet
>>> p += icmp # add icmp header to packet
>>> print (p)
Ethernet 00:00:00:00:00:00->00:00:00:00:00:00 IP | IPv4 0.0.0.0->0.0.0.0 ICMP | ICMP EchoRequest 0 0 (0 data bytes)

A shorthand for doing the above is:

>>> p = Ethernet() + IPv4() + ICMP()

The effect of the + operator with header objects as in the previous line is to construct a packet object, just as the first example. Note that with the above one-line example, the default Ethertype for the Ethernet header is IPv4, and the default protocol number for IPv4 is ICMP. Thus, this example is somewhat special in that we didn’t need to modify any of the packet header fields to create a (mostly) valid packet. Lastly, note that the order in which we add packet headers together to construct a full packet is important: lower layers (e.g., Ethernet) must come first, followed by other protocol headers in their correct order.

Switchyard does not ensure that a constructed Packet is sensible in any way. It is possible to put headers in the wrong order, to supply illogical values for header elements (e.g., a protocol number in the IPv4 header that doesn’t match the next header in the packet), and to do other invalid things. Switchyard gives you the tools for constructing packets, but doesn’t tell you how to do so.

The num_headers Packet method returns the number of headers in a packet, which returns the expected number for this example:

>>> p.num_headers()
3

Note that the len function on a packet returns the number of bytes that the Packet would consume if it was in wire (serialized) format. The size method returns the same value.

>>> len(p)
42
>>> p.size()
42

(Note: Ethernet header is 14 bytes + 20 bytes IP + 8 bytes ICMP = 42 bytes.)

Packet header objects can be accessed conveniently by indexing. Standard negative indexing also works. For example, to obtain a reference to the Ethernet header object and to inspect and modify the Ethernet header, we might do the following:

>>> p[0] # access by index
<switchyard.lib.packet.ethernet.Ethernet object at 0x104474248>
>>> p[0].src
EthAddr('00:00:00:00:00:00')
>>> p[0].dst
EthAddr('00:00:00:00:00:00')
>>> p[0].dst = "ab:cd:ef:00:11:22"
>>> str(p[0])
'Ethernet 00:00:00:00:00:00->ab:cd:ef:00:11:22 IP'
>>> p[0].dst = EthAddr("00:11:22:33:44:55")
>>> str(p[0])
'Ethernet 00:00:00:00:00:00->00:11:22:33:44:55 IP'
>>> p[0].ethertype
<EtherType.IP: 2048>
>>> p[0].ethertype = EtherType.ARP
>>> print (p)
Ethernet 00:00:00:00:00:00->00:00:00:00:00:00 ARP | IPv4 0.0.0.0->0.0.0.0 ICMP | ICMP EchoRequest 0 0 (0 data bytes)
>> p[0].ethertype = EtherType.IPv4 # set it back to sensible value

Note that all header field elements are accessed through properties. For Ethernet headers, there are three properties that can be inspected and modified, src, dst and ethertype, as shown above. Notice also that Switchyard doesn’t prevent a user from setting header fields to illogical values, e.g., when we set the ethertype to ARP although the next header is IPv4, not ARP. All EtherType values are specified in switchyard.lib.packet.common, and imported when the module switchyard.lib.packet is imported.

Accessing header fields in other headers works similarly. Here are examples involving the IPv4 header:

>>> p.has_header(IPv4)
True
>>> p.get_header_index(IPv4)
1
>>> str(p[1]) # access by index
'IPv4 0.0.0.0->0.0.0.0 ICMP'
>>> str(p[IPv4]) # access by header type
'IPv4 0.0.0.0->0.0.0.0 ICMP'
>>> p[IPv4].protocol
<IPProtocol.ICMP: 1>
>>> p[IPv4].src
IPv4Address('0.0.0.0')
>>> p[IPv4].dst
IPv4Address('0.0.0.0')
>>> p[IPv4].dst = '149.43.80.13'

IPv4 protocol values are specified in switchyard.lib.packet.common, just as with EtherType values. Note, however, that you do not need to explicitly import this module if you import switchyard.lib.userlib — packet-related classes and enumerations are imported when importing userlib. The full set of properties that can be manipulated in the IPv4 header as well as all other headers is described in the reference documentation for the packet library.

Lastly, an example with the ICMP header shows some perhaps now familiar patterns. The main difference with ICMP is that the “data” portion of an ICMP packet changes, depending on the ICMP type. For example, if the type is 8 (ICMP echo request) the ICMP data becomes an object that allows the identifier and sequence values to be inspected and modified.

>>> p.has_header(ICMP)
True
>>> p.get_header_index(ICMP)
2
>>> p[2] # access by index; notice no conversion to string
<switchyard.lib.packet.icmp.ICMP object at 0x104449c78>
>>> p[ICMP] # access by header type
<switchyard.lib.packet.icmp.ICMP object at 0x104449c78>
>>> p[ICMP].icmptype
<ICMPType.EchoRequest: 8>
>>> p[ICMP].icmpcode
<EchoRequest.EchoRequest: 0>
>>> p[ICMP].icmpdata
<switchyard.lib.packet.icmp.ICMPEchoRequest object at 0x1044742c8>
>>> icmp.icmpdata.sequence
0
>>> icmp.icmpdata.identifier
0
>>> icmp.icmpdata.identifier = 42
>>> icmp.icmpdata.sequence = 13
>>> print (p)
Ethernet 00:00:00:00:00:00->00:11:22:33:44:55 IP | IPv4 0.0.0.0->149.43.80.13 ICMP | ICMP EchoRequest 42 13 (0 data bytes)

By default, no “payload” data are included in with an ICMP header, but we can change that using the data property on the icmpdata part of the header:

>>> icmp.icmpdata.data = "hello, world"
>>> print (p)
Ethernet 00:00:00:00:00:00->00:11:22:33:44:55 IP | IPv4 0.0.0.0->149.43.80.13 ICMP | ICMP EchoRequest 42 13 (12 data bytes)

Python keyword argument syntax can be used to assign values to header fields when a header object is constructed. This kind of syntax can make packet construction a bit more compact and streamlined. For example, if we wanted to make a UDP packet with some payload, we could do something like the following:

>>> e = Ethernet(src="11:22:33:44:55:66", dst="66:55:44:33:22:11", ethertype=EtherType.IP)
>>> ip = IPv4(src="1.2.3.4", dst="4.3.2.1", protocol=IPProtocol.UDP, ttl=32)
>>> udp = UDP(src=1234, dst=4321)
>>> p = e + ip + udp + b"this is some application payload!"
>>> print(p)
Ethernet 11:22:33:44:55:66->66:55:44:33:22:11 IP | IPv4 1.2.3.4->4.3.2.1 UDP | UDP 1234->4321 | RawPacketContents (33 bytes) b'this is so'...
>>>

Finally, to serialize the packet into a wire format sequence of bytes, we can use the to_bytes() method:

>>> p.to_bytes()
b'\x00\x11"3DU\x00\x00\x00\x00\x00\x00\x08\x00E\x00\x00(\x00\x00\x00\x00\x00\x01\xba\xd6\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\xb7|\x00*\x00\rhello, world'

Switchyard normally handles deserialization automatically, but there is a from_bytes(raw) method available that accepts a raw bytes object and reconstructs packet header attributes. It either succeeds or throws an exception. It returns any bytes that were not necessary for reconstructing the header.

As mentioned above, Switchyard does not require packets to be correctly constructed (e.g., there may be a TCP header in a packet without any IP header). As a result, while serialization will often succeed even if the packet is malformed, whereas deserialization often will not. The reason is that in deserialization, the contents of bytes earlier in a packet are necessary for determining how to reconstruct later headers and attributes in a packet (e.g., the ethertype attribute in the Ethernet header is necessary for determining which header comes next).

Other header classes that are available in Switchyard include Arp, UDP, TCP, IPv6, and ICMPv6. Again, see the packet library reference documentation for details on these header classes, and full documentation for all classes.

Utility functions

There are a few additional utility functions that are useful when developing a Switchyard program related to logging and debugging.

Logging functions

Switchyard uses Python’s standard logging facilities and provides four convenience functions. Each of these functions takes a string as a parameter and prints it to the console as a logging message. The only difference with the functions relates to the logging level (see logging in the Python library reference), and whether the output is colored to visually highlight a problem. The default logging level is INFO within Switchyard. If you wish to include debugging messages, you can use the -d flag for the various invocation programs (e.g., swyard), as described in Running in the test environment and Running in a “live” environment.

	
log_debug(str)

	Write a debugging message to the log using the log level DEBUG.

	
log_info(str)

	Write a debugging message to the log using the log level INFO.

	
log_warn(str)

	Write a debugging message to the log using the log level WARNING. Output
is colored magenta.

	
log_failure(str)

	Write a debugging message to the log using the log level CRITICAL. Output
is colored red.

While you can still use the built-in print function to write messages to the console, using the log functions provides a much more structured way of writing information to the screen.

Invoking the debugger

Although a longer discussion of debugging is included in a later section, it is worth mentioning that there is a built-in function named debugger that can be used anywhere in Switchyard code to immediately invoke the standard Python pdb debugger.

For example, if we add a call to debugger() in the example code above just after the try/except block, then run the code in a test environment, the program pauses immediately after the call to debugger and the pdb prompt is shown:

after hub code is started in test environment,
some output is shown, followed by this:

> /Users/jsommers/Dropbox/src/switchyard/xhub.py(29)main()
-> for port in net.ports():
(Pdb) list
 24
 25 debugger()
 26
 27 # send the packet out all ports *except*
 28 # the one on which it arrived
 29 -> for port in net.ports():
 30 if port.name != input_port:
 31 net.send_packet(port.name, packet)
 32

As you can see, the program is paused on the next executable line following the call to debugger(). At this point, any valid pdb commands can be given to inspect or alter program state. Once again, see later sections for details on running Switchyard code in a live environment and on other debugging capabilities.

Passing arguments into a Switchyard program

It is possible to pass in additional arguments to a Switchyard program via its main function. To accept additional arguments into your main function, you should at least add a *args parameter. You can optionally also accept keyword-style arguments by including a **kwargs parameter. For example, here is the initial part of a main function which accepts both:

def main(netobj, *args, **kwargs):
 # args is a list of arguments
 # kwargs is a dictionary of key-value keyword arguments

As noted in the code comment, the parameter *args will collect any non-keyword arguments into a list and the parameter **kwargs will collect any keyword-style arguments into a dictionary. Note that all argument values are passed in as strings, so your program may need to do some type conversion.

To pass arguments into your main function from invoking swyard on the command line, use the -g option. This option accepts a string, which should include all arguments to be passed to your main function, each separated by spaces. For keyword-style arguments, you can use the syntax param=value. Any space-separated strings that do not include the = character as passed into the arglist (args). For example, to pass in the value 13 and the keyword parameter debug=True, you could use the following command-line:

$ swyard -g "13 debug=True" ... (other arguments to swyard)

When invoking your main function, args would have a single value (the string '13') and kwargs would be the dictionary {'debug': 'True'} (notice that True would be a string since all arguments end up being passed in as strings).

Footnotes

	[1]	A hub is a network device with multiple physical ports. Any packet
to arrive on a port is sent back out all ports except for the one
on which it arrived.

	[2]	https://github.com/noxrepo/pox

	[3]	https://github.com/osrg/ryu

Running in the test environment

To run Switchyard in test mode, a test scenario file is needed. This file includes specifications of various events (sending particularly crafted packets, receiving packets, etc.) that a Switchyard program is expected to do if it behaves correctly. Also needed, of course, is the Switchyard program you wish to test. The test scenario files may be regular Python (.py) files, but they may alternatively have an extension .srpy if they have been compiled. For details on creating and compiling test scenarios, see Test scenario creation.

Let’s say your program is named myhub.py. To invoke Switchyard in test mode and subject your program to a set of tests, at minimum you would invoke swyard as follows:

$ swyard -t hubtests.srpy myhub

Note that the -t option puts swyard in test mode. The argument to the -t option should be the name of the test scenario to be executed, and the final argument is the name of your code. It doesn’t matter whether you include the .py extension on the end of your program name, so:

$ swyard -t hubtests.srpy myhub.py

would work the same as above.

Test output

When you run swyard in test mode and all tests pass, you’ll see something similar to the following:

Abbreviated (normal) test output.

 Results for test scenario hub tests: 8 passed, 0 failed, 0 pending

 Passed:
 1 An Ethernet frame with a broadcast destination address
 should arrive on eth1
 2 The Ethernet frame with a broadcast destination address
 should be forwarded out ports eth0 and eth2
 3 An Ethernet frame from 20:00:00:00:00:01 to
 30:00:00:00:00:02 should arrive on eth0
 4 Ethernet frame destined for 30:00:00:00:00:02 should be
 flooded out eth1 and eth2
 5 An Ethernet frame from 30:00:00:00:00:02 to
 20:00:00:00:00:01 should arrive on eth1
 6 Ethernet frame destined to 20:00:00:00:00:01 should be
 flooded out eth0 and eth2
 7 An Ethernet frame should arrive on eth2 with destination
 address the same as eth2's MAC address
 8 The hub should not do anything in response to a frame
 arriving with a destination address referring to the hub
 itself.

 All tests passed!

Note that the above output is an abbreviated version of test output and is normally shown in colored text when run in a capable terminal.

Verbose test output

If you invoke swyard with the -v (verbose) option, the test output includes quite a bit more detail:

Verbose test output.

 Results for test scenario hub tests: 8 passed, 0 failed, 0 pending

 Passed:
 1 An Ethernet frame with a broadcast destination address
 should arrive on eth1
 Expected event: recv_packet Ethernet
 30:00:00:00:00:02->ff:ff:ff:ff:ff:ff IP | IPv4
 172.16.42.2->255.255.255.255 ICMP | ICMP EchoRequest 0 0 (0
 data bytes) on eth1
 2 The Ethernet frame with a broadcast destination address
 should be forwarded out ports eth0 and eth2
 Expected event: send_packet(s) Ethernet
 30:00:00:00:00:02->ff:ff:ff:ff:ff:ff IP | IPv4
 172.16.42.2->255.255.255.255 ICMP | ICMP EchoRequest 0 0 (0
 data bytes) out eth0 and Ethernet
 30:00:00:00:00:02->ff:ff:ff:ff:ff:ff IP | IPv4
 172.16.42.2->255.255.255.255 ICMP | ICMP EchoRequest 0 0 (0
 data bytes) out eth2
 3 An Ethernet frame from 20:00:00:00:00:01 to
 30:00:00:00:00:02 should arrive on eth0
 Expected event: recv_packet Ethernet
 20:00:00:00:00:01->30:00:00:00:00:02 IP | IPv4
 192.168.1.100->172.16.42.2 ICMP | ICMP EchoRequest 0 0 (0
 data bytes) on eth0

 ...

Note that the above output has been truncated — output would normally be shown for all tests. When invoked with the verbose option, individual tests show exactly what packets would be expected (either as input to a device or as output from it).

Test scenario descriptions that drive test executions as shown here are composed of a series of test expectations. Test expectations may be that a packet is received on a particular port, or that a packet is emitted out one or more ports, or that the user code calls recv_packet but times out (and thus nothing is received). Both the abbreviated and verbose test output shown above contain brief descriptions of the nature of each test. In the verbose output, packet details related to each test are also shown. Reading this information can help to understand what the tests are trying to accomplish, especially when a test expectation fails.

When a test fails

If some test expectation is not met, then the output indicates that something has gone wrong and, by default, Switchyard gives the user the standard Python pdb debugger prompt. The motivation for immediately putting the user in pdb is to enable just-in-time debugging. If the test output is read carefully and can be used to identify a flaw by inspecting code and data at the time of failure, then this should help to facilitate the development/testing/debugging cycle. At least that’s the hope.

Say that we’ve done something wrong in our code which causes a test expectation to fail. The output we see might be similar to the following (note that to create the output below, we’ve used the full set of hub device tests, but the code we’ve used is the broken code we started with in Writing a Switchyard program that sends any packet back out the same port that it arrived on):

Normal (abbreviated) test output when one test fails.

 Results for test scenario hub tests: 1 passed, 1 failed, 6 pending

 Passed:
 1 An Ethernet frame with a broadcast destination address
 should arrive on eth1

 Failed:
 The Ethernet frame with a broadcast destination address
 should be forwarded out ports eth0 and eth2
 Expected event: send_packet(s) Ethernet
 30:00:00:00:00:02->ff:ff:ff:ff:ff:ff IP | IPv4 | ICMP out
 eth0 and Ethernet 30:00:00:00:00:02->ff:ff:ff:ff:ff:ff IP |
 IPv4 | ICMP out eth2

 Pending (couldn't test because of prior failure):
 1 An Ethernet frame from 20:00:00:00:00:01 to
 30:00:00:00:00:02 should arrive on eth0
 2 Ethernet frame destined for 30:00:00:00:00:02 should be
 flooded out eth1 and eth2
 3 An Ethernet frame from 30:00:00:00:00:02 to
 20:00:00:00:00:01 should arrive on eth1
 4 Ethernet frame destined to 20:00:00:00:00:01 should be
 flooded out eth0 and eth2
 5 An Ethernet frame should arrive on eth2 with destination
 address the same as eth2's MAC address
 6 The hub should not do anything in response to a frame
 arriving with a destination address referring to the hub
 itself.

 ... (output continues)

Notice in the first line of output that Switchyard shows how many tests pass, how many have
failed, and how many are pending. The pending category simply means that tests cannot be run because some earlier test failed. In the example above, the output from swyard clearly shows which test fails; when that happens, some additional explanatory text is shown, and a debugger session is started as close as possible to the point of failure. When not run in verbose mode, Switchyard will show abbreviated test descriptions for any passed tests and any pending tests, but the failed test will show everything.

Following the overall test results showing passed, failed, and pending tests, some summary information is displayed about the test failure, and a debugging session is started. By default, Switchyard uses Python’s built-in pdb debugger. At the very end of the output, a stack trace is shown and a debugger prompt is displayed:

Additional output from a test failure. Notice the error diagnosis in the output below, as well as how Switchyard invokes the debugger (pdb) at the point of failure.

 **
 Your code didn't crash, but a test failed.
 **

 This is the Switchyard equivalent of the blue screen of death.
 As far as I can tell, here's what happened:

 Expected event:
 The Ethernet frame with a broadcast destination address
 should be forwarded out ports eth0 and eth2

 Failure observed:
 You called send_packet with an unexpected output port eth1.
 Here is what Switchyard expected: send_packet(s) Ethernet
 30:00:00:00:00:02->ff:ff:ff:ff:ff:ff IP | IPv4
 172.16.42.2->255.255.255.255 ICMP | ICMP EchoRequest 0 0 (0
 data bytes) out eth0 and Ethernet
 30:00:00:00:00:02->ff:ff:ff:ff:ff:ff IP | IPv4
 172.16.42.2->255.255.255.255 ICMP | ICMP EchoRequest 0 0 (0
 data bytes) out eth2.

 You can rerun with the -v flag to include full dumps of packets that
 may have caused errors. (By default, only relevant packet context may
 be shown, not the full contents.)

 I'm throwing you into the Python debugger (pdb) at the point of failure.
 If you don't want pdb, use the --nopdb flag to avoid this fate.

 > /Users/jsommers/Dropbox/src/switchyard/switchyard/llnettest.py(95)send_packet()
 -> SwitchyardTestEvent.EVENT_OUTPUT, device=devname, packet=pkt)
 > /Users/jsommers/Dropbox/src/switchyard/documentation/code/inout1.py(6)main()
 -> net.send_packet(input_port, packet)
 (Pdb)

Again, notice that the last couple lines show a (partial) stack trace. These lines can help a bit to understand the context of the error, but it is often helpful to show the source code around the failed code in light of the error diagnosis under “Failure observed”, which says that we called send_packet with an unexpected output port. If we keep reading the diagnosis, we see that the packet was expected to be forwarded out two ports (eth0 and eth2), but was instead sent on eth1. Showing the source code can be accomplished with pdb‘s list command:

Output from pdb when listing the source code at the point of failure.

 (Pdb) list
 8
 9 # alternatively, the above line could use indexing, although
 10 # readability suffers:
 11 # recvdata[0], recvdata[2], recvdata[1]))
 12
 13 -> net.send_packet(recvdata.input_port, recvdata.packet)
 14
 15 # likewise, the above line could be written using indexing
 16 # but, again, readability suffers:
 17 # net.send_packet(recvdata[1], recvdata[2])
 [EOF]
 (Pdb)

Between thinking about the observed failure and viewing the code, we might realize that we have foolishly sent the frame out the same interface on which it arrived.

Another example

To give a slightly different example, let’s say that we’re developing the code for a network hub, and because we love sheep, we decide to set every Ethernet source address to ba:ba:ba:ba:ba:ba. When we execute Switchyard in test mode (e.g., swyard -t hubtests.py baaadhub.py), we get the following output:

Test output for an example in which all Ethernet source addresses have been hijacked by sheep.

 Results for test scenario hub tests: 1 passed, 1 failed, 6 pending

 Passed:
 1 An Ethernet frame with a broadcast destination address
 should arrive on eth1

 Failed:
 The Ethernet frame with a broadcast destination address
 should be forwarded out ports eth0 and eth2
 Expected event: send_packet(s) Ethernet
 30:00:00:00:00:02->ff:ff:ff:ff:ff:ff IP | IPv4
 172.16.42.2->255.255.255.255 ICMP | ICMP EchoRequest 0 0 (0
 data bytes) out eth0 and Ethernet
 30:00:00:00:00:02->ff:ff:ff:ff:ff:ff IP | IPv4
 172.16.42.2->255.255.255.255 ICMP | ICMP EchoRequest 0 0 (0
 data bytes) out eth2

 Pending (couldn't test because of prior failure):
 1 An Ethernet frame from 20:00:00:00:00:01 to
 30:00:00:00:00:02 should arrive on eth0
 2 Ethernet frame destined for 30:00:00:00:00:02 should be
 flooded out eth1 and eth2
 3 An Ethernet frame from 30:00:00:00:00:02 to
 20:00:00:00:00:01 should arrive on eth1
 4 Ethernet frame destined to 20:00:00:00:00:01 should be
 flooded out eth0 and eth2
 5 An Ethernet frame should arrive on eth2 with destination
 address the same as eth2's MAC address
 6 The hub should not do anything in response to a frame
 arriving with a destination address referring to the hub
 itself.

 **
 Your code didn't crash, but a test failed.
 **

 This is the Switchyard equivalent of the blue screen of death.
 As far as I can tell, here's what happened:

 Expected event:
 The Ethernet frame with a broadcast destination address
 should be forwarded out ports eth0 and eth2

 Failure observed:
 You called send_packet and while the output port eth0 is ok,
 an exact match of packet contents failed. In the Ethernet
 header, src is wrong (is ba:ba:ba:ba:ba:ba but should be
 30:00:00:00:00:02).

 ... output continues ...

In this case, we can see that the first section is basically the same as with the other erroneous code, but the failure description is different: Switchyard tells us that in the Ethernet header, the src attribute was wrong. If, at the pdb prompt, we type list, we see our wooly problem:

Pdb source code listing showing the point of test failure.

 (Pdb) list
 28 else:
 29 for intf in my_interfaces:
 30 if dev != intf.name:
 31 log_info ("Flooding packet {} to {}".format(packet, intf.name))
 32 eth.src = 'ba:ba:ba:ba:ba:ba' # sheep!
 33 -> net.send_packet(intf, packet)
 34 net.shutdown()
 [EOF]
 (Pdb)

So, although the error diagnosis cannot generally state why a problem has happened, it can sometimes be quite specific about what has gone wrong. That, coupled with showing the source code context, can be very helpful for tracking down bugs. It might also be helpful to note that at the pdb prompt, you can inspect any variable in order to figure out what’s happened, walk up and down the call stack and execute arbitrary Python statements in order to try to determine what has happened. Debuggers can be a little bit daunting, but they’re incredibly helpful tools.

See also

To learn more about pdb and the various commands and capabilities it has, refer to the Python library documentation (there’s a section specifically on pdb). There are other debuggers out there with additional features, but pdb is always available with any Python distribution so it is worth acquainting yourself with it.

Even more verbose output

If you’d like even more verbose output, you can add the -v (verbose) and/or -d (debug) flags to swyard. The -d flag may be more trouble than it’s worth since it enables all DEBUG-level log messages to be printed to the console. If you’re really stuck trying to figure out what’s going on, however, this may be useful.

If you don’t like pdb

If you don’t appreciate being dumped into the pdb debugger when something fails (maybe you’re a cretin who really just likes printf-style debugging?), you can add the --nopdb flag to swyard. With the --nopdb option, Switchyard will print out information about test failure, but you’ll go straight back to a command-line prompt.

If you’d like to use a debugger, but just not pdb, you can use the --nohandle (or -e) option to tell Switchyard not to trap any exceptions, but to let them be raised normally. You can then catch any exceptions using an alterative debugger. For example, if you’d like to use the PuDB debugger, you could invoke swyard as follows:

$ python3 -m pudb.run swyard --nohandle ...

where the ellipsis is replaced with other command-line arguments to swyard.

Debugging Switchyard code

When running Switchyard, especially in test mode, it is often very helpful to use the interactive Python debugger as you work out problems and figure things out. With the import of switchyard.lib.userlib you get a function named debugger. You can insert calls to the debugger function where ever you want to have an interactive debugger session start up. For example, we could create a simple program that starts up a debugger session when ever we receive a packet:

from switchyard.lib.userlib import *

def main(net):
 while True:
 try:
 timestamp,input_port,packet = net.recv_packet(timeout=1.0)
 except NoPackets:
 # timeout waiting for packet arrival
 continue
 except Shutdown:
 # we're done; bail out of while loop
 break

 # invoke the debugger every time we get here, which
 # should be for every packet we receive!
 debugger()
 hdrs = packet.num_headers()

 # before exiting our main function,
 # perform shutdown on network
 net.shutdown()

If we run the above program, we will stop at the line after the call to debugger:

When the debugger() call is added to a Switchyard program, execution is halted at the next line of code.

 > /users/jsommers/dropbox/src/switchyard/documentation/code/enterdebugger.py(17)main()
 -> hdrs = packet.num_headers()
 (Pdb) list
 12 break
 13
 14 # invoke the debugger every time we get here, which
 15 # should be for every packet we receive!
 16 debugger()
 17 -> hdrs = packet.num_headers()
 18
 19 # before exiting our main function,
 20 # perform shutdown on network
 21 net.shutdown()
 [EOF]
 (Pdb)

Note

There are currently a couple limitations when entering pdb through a call to debugger(). First, if you attempt to exit pdb while the Switchyard program is still running, an exception from pdb‘s base class (Bdb) will get raised. Thus, it may take a couple invocations of the quit command to actually exit. Second, only the pdb debugger may be invoked through a call to debugger.

As noted above, if there is a runtime error in your code, Switchyard will automatically dump you into the Python debugger (pdb) to see exactly where the program crashed and what may have caused it. You can use any Python commands to inspect variables, and try to understand the state of the program at the time of the crash.

Checking code coverage

If you want to check which lines of code are covered by one or more test scenarios, you can install and use the coverage package. This can be helpful for seeing which lines of your code are not being exercised by tests, and how you might focus additional testing effort.

To install:

$ pip3 install coverage

To gather code coverage information, you can invoke swyard using coverage. coverage appears to work best if you give the full path name of swyard, which is what the following command line will do (using backtick-substitution for the which swyard command). You can use command-line options to swyard as you normally would:

$ coverage run `which swyard` -v -d -t testscenario.py yourcode.py

Once you’ve created the coverage information you can display a report. The html report will nicely show exactly which lines of your code were executed during a test and which weren’t. To avoid seeing coverage information for irrelevant files, you should explicitly tell coverage which files you want to include in the report.

$ coverage html --include yourcode.py

After running the above command, you can open the file index.html within the htmlcov folder. Clicking on a file name will show detailed coverage information.

Test scenario creation

Writing tests to determine whether a piece of code behaves as expected is an important part of the software development process. With Switchyard, it is possible to create a set of tests that verify whether a program attempts to receive packets when it should and sends the right packet(s) out the right ports. This section describes how to construct such tests.

A test scenario is Switchyard’s term for a series of tests that verify a program’s behavior. A test scenario is simply a Python source code file that includes a particular variable name (symbol) called scenario, which must refer to an instance of the class TestScenario. A TestScenario object contains the basic configuration for an imaginary network device along with an ordered series of test expectations. These expectations may be one of three types:

	that a particular packet should arrive on a particular interface/port,

	that a particular packet should be emitted out one or more ports, and

	that the user program should time out when calling recv_packet because no packets are available.

To start off, here is an example of an empty test scenario:

An empty test scenario.

from switchyard.lib.userlib import *

scenario = TestScenario("test example")

If we run swyard in test mode using this test description and any Switchyard program, here’s the output we should see:

Results for test scenario test example: 0 passed, 0 failed, 0 pending

All tests passed!

Notice that in the above example code, we assigned the instance of the TestScenario class to a variable named scenario. An assignment to this variable name is required. If it is not found, you’ll get an ImportError exception. Notice also that there’s one parameter to TestScenario: this value can be any meaningful description of the test scenario.

There are two methods on TestScenario that are used to configure the test environment:

	add_interface(name, macaddr, ipaddr=None, netmask=None, **kwargs)

This method adds an interface/port to an imaginary network device that is the subject of the test scenario. For example, if you are creating a test for an IP router and you want to verify that a packet received on one port is forwarded out another (different) port on the device, you will need to add at least two interfaces. Arguments to the add_interface method are used to specify the interface’s name (e.g., en0), its hardware Ethernet (MAC) address, and its (optional) IP address and netmask.

Two optional keyword arguments can also be given: ifnum can be used to explicitly specify the number (integer) associated with this interface, and iftype can be used to explicitly indicate the type of the interface. A value from the enumeration InterfaceType must be used, e.g., Wired, Wireless, Loopback, or Unknown. The type of an interface defaults to InterfaceType.Unknown.

	add_file(filename, text)

It is sometimes necessary to make sure that certain text files are available during a test that a user program expects, e.g., a static forwarding table for an IP router. This method can be used to specify that a file with the name filename and with contents text should be written to the current directory when the test scenario is run.

There is one method that creates a new test expectation in the test scenario:

	expect(expectation_object, description)

This method adds a new expected event to the test scenario. The first parameter must be an object of type PacketInputEvent, PacketInputTimeoutEvent, or PacketOutputEvent (each described below). The order in which expectations are added to a test scenario is critical: be certain that they’re added in the right order for the test you want to accomplish!

The description parameter is a short text description of what this test step is designed to accomplish. In swyard test output, this description is what is printed for each step in both the abbreviated and verbose output: make sure it is descriptive enough so that the purpose of the test can be easily understood. At the same time, try to keep the text short so that it isn’t overwhelming to a reader.

The three event classes set up the specific expectations for each test, as described next.

	PacketInputEvent(portname, packet, display=None, copyfromlastout=None)

Create an expectation that a particular packet will arrive and be received on a port named portname. The packet must be an instance of the Switchyard Packet class. The portname is just a string like eth0. This port/interface must have previously be configured in the test scenario using the method add_interface (see above).

The display argument indicates whether a particular header in the packet should be emphasized on output when Switchyard shows test output to a user. By default, all headers are shown. If a test creator wants to ignore the Ethernet header but emphasize the IPv4 header, he/she could use the argument display=IPv4. That is, the argument is just the class name of the packet header to be emphasized.

The copyfromlastout argument can be used to address the situation in which a test scenario author wants to construct an incoming packet (that will be received by recv_packet) which has the same values in some packet header fields as the most recent packet emitted. For example, when creating a protocol stack, an application (socket) program might emit a packet with a source port number assigned by the socket emulation module. The destination port number in an arriving packet needs to be the same as the packet that was previously emitted in order for it to be handed to the correct application program. Thus, the copyfromlastout can be used to copy one or more packet header attributes from the last emitted packet to header fields in an incoming packet.

copyfromlastout can take a tuple of 5 elements: the interface/port name out which the packet was sent, a header class name and attribute to copy from, and a header class name and attribute to copy to. For example, if we wanted to copy the UDP source port value from the last packet emitted out port en1 to the UDP destination port of the packet to be received, we could use the following:

PacketInputEvent('en1', pkt, copyfromlastout('en1', UDP, 'src', UDP, 'dst'))

Note that we would need to have created a Packet object named pkt which included a UDP header for this example to work correctly.

	PacketInputTimeoutEvent(timeout)

Create an expectation that the Switchyard user program will call recv_packet but time out prior to receiving anything. The timeout value is the number of seconds to wait within the test framework before raising the NoPackets exception in the user code. In order for this test expectation to pass, the user code must correctly handle the exception and must not emit a packet.

To force a NoPackets exception, the timeout value given to this event must be greater than the timeout value used in a call to recv_packet. Note also that the test framework will pause for the entire duration of the given timeout. If a user program calls net.recv_packet(timeout=1.0) but the timeout given for a PacketInputTimeoutEvent is 5 seconds, the call to recv_packet will appear to have blocked for 5 seconds, not 1.

	PacketOutputEvent(*args, display=None, exact=True, predicates=[], wildcard=[])

Create an expectation that the user program will emit packets out one or more ports/interfaces. The only required arguments are args, which must be an even number of arguments. For each pair of arguments given, the first is a port name (e.g., en0) and the second is a reference to a packet object. Normally, a test wishes to establish that the same packet has been emitted out multiple interfaces. To do that, you could simply write:

p = Packet()
fill in some packet headers ...
PacketOutputEvent('en0', pkt, 'en1', pkt, 'en2', pkt)

The above code expects that the same packet (named pkt) will be emitted out three interfaces (en0, en1, and en2).

By default, the PacketOutputEvent class looks for an exact match between the reference packet supplied to PacketOutputEvent and the packet that the user code actually emits. In some cases, this isn’t appropriate or even possible. For example, you may want to verify that packets are forwarded correctly using standard IP (longest prefix match) forwarding rules, but you may not know the payload contents of a packet because another test element may modify them. As another example, in IP forwarding you know that the TTL (time-to-live) should be decremented by one, but the specific value in an outgoing packet depends on the value on the incoming packet, which the test framework may not know in advance. To handle these situations, you can supply exact, wildcard(s), and/or predicate(s) keyword arguments, as detailed below.

	Exact vs. subset matching: Setting exact to True or False determines whether all packet header attributes are compared (exact=True) or whether a limited subset are compared (exact=False).

The set of header fields that are compared when exact=False is specified are: Ethernet source and destination addresses, Ethernet ethertype field, Vlan vlanid and ethertype field, ARP target and sender protocol and hardware addresses (four fields), IPv4/IPv6 source and destination addresses and protocol, and TCP/UDP src/dst port numbers (or ICMP/ICMPv6 icmptype/icmpcode fields). Note that in subset matching no packet payloads are compared.

	Wildcard fields: In addition to specifying the exact keyword parameter, it is possible to specify that some additional header fields should be wildcarded. That is, the wildcarded header fields are allowed to contain any value. Wildcards are specified using a tuple of two elements: a header class name and a field name.

A single wildcard can be supplied (i.e., one 2-tuple) with the wildcard keyword parameter, or a list of 2-tuples can be supplied with the wildcards keyword. For example, the following line of code uses subset matching (exact=False) and one wildcard. For this example, assume that the packet pkt contains Ethernet, IPv4, and UDP headers:

PacketOutputEvent('en0', pkt, exact=False, wildcard=(IPv4, 'src'))

Note that for the above example, the only fields compared in the IPv4 header would be the destination address and protocol field (since other fields are already ignored with exact=False).

Here is another example that ignores source addresses in the Ethernet, IPv4 and UDP fields, leaving only two fields in the Ethernet header to be compared (dst and ethertype), two fields to be compared in the IPv4 header (dst and protocol) and one field in UDP (dst). Again, assume that the packet pkt contains Ethernet, IPv4, and UDP headers:

PacketOutputEvent('en0', pkt, exact=False, wildcards=[(Ethernet, 'src'), (IPv4, 'src'), (UDP, 'src')])

Note

Switchyard previously allowed certain strings (modeled on the Openflow 1.0 specification) to be used to indicate wildcarded fields. These strings can no longer be used in the current version of Switchyard. To specify wildcarded fields, you must use the (hdrclass, attribute) syntax.

	Predicate functions: Lastly, predicate functions can be supplied to make arbitrary tests against packets. The predicate keyword argument can take a single lambda function in the form of a string, and the predicates keyword argument can take a list of lambda functions, each as strings. Each lambda given must take a single argument (the packet object to be inspected) and must yield a boolean value. (Note that internally, each lambda definition is eval‘ed by Switchyard.)

Here is one example that checks whether the IPv4 ttl field is between 32 and 34, inclusive. Note that this line of code contains a single predicate function as a string:

PacketOutputEvent('en1', pkt, exact=False, predicate='''lambda p: p.has_header(IPv4) and 32 <= p[IPv4].ttl <= 34''')

To provide multiple predicates, just use the predicates (plural) keyword and provide a list of lambdas-as-strings.

Test scenario examples

First, here is an example of a test scenario in which a packet is constructed and is expected to be received on port eth1, then sent back out the same port, unmodified. Notice in the example that the name scenario is required.

A test scenario in which a packet is received then sent back out the same port.

from switchyard.lib.userlib import *

scenario = TestScenario("in/out test scenario example")

only one interface on this imaginary device
scenario.add_interface('eth0', 'ab:cd:ef:ab:cd:ef', '1.2.3.4', '255.255.0.0',
 iftype=InterfaceType.Wired)

construct a packet to be received
p = Ethernet(src="00:11:22:33:44:55", dst="66:55:44:33:22:11") + \
 IPv4(src="1.1.1.1", dst="2.2.2.2", protocol=IPProtocol.UDP) + \
 UDP(src=5555, dst=8888) + b'some payload'

expect that the packet is received
scenario.expect(PacketInputEvent('eth0', p),
 "A udp packet should arrive on eth0")

and expect that the packet is sent right back out
scenario.expect(PacketOutputEvent('eth0', p, exact=True),
 "The udp packet should be emitted back out eth0")

Here is an additional example with a bit more complexity. The context for this example might be that we are implementing an IPv4 router. First, notice that we include in the scenario a static forwarding table file (forwarding_table.txt) to be written out when the scenario is executed. We construct a packet destined to a particular IP address and create an expectation that it arrives on port eth0. We then construct an expectation that the packet should be forwarded out port eth2 (note that according to the forwarding table, any packets destined to 2.0.0.0/8 should be forwarded out that port). We also include a predicate function to test that the IPv4 ttl is decremented by 1. Note that if we did not include this predicate, any ttl value would be accepted since we have specified exact=False. Note also that if we had set exact=True we would almost certainly need to wildcard several fields, e.g., checksums in the IPv4 and UDP headers, and would still need to include a predicate to check that ttl has been properly decremented. Furthermore, if we were writing a test scenario for an IP router, we would also want to include expectations that the correct ARP messages were sent in order to obtain the hardware address corresponding to the next hop IP address.

A simplified IP forwarding test scenario.

from switchyard.lib.userlib import *

scenario = TestScenario("packet forwarding example")

three interfaces on this device
scenario.add_interface('eth0', 'ab:cd:ef:ab:cd:ef', '1.2.3.4', '255.255.0.0')
scenario.add_interface('eth1', '00:11:22:ab:cd:ef', '5.6.7.8', '255.255.0.0')
scenario.add_interface('eth2', 'ab:cd:ef:00:11:22', '9.10.11.12', '255.255.255.0')

add a forwarding table file to be written out when the test
scenario is executed
scenario.add_file('forwarding_table.txt', '''
network subnet-mask next-hop port
2.0.0.0 255.0.0.0 9.10.11.13 eth2
3.0.0.0 255.255.0.0 5.6.100.200 eth1
''')

construct a packet to be received
p = Ethernet(src="00:11:22:33:44:55", dst="66:55:44:33:22:11") + \
 IPv4(src="1.1.1.1", dst="2.2.2.2", protocol=IPProtocol.UDP, ttl=61) + \
 UDP(src=5555, dst=8888) + b'some payload'

expect that the packet is received
scenario.expect(PacketInputEvent('eth0', p),
 "A udp packet destined to 2.2.2.2 arrives on port eth0")

and subsequently forwarded out the correct port; employ
subset (exact=False) matching, along with a check that the
IPv4 TTL was decremented exactly by 1.
scenario.expect(PacketOutputEvent('eth2', p, exact=False,
 predicate='''lambda pkt: pkt.has_header(IPv4) and pkt[IPv4].ttl == 60'''),
 "The udp packet destined to 2.2.2.2 should be forwarded out port eth2, with an appropriately decremented TTL.")

Compiling a test scenario

A test scenario can be run directly with swyard or it can be compiled into a form that can be distributed without giving away the code which was used to construct it. Compiled test scenario files are, by default, given a .srpy extension; uncompiled test scenarios should just be regular Python (.py) files.

To compile a test scenario, you can simply invoke swyard with the -c flag, as follows:

swyard -c code/testscenario2.py

The output from this command should be a new file named code/testscenario2.srpy containing the obfuscated test scenario. This file can be used as the argument to the -t option when later running a Switchyard program against those tests.

Note

Note that if a scenario is compiled using a different version of Python than the one used to run a test scenario (especially a different major version, e.g., 3.4 vs. 3.5), you may get some mysterious errors. The errors are due to the fact that serialized representations of Python objects may change from one version to the next; if there are any changes, then the version used to run the test cannot correctly deserialize the various objects stored in the test scenario.

Running in a “live” environment

Switchyard programs can be either run in an isolated test environment, as described above, or on a live host operating system. Switchyard currently supports Linux and macOS hosts for live execution.

Note

Switchyard uses the libpcap library for receiving and sending packets, which generally requires root privileges. Although hosts can be configured so that root isn’t required for using libpcap, this documentation does not include instructions on how to do so. The discussion below assumes that you are gaining root privileges by using the sudo (i.e., “do this as superuser”) program. Contrary to popular belief, sudo cannot make you a sandwich.

Basic command-line recipe

The basic recipe for running Switchyard on a live host is pretty simple. If we wanted to run the sniff.py Switchyard program (available in the examples folder in the Switchyard github repository) and use all available network interfaces on the system, we could do the following:

$ sudo swyard sniff.py

Again, note that the above line uses sudo to gain the necessary privileges to be able to send and receive “live” packets on a host.

Note

If you can an error when attempting to run swyard with sudo such as this:

sudo: swyard: command not found

you will need to either create a shell script which activates your Python virtual environment and run that script with sudo, or run swyard from a root shell (e.g., by running sudo -s. If doing the latter, you will still need to activate the Python virtual environment once you start the root shell, after which you can run swyard as normal. If using Switchyard in Mininet, in any shell you open (e.g., using the xterm command, which opens a root shell on a virtual host in Mininet) you’ll need to activate the Python virtual environment prior to running swyard.

The sniff.py program will simply print out the contents of any packet received on any interface while the program runs. To stop the program, type Control+c.

Here’s an example of what output from running sniff.py might look like. Note that the following example was run on a macOS host and that the text times/dates have been changed:

Example of Switchyard output from running in a live environment on a macOS host.

 00:00:56 2016/12/00 INFO Enabling pf: No ALTQ support in kernel; ALTQ related functions disabled; pf enabled; Token : 15170097737539790927
 00:00:56 2016/12/00 INFO Using network devices: en1 en0 en2
 00:00:56 2016/12/00 INFO My interfaces: ['en0', 'en1', 'en2']
 00:00:56 2016/12/00 INFO 1482563936.430: en0 Ethernet a4:71:74:49:e2:e6->ac:bc:32:c2:b6:59 IP | IPv4 104.84.41.100->192.168.0.102 TCP | TCP 443->51094 (A 1772379675:466295739) | RawPacketContents (1448 bytes) b'\x17\x03\x03\x0c-\xc5\xeap\xd1L'...
 00:00:56 2016/12/00 INFO 1482563936.430: en0 Ethernet a4:71:74:49:e2:e6->ac:bc:32:c2:b6:59 IP | IPv4 104.84.41.100->192.168.0.102 TCP | TCP 443->51094 (A 1772381123:466295739) | RawPacketContents (1448 bytes) b'\xca5K\xfb\x88\x01\xec\xb4\xf0\x84'...
 00:00:56 2016/12/00 INFO 1482563936.430: en0 Ethernet a4:71:74:49:e2:e6->ac:bc:32:c2:b6:59 IP | IPv4 104.84.41.100->192.168.0.102 TCP | TCP 443->51094 (PA 1772382571:466295739) | RawPacketContents (226 bytes) b'\xb1\x9d\xad8g]\xc3\xech\x9e'...

 ... (more packets, removed for this example)

 ^C
 00:00:58 2016/12/00 INFO Releasing pf: No ALTQ support in kernel; ALTQ related functions disabled; disable request successful. 1 more pf enable reference(s) remaining, pf still enabled.

Note in particular a few things about the above example:

	First, when started in a live setting, Switchyard saves then clears any current host firewall settings. The saved firewall settings are restored when Switchyard exits (see the final log line, above).

The default behavior of Switchyard is to block all traffic. This behavior may be undesirable in different situations and can be changed through the swyard command line option -f or --firewall, as described below.

Switchyard’s manipulation of the host operating system firewall is intended to prevent the host from receiving any traffic that should be the sole domain of Switchyard. For example, if you are creating a Switchyard-based IP router, you want Switchyard, not the host, to be responsible for receiving and forwarding traffic. As another example, if you are implementing a protocol stack for a particular UDP-based application, you will want to prevent the host from receiving any of that UDP traffic.

Note that on macOS Switchyard configures host firewall settings using pfctl and on Linux Switchyard uses iptables.

	By default, Switchyard finds and uses all interfaces on the host that are (1) determined to be “up” (according to libpcap), and (2) not a localhost interface. In the above example run, Switchyard finds and uses three interfaces (en0, en1, and en2).

	The above example shows three packets that were observed by Switchyard, each arriving on interface en0. Notice that the three packets each contain Ethernet, IPv4 and TCP packet headers, as well as payload (in the form of RawPacketContents objects at the end of each packet).

Here is an example of running the Switchyard example sniff.py program on a Linux host (note again that the text times/dates have been changed):

Example of Switchyard output from running in a live environment on a Linux host.

 00:00:11 2016/12/00 INFO Saving iptables state and installing switchyard rules
 00:00:11 2016/12/00 INFO Using network devices: enp0s3
 00:00:11 2016/12/00 INFO My interfaces: ['enp0s3']
 00:00:15 2016/12/00 INFO 1482564855.115: enp0s3 Ethernet 08:00:27:bb:27:89->01:00:5e:00:00:fb IP | IPv4 10.0.2.15->224.0.0.251 UDP | UDP 5353->5353 | RawPacketContents (45 bytes) b'\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00'...
 00:00:16 2016/12/00 INFO 1482564856.172: enp0s3 Ethernet 08:00:27:bb:27:89->33:33:00:00:00:fb IPv6 | IPv6 fe80::a00:27ff:febb:2789->ff02::fb UDP | UDP 5353->5353 | RawPacketContents (45 bytes) b'\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00'...

 ... (more packets, removed for this example)

 ^C
 00:00:23 2016/12/00 INFO Restoring saved iptables state

Comparing the above output to the earlier macOS output, observe that:

	The firewall save/restore log lines (first and last) are somewhat different, reflecting the fact that iptables is used on Linux instead of pf.

	There is one interface found and used by Switchyard: enp0s3.

	Two packets are included in the output above: an IPv4 UDP packet and an IPv6 UDP packet.

As with running Switchyard in a test environment, you may wish to use the -v and/or -d options to increase Switchyard’s output verbosity or to include debugging messages, respectively.

Including or excluding particular interfaces

When running Switchyard in a virtual machine environment such as on a Mininet container host, it is often the case that you want Switchyard to “take over” all available network interfaces on the host. When running Switchyard in other environments, however, you may want to restrict the interfaces that it uses. You may even want Switchyard to use the localhost interface (typically named lo0 or lo). There are two command-line options that can be used for these purposes.

	
-i <interface-name>

	Explicitly include the given interface for use by Switchyard. This option can be used more than once to include more than one interface.

If this option is given, only the interfaces specified by -i options will be used by Switchyard. If no -i option is specified, Switchyard uses all available interfaces except the localhost interface.

To use a localhost interface, you must explicitly include it using this option. If you explicitly include the localhost interface, you can still explicitly include other interfaces.

	
-x <interface-name>

	Explicitly exclude the given interface for use by Switchyard. This option can be used more than once to exclude more than one interface.

Switchyard’s behavior with this option is to first discover all interfaces available on the host, then to remove any specified by -x.

Note that given the semantics described above, it generally makes sense only to specify one of -i or -x.

Firewall options

As noted above, Switchyard’s default behavior is to prevent the host operating system from receiving any traffic while Switchyard is running. This may be undesirable in certain situations, and the -f or --firewall options to swyard are available to change this behavior.

The -f and --firewall options accept a single rule as a parameter (which in many cases needs to be quoted in the shell). The rule syntax is proto[:port], where the [:port] part is optional and proto may be one of tcp, udp, icmp, none or all. If all is specified, the port part should not be included; all will block all traffic on the interfaces used by Switchyard. If none is specified, again, no port should be specified; none will cause no rules to be installed to block traffic. Here are some examples:

	tcp

	Block the host from receiving all TCP traffic

	tcp:8000

	Block the host from receiving TCP traffic on port 8000

	icmp

	Block the host from receiving all ICMP traffic

	udp:4567

	Block the host from receiving UDP traffic on port 4567

	none

	Do not block any traffic.

	all

	Block the host from receiving all traffic. This is the default behavior.

If the -v (verbose) option is given to swyard, the host firewall module will print (to the log) firewall settings that have been enabled. Here are two examples from running swyard in a live environment (on macOS with the pf firewall). First, an example showing Switchyard blocking all traffic on two interfaces:

Running Switchyard in a live environment (macOS) with -v flag: notice log line indicating firewall rules installed (2nd line, 2 rules).

 $ sudo swyard -i lo0 -i en0 -v sniff.py
 11:39:58 2016/12/00 INFO Enabling pf: No ALTQ support in kernel; ALTQ related functions disabled; pf enabled; Token : 16107925605825483691;
 11:39:58 2016/12/00 INFO Rules installed: block drop on en0 all
 block drop on lo0 all
 11:39:58 2016/12/00 INFO Using network devices: en0 lo0
 11:39:58 2016/12/00 INFO My interfaces: ['en0', 'lo0']
 ^C11:40:00 2016/12/00 INFO Releasing pf: No ALTQ support in kernel; ALTQ related functions disabled; disable request successful. 4 more pf enable reference(s) remaining, pf still enabled.;

Here is an example showing Switchyard blocking all ICMP, all TCP, and UDP port 8888:

Running Switchyard in a live environment (macOS) with -v flag: notice log line indicating firewall rules installed (2nd line, 3 rules).

 $ sudo swyard -i lo0 --firewall icmp --firewall tcp --firewall 'udp:8888' -v sniff.py
 11:43:46 2016/12/00 INFO Enabling pf: No ALTQ support in kernel; ALTQ related functions disabled; pf enabled; Token : 16107925605472991531;
 11:43:46 2016/12/00 INFO Rules installed: block drop on lo0 proto icmp all
 block drop on lo0 proto tcp all
 block drop on lo0 proto udp from any port = 8888 to any port = 8888
 11:43:46 2016/12/00 INFO Using network devices: lo0
 11:43:46 2016/12/00 INFO My interfaces: ['lo0']
 ^C11:43:48 2016/12/00 INFO Releasing pf: No ALTQ support in kernel; ALTQ related functions disabled; disable request successful. 4 more pf enable reference(s) remaining, pf still enabled.;

And finally, the same example as previous, but on Linux with iptables:

Running Switchyard in a live environment (Linux) with -v flag: notice log line indicating firewall rules installed (2nd line, 3 rules).

 # swyard -v sniff.py --firewall icmp --firewall udp:8888 --firewall tcp
 19:53:42 2016/12/00 INFO Saving iptables state and installing switchyard rules
 19:53:42 2016/12/00 INFO Rules installed: Chain PREROUTING (policy ACCEPT)
 target prot opt source destination
 DROP icmp -- 0.0.0.0/0 0.0.0.0/0
 DROP udp -- 0.0.0.0/0 0.0.0.0/0 udp dpt:8888
 DROP tcp -- 0.0.0.0/0 0.0.0.0/0

 Chain OUTPUT (policy ACCEPT)
 target prot opt source destination
 19:53:42 2016/12/00 INFO Using network devices: enp0s3
 19:53:42 2016/12/00 INFO My interfaces: ['enp0s3']
 ^C19:53:45 2016/12/00 INFO Restoring saved iptables state

Note

When using a loopback interface, there are a couple things to be aware of. First, while Switchyard normally uses libpcap for sending and receiving packets, a raw socket is used for sending packets on the localhost interface. This is done due to limitations on some operating systems, notably Linux. Receiving packets is still done with libpcap, though on different operating systems you may observe that packets are encapsulated differently. In particular, on Linux, an Ethernet header with zeroed addresses is used, while on macOS the BSD Null header is used, which just consists of a protocol number (i.e., the ethertype value normally found in the Ethernet header).

Advanced API topics

This section introduces two additional, and slightly advanced topics related to Switchyard APIs: creating new packet header types and using Switchyard’s application-layer socket emulation capabilities.

Creating new packet header types

For some Switchyard programs, it can be useful to create new packet header types. For example, say you want to implement a simplified dynamic routing protocol within an IP router. You might want to be able to create a new packet header for your routing protocol, and have those packet headers integrate well with the existing Switchyard Packet class. Similarly, say you want to implement a simplified Ethernet spanning tree protocol: being able to create a new packet header for carrying spanning tree information would be helpful.

Before discussing how to create a new packet header class that integrates well with the rest of Switchyard, it is important to note that it is not strictly required to create a new packet header class for either of the above example projects. Instead, you could use the existing RawPacketContents header, which has one attribute (data), a bytes object. To use a RawPacketContents header, you would need to handle all packing (“serialization”) and unpacking (“deserialization”) of header fields to and from the bytes object explicitly in your code. While this approach “works”, it leads to a less cohesive and encapsulated design and to code that may be a bit more difficult to debug because it is not well-integrated into Switchyard.

If you want to work with Switchyard’s packet header and packet classes, there are two main steps to take:

	First, create a new class that derives from PacketHeaderBase. There are two required methods (to_bytes() and from_bytes()) that you’ll need to write, and some other things to be aware of when writing this class.

	Second, some configuration to the packet header class that appears before your header in a normal packet needs to be done. This is just a matter of a couple method calls to do the configuration.

These steps are described below along with short examples and a longer (full) example follows.

Creating a new packet header class

As mentioned above, to create a new packet header class you must create a class that derives from PacketHeaderBase. There are two required methods to implement:

	to_bytes()

	This method returns a serialized packet header in the form of a bytes object. One of the easiest ways to “pack” a set of values into a bytes object is to use Python’s struct module (refer to the Python library documentation for details). The examples in this section use struct.

	from_bytes(raw)

	This method accepts a bytes object as a parameter and returns a bytes object. It populates attributes in the packet header by unpacking the bytes object. The method should raise an exception if there aren’t enough bytes to fully reconstruct the packet header. Any part of the bytes object passed as a parameter that aren’t used (i.e., there are more bytes passed in to the method than are necessary to reconstruct the header) should be returned by the method. As with the to_bytes() method, Python’s struct module is useful for performing the unpacking.

There is one restriction when implementing a new packet header class:

	The __init__ method should only take optional parameters. Switchyard assumes that a packet header object can be constructed which assigns attributes to reasonable default values, thus no explicit initialization parameters can be required by the constructor (__init__). Moreover, for compatibility with keyword-style attribute assignment in packet header classes, a kwargs parameter should be included and passed to the base class initialization method call and this call to the base class must come last in the __init__ method.

Below is an example of a new packet header called UDPPing that contains a single attribute: sequence. This packet header is designed to be included in a packet following a UDP header. Besides implementing an __init__ method (which optionally accepts an initial sequence value) and the two required methods, there are property getter and setter methods for sequence and a string conversion magic method. Note that we’ve decided to store the sequence value as a network-byte-order (big endian) unsigned 16 bit value (this is what the !H signifies for _PACKFMT: refer to the struct Python library documentation):

from switchyard.lib.userlib import *
import struct

class UDPPing(PacketHeaderBase):
 _PACKFMT = "!H"

 def __init__(self, seq=0, **kwargs):
 self._sequence = int(seq)
 PacketHeaderBase.__init__(self, **kwargs)

 def to_bytes(self):
 raw = struct.pack(self._PACKFMT, self._sequence)
 return raw

 def from_bytes(self, raw):
 packsize = struct.calcsize(self._PACKFMT)
 if len(raw) < packsize:
 raise ValueError("Not enough bytes to unpack UDPPing")
 attrs = struct.unpack(self._PACKFMT, raw[:packsize])
 self.sequence = attrs[0]
 return raw[packsize:]

 @property
 def sequence(self):
 return self._sequence

 @sequence.setter
 def sequence(self, value):
 self._sequence = int(value)

 def __str__(self):
 return "{} seq: {}".format(self.__class__.__name__, self.sequence)

Given the way the UDPPing packet header class has been defined, we can either set the sequence explicitly with the property setter, pass a value into the __init__ method, or use keyword syntax:

>>> up1 = UDPPing()
>>> print(up1)
UDPPing seq: 0
>>> up2 = UDPPing()
>>> up2.sequence = 13
>>> print(up2)
UDPPing seq: 13
>>> up3 = UDPPing(sequence=42)
>>> print(up3)
UDPPing seq: 0

If we now create a full Packet object, we might do something like the following. Note that our code both serializes and deserializes the packet. We do this to test (at least in a limited way) that our to_bytes() and from_bytes() methods work as expected. Here is the code:

UDP_PING_PORT = 12345
pkt = Ethernet(src="11:22:11:22:11:22",
 dst="22:33:22:33:22:33") + \
 IPv4(src="1.2.3.4", dst="5.6.7.8",
 protocol=IPProtocol.UDP, ttl=64) + \
 UDP(src=55555, dst=UDP_PING_PORT) + \
 UDPPing(42)
print("Before serialize/deserialize:", pkt)
xbytes = pkt.to_bytes()
reanimated_pkt = Packet(raw=xbytes)
print("After deserialization:", reanimated_pkt)

And here is the output:

Before serialize/deserialize: Ethernet 11:22:11:22:11:22->22:33:22:33:22:33 IP | IPv4 1.2.3.4->5.6.7.8 UDP | UDP 55555->12345 | UDPPing seq: 42
After deserialization: Ethernet 11:22:11:22:11:22->22:33:22:33:22:33 IP | IPv4 1.2.3.4->5.6.7.8 UDP | UDP 55555->12345 | RawPacketContents (2 bytes) b'\x00*'

Notice that the first line of output shows the full packet as we expect, including the final UDPPing header. The next line to follow, however, shows that the packet has been reconstructed with the final header as RawPacketContents, not UDPPing. What happened?

Configuring the lower-layer header class

What happened in the above example is that Switchyard does not have enough information to know that the bytes that follow the UDP header should be interpreted as the contents of a UDPPing packet. It is possible, however, to give this information to Switchyard.

Switchyard assumes that there exists one attribute in a packet header that can be used to determine how to map values of that attribute to a packet header class. Not surprisingly, these mappings are stored in the form of a Python dictionary. For example, by default the Ethernet class is configured to use the value of the ethertype attribute as a lookup key to determine the type of the packet header that follows. It contains a few initial mappings, including a mapping from EtherType.IP to IPv4. Similarly, the IPv4 class uses values in the protocol attribute as keys to look up the packet header type that should come next.

Switchyard contains methods to make it possible to change the attribute on which lookups are performed, to add new mappings from a value on the mapped attribute to a packet header class, and to completely (re)initialize the mappings from attribute values to packet header classes. Noting that one should, of course, use care when modifying any existing mappings or when modifying the attribute on which mappings are performed, here are the three class methods available on PacketHeaderBase-derived classes:

	set_next_header_class_key(attr)

	This method is used to specify the attribute on which lookups to determine the next header class should be performed. Switchyard-provided header classes contain sensible defaults for this value. For example, with Ethernet and Vlan this attribute is preconfigured as ethertype, for IPv4 this attribute is configured as protocol, and for IPv6 it is nextheader. There is no default configuration set for UDP or TCP, but the natural choice would be dst (i.e., to use the destination port as the key). Most other headers are configured with the empty string, indicating that no “next header” is assumed by Switchyard. In that case, Switchyard will construct a RawPacketHeader object containing the remaining bytes.

	add_next_header_class(attr, hdrcls)

	This method is used to add a new attribute value-header class mapping to the next header mapping dictionary.

	set_next_header_map(mapdict)

	This method can be used to replace any previous dictionary with a new one. Switchyard-provided header classes are configured with sensible defaults. Use with care, since a replacement of a next header class mapping in a highly dependend-upon header class (e.g, IPv4) will likely break lots of things.

Note

A key limitation of Switchyard, currently, is that arbitrary values for core protocol number enumerations (in particular, EtherType and IPProtocol) cannot be dynamically added and/or modified because Python’s enum types are constant once created. This makes it impossible, at present, to use arbitrary protocol numbers for new layer 3 or 4 protocols and packet header types. This will be changed in a future version of Switchyard. In the meantime, a workaround is to use an existing protocol number which is not used in the next header map. For example, if you are implementing a routing protocol on top of IPv4, you could use IPProtocol.OSPF as the protocol number for your (non-OSPF) protocol since Switchyard does not have any current mapping between that protocol number and a packet header class.

Building on the previous example with UDPPing, if we add two lines of code to specify that the destination port should be used as a key to look up the correct next header in a packet, and to register a particular UDP destination port as being associated with the UDPPing protocol, the final couple bytes can get properly interpreted and deserialized into the right packet header (notice the first two lines of code, which are the only differences with the previous example):

UDP.add_next_header_class(UDP_PING_PORT, UDPPing)
UDP.set_next_header_class_key('dst')
pkt = Ethernet(src="11:22:11:22:11:22",
 dst="22:33:22:33:22:33") + \
 IPv4(src="1.2.3.4", dst="5.6.7.8",
 protocol=IPProtocol.UDP, ttl=64) + \
 UDP(src=55555, dst=UDP_PING_PORT) + \
 UDPPing(sequence=13)
print("Before serialize/deserialize:", pkt)
xbytes = pkt.to_bytes()
reanimated_pkt = Packet(raw=xbytes)
print("After deserialization:", reanimated_pkt)

Here is the output, showing

Before serialize/deserialize: Ethernet 11:22:11:22:11:22->22:33:22:33:22:33 IP | IPv4 1.2.3.4->5.6.7.8 UDP | UDP 55555->12345 | UDPPing seq: 13
After deserialization: Ethernet 11:22:11:22:11:22->22:33:22:33:22:33 IP | IPv4 1.2.3.4->5.6.7.8 UDP | UDP 55555->12345 | UDPPing seq: 13

One more example

Here is one additional example. Say that we want to implement a simplified Ethernet spanning tree protocol and want to create a packet header that includes an identifier for the root note and an integer value which indicates the number of hops to the root. We could do the following:

from switchyard.lib.userlib import *
import struct

class SpanningTreeMessage(PacketHeaderBase):
 _PACKFMT = "6sxB"

 def __init__(self, root="00:00:00:00:00:00", **kwargs):
 self._root = EthAddr(root)
 self._hops_to_root = 0
 PacketHeaderBase.__init__(self, **kwargs)

 def to_bytes(self):
 raw = struct.pack(self._PACKFMT, self._root.raw, self._hops_to_root)
 return raw

 def from_bytes(self, raw):
 packsize = struct.calcsize(self._PACKFMT)
 if len(raw) < packsize:
 raise ValueError("Not enough bytes to unpack SpanningTreeMessage")
 xroot,xhops = struct.unpack(self._PACKFMT, raw[:packsize])
 self._root = EthAddr(xroot)
 self.hops_to_root = xhops
 return raw[packsize:]

 @property
 def hops_to_root(self):
 return self._hops_to_root

 @hops_to_root.setter
 def hops_to_root(self, value):
 self._hops_to_root = int(value)

 @property
 def root(self):
 return self._root

 def __str__(self):
 return "{} (root: {}, hops-to-root: {})".format(
 self.__class__.__name__, self.root, self.hops_to_root)

Here is some example code for how we might use this class. Note that since we are creating a protocol header that should follow the Ethernet header, we must (due to a current limitation with Switchyard) use an existing ethertype value. We are reusing the value EtherType.SLOW for no particular reason other than it is presently unused by Switchyard:

spm = SpanningTreeMessage("00:11:22:33:44:55", hops_to_root=1)
print(spm)

Ethernet.add_next_header_class(EtherType.SLOW, SpanningTreeMessage)
pkt = Ethernet(src="11:22:11:22:11:22",
 dst="22:33:22:33:22:33",
 ethertype=EtherType.SLOW) + spm
print(pkt)
xbytes = pkt.to_bytes()
p = Packet(raw=xbytes)
print(p)

Application layer socket emulation and creating full protocol stacks

It is possible within Switchyard to implement a program that resembles a full end-host protocol stack. The protocol stack can be used along with Switchyard’s socket emulation library to execute nearly unmodified Python UDP socket programs. In this section, we discuss (1) additional API calls used to receive messages “down” from socket applications as well as deliver messages “up” to socket applications, (2) usage of and limitations with Switchyard’s socket emulation library, and (3) additional command-line options with swyard for executing a socket application along with a protocol stack program.

A general picture of using Switchyard to execute a protocol stack and a socket application is shown below. Note that the figure shows two components that are provided (or controlled) by Switchyard, and two components that must be written or provided by a user of Switchyard.

[image: _images/applayer.png]

API calls for delivering/receiving messages to/from applications

To deliver messages to or receive messages from a socket application, a Switchyard user must use two static methods on the ApplicationLayer class. These methods are similar in many ways to the two methods on the net object used to send and receive packets. The application-related methods are:

	ApplicationLayer.send_to_app(proto, local_addr, remote_addr, data)

	This method is used to pass a message received on the network up to an application. The proto parameter is the IP protocol number of the packet from which the data was received. local_addr and remote_addr are 2-tuples consisting of an IP address and port. This method returns a boolean value: if there is a socket associated with the address information given, True is returned. Otherwise, False is returned.

Note that if there is no socket associated with the address information given, a log warning is also emitted.

	ApplicationLayer.recv_from_app(timeout=None)

	This method is used to receive an application message to be sent on the network. It takes an optional timeout argument which indicates the number of seconds to wait until giving up and raising a NoPackets exception. This exception is a bit of a misnomer here, but it is used for consistency with net.recv_packet(). If None is passed as a timeout value, this method will block until a message is available.

If a message is available, this method returns two items in the form of a tuple: a flow address and the data to be sent. The flow address consists of 5 items in the form of a tuple: the IP protocol value, a remote IP address and port, and the local IP address and port.

Note: if an application socket is unbound, the local IP address will be 0.0.0.0. The protocol stack implementation is responsible for using a valid IP address in any outgoing packet (specifically, it should use the address assigned to the interface out which the packet is emitted).

In sum, there are 4 API calls that must be used to move packets and data through a protocol stack implementation, as shown in the figure below.

[image: _images/applayer_detail.png]

Using a similar pattern as with a “regular” Switchyard program, it is possible to service both of the incoming data channels (i.e., either packets received from a network port, or messages received from an application), as follows:

from switchyard.lib.userlib import *

class ProtocolStack(object):
 def __init__(self, net):
 self._net = net

 def handle_app_data(self, appdata):
 # do something to handle application data here, likely
 # resulting in an eventual call to self._net.send_packet()

 def handle_network_data(self, netdata):
 # do something with network data here, likely resulting
 # in an eventual call to ApplicationLayer.send_to_app()

 def main_loop(self):
 while True:
 appdata = None
 try:
 appdata = ApplicationLayer.recv_from_app(timeout=0.1)
 except NoPackets:
 pass
 except Shutdown:
 break
 if appdata is not None:
 handle_app_data(net, intf, appdata)

 netdata = None
 try:
 netdata = net.recv_packet(timeout=0.1)
 except NoPackets:
 pass
 except Shutdown:
 break
 if netdata is not None:
 handle_network_data(netdata)

def main(net):
 stack = ProtocolStack(net)
 stack.main_loop()
 net.shutdown()

Note

Although the protocol stack example above uses a single Python thread to service both the from-network and from-application queues, it is possible to use multiple Python threads. The socket emulation library (discussed next) is threadsafe, as is the library code that handles sending/receiving packets on network ports.

Switchyard’s socket emulation library

Switchyard provides a module similar to Python’s built-in socket module that contains clones of many of the methods, functions and other items in the built-in module. We refer to the Switchyard socket module as an emulation module since it emulates the semantics of methods in the built-in module. The only line of code required to take advantage of Switchyard’s socket emulation module is the import line. Instead of using importing a module named socket, you must import a module named switchyard.lib.socket. The from ... import * idiom is generally discouraged in Python, and a way to avoid this while isolating the change in a socket application to a single line is to do the following:

instead of:
import socket

to use Switchyard's socket emulation module, do:
import switchyard.lib.socket as socket

When using the suggested modification above, any use of attributes within the socket module (either built-in or emulated) can just be prefixed with socket. as normal. Note that in the code below, bytes objects are sent and received using sendto and recvfrom. (This same code is available in the examples folder in the Switchyard github repo.)

#!/usr/bin/env python3

import socket
import switchyard.lib.socket as socket

HOST = '127.0.0.1'
PORT = 10000
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.settimeout(2.0)

print("Sending message to server at {},{}".format(HOST,PORT))
s.sendto(b'Hello, stack', (HOST,PORT))
try:
 data,addr = s.recvfrom(1024)
 print('Client socket application received message from {}: {}'.format(repr(addr),data.decode('utf8')))
except:
 print("Timeout")

s.close()

There are some key limitations and other issues to be aware of with Switchyard’s socket emulation component:

	The most important limitation is that only UDP sockets are supported. Attempting to create any other type of socket will result in failure. Other socket types and support for using arbitrary protocol numbers may be supported in the future. As a result, there are a few socket object method calls that are not supported, such as listen and accept.

	The create_connection and socketpair calls are not available.

	The getsockopt and setsockopt calls are not currently supported, but may be in a future version.

	The various DNS-related calls in the socket module (e.g., gethostbyname, etc.) are available and simply handed off to the built-in socket module. Switchyard does not implement any DNS capability directly. Same for the byte-ordering calls (e.g., ntohs, ntohl, etc.)

	Switchyard attempts to be careful about choosing a local (ephemeral) port number for use, but its approach isn’t fool-proof. There may be problems that arise due to a host OS using a local port that was already being used by Switchyard, but these situations should be rare in occurrence.

Note

Switchyard implements the socket layer by attempting to mirror, as closely as possible, the same constants, classes, and functions in the built-in socket module. It maintains a shared (threadsafe) queue that handles all data passed down from a socket application, and creates a separate queue for each socket for handling data being passed up to an application. As a result, Switchyard can support an application using multiple sockets at the same time (as long as they’re all UDP!).

Starting socket applications with swyard

There is one additional command-line option for swyard when using a socket emulation application. The -a is used to specify the name of a file that contains the application-layer socket program.

The -a option can be used in conjunction with a Switchyard test scenario. If you want to test that a socket application emits a packet, then receives a packet from some “remote” host, you could create an expectation that a packet is emitted and an expectation that some other packet is received. You may need to use the copyfromlastout argument when creating the PacketInputEvent, since the test scenario may not actually know what local port is being used by an application (among other things).

For example, to run a particular test scenario as well as an application program, the command line might look like the following:

$ swyard -a clientapp_udpstackex.py -t udpstack_tests.py udpstack.py

Note that the Python files used in the command line above are available in the examples folder of the Switchyard github repo.

To run in live mode, simply remove the -t option. Note that there is a server program in the examples folder that can be run with this code in live mode: you can see that the Switchyard-based UDP stack and associated client-side program can interact correctly with a “regular” Python UDP-based server program.

One final limitation to be aware of: only one socket application can be started by Switchyard at a time. This limitation may change in a future version.

Finally, note that Switchyard currently does not have any capabilities for testing the behavior of an application-layer socket program. The application code could use calls to assert() to verify that certain things happen as expected within the application, but there are no specific Switchyard features to help with this.

Note

When using Switchyard to create a protocol stack and run a socket-based application on a standard commodity operating system (e.g., a desktop/laptop Linux or macOS system), you may need to be careful about configuring the host firewall settings when starting Switchyard in real/live mode. In particular, any packets that you want Switchyard to handle should be explicitly blocked from the host operating system (or the host OS may respond in addition to Switchyard responding). It may also be helpful to explicitly bind your application socket to a particular port in order to limit the number of protocols and/or ports that need to be blocked from the host OS.

Note that when Switchyard is started with the -a flag and is thus starting an application-layer socket program, its default behavior with respect to the firewall is different. Normally, Switchyard blocks the host OS from receiving any traffic, but when executing an application-layer program no traffic is blocked, by default.

Refer to the section on Firewall options for command-line options to swyard to ensure that you block the correct traffic.

Installing Switchyard

Switchyard has been tested and developed on the following operating systems:

	macOS 10.10 and later

	Ubuntu LTS releases from 14.04 and later

	Fedora 21

Note that these are all Unix-based systems. Switchyard may be enhanced in the future to support Windows-based systems. Ubuntu (current LTS) and macOS receive the most testing of Unix-based operating systems.

—

The steps for getting Switchyard up and running are as follows:

	Install Python 3.4 or later, if you don’t already have it.

	Install any necessary libraries for your operating system.

	Create an Python “virtual environment” for installing Python modules (or install the modules to your system Python)

	Install Switchyard.

For step 0, you’re on your own. Go to https://www.python.org/downloads/, or install packages via your OS’es package system, or use homebrew if you’re on a Mac. Have fun.

The specific libraries necessary for different OSes (step 1) are described below, but steps 2 and 3 are the same for all operating systems and are covered next.

The recommended install procedure is to create a Python virtual environment for installing Switchyard and other required Python modules. One way to create a new virtual environment is to execute the following at a command line (in the folder in which you want to create the virtual environment):

$ python3 -m venv syenv

This command will create a new virtual environment called syenv. Once that’s done, you can “activate” that environment and install Switchyard as follows:

$ source ./syenv/bin/activate
(syenv)$ python3 -m pip install switchyard

That’s it. Once you’ve done that, the swyard program should be on your PATH (you can check by typing which swyard). If you no longer want to use the Python virtual environment you’ve created, you can just type deactivate.

Operating system-specific instructions

MacOS X

The easiest way to get Switchyard running in macOS is to install homebrew. You can use brew to install Python 3. You should also brew to install the libpcap package. That should be all that is necessary.

Ubuntu

For Ubuntu systems, you’ll need to use apt-get or something similar to install the following packages:

libffi-dev libpcap-dev python3-dev python3-pip python3-venv

Fedora/RedHat

For Fedora and RedHat-based systems, you’ll need to use yum or something similar to install a similar set of packages as with Ubuntu (but with the right name changes for the way packages are identified on Fedora):

libffi-devel libpcap-devel python3-devel python3-pip python3-virtualenv

API Reference

Before getting into all the details, it is important to note that all the below API features can be imported through the module switchyard.lib.userlib.

This is a wrapper module to facilitate easy import of the various modules, functions, classes, and other items needed from the perspective of a user program in Switchyard.

Unless you are concerned about namespace pollution, importing all Switchyard symbols into your program can be done with the following:

from switchyard.lib.userlib import *

Net object reference

The net object is used for sending and receiving packets on network interfaces/ports. The API documentation below is for a base class that defines the various methods on a net object; there are two classes that derive from this base class which help to implement Switchyard’s test mode and Switchyard’s live network mode.

	
class switchyard.llnetbase.LLNetBase(name=None)[source]

	Base class for the low-level networking library in Python.
“net” objects are constructed from classes derived from this
class.

An object of this class is passed into the main function of a user’s
Switchyard program. Using methods on this object, a user can send/receive
packets and query the device for what interfaces are available and how
they are configured.

	
interface_by_ipaddr(ipaddr)[source]

	Given an IP address, return the interface that ‘owns’ this address

	
interface_by_macaddr(macaddr)[source]

	Given a MAC address, return the interface that ‘owns’ this address

	
interface_by_name(name)[source]

	Given a device name, return the corresponding interface object

	
interfaces()[source]

	Return a list of interfaces incident on this node/router.
Each item in the list is an Interface object, each of which includes
name, ethaddr, ipaddr, and netmask attributes.

	
port_by_ipaddr(ipaddr)[source]

	Alias for interface_by_ipaddr

	
port_by_macaddr(macaddr)[source]

	Alias for interface_by_macaddr

	
port_by_name(name)[source]

	Alias for interface_by_name

	
ports()[source]

	Alias for interfaces() method.

	
recv_packet(timeout=None)[source]

	Receive a packet on any port/interface.
If a non-None timeout is given, the method will block for up
to timeout seconds. If no packet is available, the exception
NoPackets will be raised. If the Switchyard framework is being
shut down, the Shutdown exception will be raised.
If a packet is available, the ReceivedPacket named tuple
(timestamp, input_port, packet) will be returned.

	
send_packet(output_port, packet)[source]

	Send a packet out the given output port/interface.
Returns None.

	
testmode

	Returns True if running in test mode and False if running in
live/real mode.

Interface and InterfaceType reference

The InterfaceType enumeration is referred to by the Interface class, which encapsulates information about a network interface/port. The InterfaceType defines some basic options for types of interfaces:

	
class switchyard.lib.interface.InterfaceType[source]

	An enumeration.

	
Unknown=1

	

	
Loopback=2

	

	
Wired=3

	

	
Wireless=4

	

The Interface class is used to encapsulate information about a network interface:

	
class switchyard.lib.interface.Interface(name, ethaddr, ipaddr=None, netmask=None, ifnum=None, iftype=<InterfaceType.Unknown: 1>)[source]

	
	
ethaddr

	Get the Ethernet address associated with the interface

	
ifnum

	Get the interface number (integer) associated with the interface

	
iftype

	Get the type of the interface as a value from the InterfaceType enumeration.

	
ipaddr

	Get the IPv4 address associated with the interface

	
ipinterface

	Returns the address assigned to this interface as an IPInterface object. (see documentation for the built-in ipaddress module).

	
name

	Get the name of the interface

	
netmask

	Get the IPv4 subnet mask associated with the interface

Ethernet and IP addresses

Switchyard uses the built-in ipaddress module to the extent possible. Refer to the Python library documentation for details on the IPv4Address class and related classes. As noted in the source code, the EthAddr class based on source code from the POX Openflow controller.

	
class switchyard.lib.address.EthAddr(addr=None)[source]

	An Ethernet (MAC) address type.

	
isBridgeFiltered()[source]

	Checks if address is an IEEE 802.1D MAC Bridge Filtered MAC Group Address

This range is 01-80-C2-00-00-00 to 01-80-C2-00-00-0F. MAC frames that
have a destination MAC address within this range are not relayed by
bridges conforming to IEEE 802.1D

	
isGlobal()[source]

	Returns True if this is a globally unique (OUI enforced) address.

	
isLocal()[source]

	Returns True if this is a locally-administered (non-global) address.

	
isMulticast()[source]

	Returns True if this is a multicast address.

	
is_bridge_filtered

	

	
is_global

	

	
is_local

	

	
is_multicast

	

	
packed

	

	
raw

	Returns the address as a 6-long bytes object.

	
toRaw()[source]

	

	
toStr(separator=':')[source]

	Returns the address as string consisting of 12 hex chars separated
by separator.

	
toTuple()[source]

	Returns a 6-entry long tuple where each entry is the numeric value
of the corresponding byte of the address.

There are two enumeration classes that hold special values for the IPv4 and IPv6 address families. Note that since these classes derive from enum, you must use name to access the name attribute and value to access the value (address) attribute.

	
class switchyard.lib.address.SpecialIPv4Addr[source]

	An enumeration.

	
IP_ANY = ip_address("0.0.0.0")

	

	
IP_BROADCAST = ip_address("255.255.255.255")

	

	
class switchyard.lib.address.SpecialIPv6Addr[source]

	An enumeration.

	
UNDEFINED = ip_address('::')

	

	
ALL_NODES_LINK_LOCAL = ip_address('ff02::1')

	

	
ALL_ROUTERS_LINK_LOCAL = ip_address('ff02::2')

	

	
ALL_NODES_INTERFACE_LOCAL = ip_address('ff01::1')

	

	
ALL_ROUTERS_INTERFACE_LOCAL = ip_address('ff01::2')

	

Packet parsing and construction reference

	
class switchyard.lib.packet.Packet(raw=None, first_header=None)[source]

	Base class for packet headers.

The Packet class acts as a container for packet headers. The
+ and += operators are defined for use with the Packet class
to add on headers (to the end of the packet). Indexing can also
be done with Packet objects to access individual header objects.
Indexes may be integers (from 0 up to, but not including, the number
of packet headers), or indexes may also be packet header class names.
Exceptions are raised for invaliding indexing of either kind.

The optional raw parameter can accept a bytes object, which assumed
to be a serialized packet to be reconstructed. The optional parameter
first_header indicates the first header of the packet to be reconstructed,
which defaults to Ethernet.

>>> p = Packet()
>>> p += Ethernet()
>>> p[0]
<switchyard.lib.packet.ethernet.Ethernet object at 0x10632bb08>
>>> p[Ethernet]
<switchyard.lib.packet.ethernet.Ethernet object at 0x10632bb08>
>>> str(p)
'Ethernet 00:00:00:00:00:00->00:00:00:00:00:00 IP'
>>> str(p[0])
'Ethernet 00:00:00:00:00:00->00:00:00:00:00:00 IP'
>>> str(p[Ethernet])
'Ethernet 00:00:00:00:00:00->00:00:00:00:00:00 IP'
>>>

	
add_header(ph)[source]

	Add a PacketHeaderBase derived class object, or a raw bytes object
as the next “header” item in this packet. Note that ‘header’
may be a slight misnomer since the last portion of a packet is
considered application payload and not a header per se.

	
add_payload(ph)[source]

	Alias for add_header

	
static from_bytes(raw, first_header)[source]

	Create a new packet by parsing the contents of a bytestring

	
get_header(hdrclass, returnval=None)[source]

	Return the first header object that is of
class hdrclass, or None if the header class isn’t
found.

	
get_header_by_name(hdrname)[source]

	Return the header object that has the given (string) header
class name. Returns None if no such header exists.

	
get_header_index(hdrclass, startidx=0)[source]

	Return the first index of the header class hdrclass
starting at startidx (default=0), or -1 if the
header class isn’t found in the list of headers.

	
has_header(hdrclass)[source]

	Return True if the packet has a header of the given hdrclass,
False otherwise.

	
headers()[source]

	Return a list of packet header names in this packet.

	
insert_header(idx, ph)[source]

	Insert a PacketHeaderBase-derived object at index idx the list of headers.
Any headers previously in the Packet from index idx:len(ph) are shifted to
make room for the new packet.

	
num_headers()[source]

	Return the number of headers in the packet.

	
prepend_header(ph)[source]

	Insert a PacketHeader object at the beginning of this packet
(i.e., as the first header of the packet).

	
size()[source]

	Return the packed length of this header

	
to_bytes()[source]

	Returns serialized bytes object representing all headers/
payloads in this packet

To delete/remove a header, you can use the del operator as if the packet
object is a Python list:

>>> del p[0] # delete/remove first header in packet
>>>

You can assign new header objects to a packet by integer index, but not
by packet header class index:

>>> p[0] = Ethernet() # assign a new Ethernet header to index 0
>>>

Header classes

In this section, detailed documentation for all packet header classes is given. For each header class, there are three common instance methods that may be useful and which are not documented below for clarity. They are defined in the base class PacketHeaderBase. Note that any new packet header classes that derive from PacketHeaderBase must implement these three methods.

	
class switchyard.lib.packet.PacketHeaderBase(**kwargs)[source]

	Base class for packet headers.

	
from_bytes(raw)[source]

	Reconstruct the attributes of a header given the bytes object named raw. The method returns any bytes that are not used to reconstruct a header. An exception (typically a ValueError) is raised if there is some kind of problem deserializing the bytes object into packet header attributes.

	
size()[source]

	Returns the number of bytes that the header would consist of when serialized to wire format

	
to_bytes()[source]

	Return a ‘packed’ byte-level representation of this packet header.

There are also three common class methods that are used when creating a new packet header class (see Creating new packet header types).

	
class switchyard.lib.packet.PacketHeaderBase(**kwargs)[source]

	Base class for packet headers.

	
classmethod add_next_header_class(attr, hdrcls)[source]

	Add a new mapping between a next header type value and a Python
class that implements that header type.

	
classmethod set_next_header_class_key(attr)[source]

	Indicate which attribute is used to decide the type of packet
header that comes after this one. For example, the IPv4
protocol attribute.

	
classmethod set_next_header_map(mapdict)[source]

	(Re)initialize a dictionary that maps a “next header type” attribute
to a Python class that implements that header type.

Ethernet header

	
class switchyard.lib.packet.Ethernet(**kwargs)[source]

	Represents an Ethernet header with fields src (source Ethernet address),
dst (destination Ethernet address), and ethertype (type of header to
come in the packet after the Ethernet header). All valid ethertypes are
defined below.

	
dst

	

	
ethertype

	

	
src

	

	
class switchyard.lib.packet.common.EtherType[source]

	An enumeration.

	
IP = 0x0800

	

	
IPv4 = 0x0800

	

	
ARP = 0x0806

	

	
x8021Q = 0x8100

	

	
IPv6 = 0x86dd

	

	
SLOW = 0x8809

	

	
MPLS = 0x8847

	

	
x8021AD = 0x88a8

	

	
LLDP = 0x88cc

	

	
x8021AH = 0x88e7

	

	
IEEE8023 = 0x05dc

	

The EtherType class is derived from the built-in Python Enumerated
class type. Note that some values start with ‘x’ since they must
start with an alphabetic character to be valid in the enum.

By default, the Ethernet header addresses are all zeroes (“00:00:00:00:00:00”),
and the ethertype is IPv4. Here is an example of creating an Ethernet header
and setting the header fields to non-default values:

>>> e = Ethernet()
>>> e.src = "de:ad:00:00:be:ef"
>>> e.dst = "ff:ff:ff:ff:ff:ff"
>>> e.ethertype = EtherType.ARP

As with all packet header classes, keyword parameters can be used to initialize header attributes:

>>> e = Ethernet(src="de:ad:00:00:be:ef", dst="ff:ff:ff:ff:ff:ff", ethertype=EtherType.ARP)

ARP (address resolution protocol) header

	
class switchyard.lib.packet.Arp(**kwargs)[source]

	
	
hardwaretype

	

	
operation

	

	
protocoltype

	

	
senderhwaddr

	

	
senderprotoaddr

	

	
targethwaddr

	

	
targetprotoaddr

	

	
class switchyard.lib.packet.common.ArpOperation[source]

	An enumeration.

	
Request = 1

	

	
Reply = 2

	

The Arp class is used for constructing ARP (address resolution protocol)
requests and replies. The hardwaretype property defaults to Ethernet,
so you don’t need to set that when an Arp object is instantiated. The
operation can be set using the enumerated type ArpOperation, as indicated
above. The remaining fields hold either EthAddr or IPv4Address objects,
and can be initialized using string representations of Ethernet or IPv4
addresses as appropriate. Below is an example of creating an ARP request.
You can assume in the example that the senders Ethernet and IPv4
addresses are srchw and srcip, respectively. You can also
assume that the IPv4 address for which we are requesting the Ethernet
address is targetip.

ether = Ethernet()
ether.src = srchw
ether.dst = 'ff:ff:ff:ff:ff:ff'
ether.ethertype = EtherType.ARP
arp = Arp(operation=ArpOperation.Request,
 senderhwaddr=srchw,
 senderprotoaddr=srcip,
 targethwaddr='ff:ff:ff:ff:ff:ff',
 targetprotoaddr=targetip)
arppacket = ether + arp

IP version 4 header

	
class switchyard.lib.packet.IPv4(**kwargs)[source]

	Represents an IP version 4 packet header. All properties relate to
specific fields in the header and can be inspected and/or modified.

Note that the field named “hl” (“h-ell”) stands for “header length”.
It is the size of the header in 4-octet quantities. It is a read-only
property (cannot be set).

Note also that some IPv4 header option classes are available in
Switchyard, but are currently undocumented.

	
dscp

	

	
dst

	

	
ecn

	

	
flags

	

	
fragment_offset

	

	
hl

	

	
ipid

	

	
options

	

	
protocol

	

	
src

	

	
tos

	

	
total_length

	

	
ttl

	

	
class switchyard.lib.packet.common.IPProtocol[source]

	An enumeration.

	
ICMP = 1

	

	
TCP = 6

	

	
UDP = 17

	

The IPProtocol class derives from the Python 3-builtin Enumerated
class type. There are other protocol numbers defined. See
switchyard.lib.packet.common for all defined values.

A just-constructed IPv4 header defaults to having all zeroes for
the source and destination addresses (‘0.0.0.0’) and the protocol
number defaults to ICMP. An example of creating an IPv4 header
and setting various fields is shown below:

>>> ip = IPv4()
>>> ip.srcip = '10.0.1.1'
>>> ip.dstip = '10.0.2.42'
>>> ip.protocol = IPProtocol.UDP
>>> ip.ttl = 64

UDP (user datagram protocol) header

	
class switchyard.lib.packet.UDP(**kwargs)[source]

	The UDP header contains just source and destination port fields.

	
dst

	

	
src

	

To construct a packet that includes an UDP header as well as some application
data, the same pattern of packet construction can be followed:

>>> p = Ethernet() + IPv4(protocol=IPProtocol.UDP) + UDP()
>>> p[UDP].src = 4444
>>> p[UDP].dst = 5555
>>> p += b'These are some application data bytes'
>>> print (p)
Ethernet 00:00:00:00:00:00->00:00:00:00:00:00 IP | IPv4 0.0.0.0->0.0.0.0 UDP | UDP 4444->5555 | RawPacketContents (37 bytes) b'These are '...
>>>

Note that we didn’t set the IP addresses or Ethernet addresses above, but
did set the IP protocol to correctly match the next header (UDP). Adding
a payload to a packet is as simple as tacking on a Python bytes object.
You can also construct a RawPacketContents header, which is just a
packet header class that wraps a set of raw bytes.

TCP (transmission control protocol) header

	
class switchyard.lib.packet.TCP(**kwargs)[source]

	Represents a TCP header. Includes properties to access/modify TCP
header fields.

	
ACK

	

	
CWR

	

	
ECE

	

	
FIN

	

	
NS

	

	
PSH

	

	
RST

	

	
SYN

	

	
URG

	

	
ack

	

	
dst

	

	
flags

	

	
flagstr

	

	
offset

	

	
options

	

	
seq

	

	
src

	

	
urgent_pointer

	

	
window

	

Setting TCP header flags can be done by assigning 1 to any of the
mnemonic flag properties:

>>> t = TCP()
>>> t.SYN = 1

To check whether a flag has been set, you can simply inspect the
the flag value:

>>> if t.SYN:
>>> ...

ICMP (Internet control message protocol) header

	
class switchyard.lib.packet.ICMP(**kwargs)[source]

	A mother class for all ICMP message types. It holds a reference
to another object that contains the specific ICMP data (icmpdata),
given a particular ICMP type. Just setting the icmptype causes the
data object to change (the change happens automatically when you
set the icmptype). The icmpcode field will also change, but
it only changes to some valid code given the new icmptype.

Represents an ICMP packet header.

	
icmpcode

	

	
icmpdata

	

	
icmptype

	

	
class switchyard.lib.packet.common.ICMPType[source]

	An enumeration.

	
EchoReply = 0

	

	
DestinationUnreachable = 3

	

	
SourceQuench = 4

	

	
Redirect = 5

	

	
EchoRequest = 8

	

	
TimeExceeded = 11

	

The icmptype and icmpcode header fields
determine the value stored in the icmpdata property. When the icmptype
is set to a new value, the icmpdata field is automatically set to
the correct object.

>>> i = ICMP()
>>> print (i)
ICMP EchoRequest 0 0 (0 data bytes)
>>> i.icmptype = ICMPType.TimeExceeded
>>> print (i)
ICMP TimeExceeded:TTLExpired 0 bytes of raw payload (b'') OrigDgramLen: 0
>>> i.icmpcode
<ICMPCodeTimeExceeded.TTLExpired: 0>
>>> i.icmpdata
<switchyard.lib.packet.icmp.ICMPTimeExceeded object at 0x10d3a3308>

Notice above that when the icmptype changes, other contents in the ICMP
header object change appropriately.

To access and/or modify the payload (i.e., data) that comes after the ICMP header, use icmpdata.data. This object is a raw bytes object and can be accessed and or set. For example, with many ICMP error messages, up to the first 28 bytes of the “dead” packet should be included, starting with the IPv4 header. To do that, you must set the icmpdata.data attribute with the byte-level representation of the IP header data you want to include, as follows:

>>> i.icmpdata.data
b''
>>> i.icmpdata.data = pkt.to_bytes()[:28]
>>> i.icmpdata.origdgramlen = len(pkt)
>>> print (i)
ICMP TimeExceeded:TTLExpired 28 bytes of raw payload (b'E\x00\x00\x14\x00\x00\x00\x00\x00\x01') OrigDgramLen: 42
>>>

In the above code segment, pkt should be a Packet object that just contains the IPv4 header and any subsequent headers and data. It must not include an Ethernet header. If you need to strip an Ethernet header, you can get its index (pkt.get_header_index(Ethernet)), then remove the header by index (del pkt[index]).

Notice that above, the to_bytes method returns the byte-level representation of the IP header we’re including as the payload. The to_bytes method can be called on any packet header, or on an packet object (in which case all packet headers will be byte-serialized).

To set the icmpcode, a dictionary called ICMPTypeCodeMap is defined
in switchyard.lib.packet. Keys in the dictionary are of type ICMPType, and values for each key is another enumerated type indicating the valid
codes for the given type.

>>> from switchyard.lib.packet import *
>>> ICMPTypeCodeMap[ICMPType.DestinationUnreachable]
<enum 'DestinationUnreachable'>

Just getting the dictionary value isn’t particularly helpful, but if you
coerce the enum to a list, you can see all valid values:

>>> list(ICMPTypeCodeMap[ICMPType.DestinationUnreachable])
[<DestinationUnreachable.ProtocolUnreachable: 2>,
 <DestinationUnreachable.SourceHostIsolated: 8>,
 <DestinationUnreachable.FragmentationRequiredDFSet: 4>,
 <DestinationUnreachable.HostUnreachable: 1>,
 <DestinationUnreachable.DestinationNetworkUnknown: 6>,
 <DestinationUnreachable.NetworkUnreachableForTOS: 11>,
 <DestinationUnreachable.HostAdministrativelyProhibited: 10>,
 <DestinationUnreachable.DestinationHostUnknown: 7>,
 <DestinationUnreachable.HostPrecedenceViolation: 14>,
 <DestinationUnreachable.PrecedenceCutoffInEffect: 15>,
 <DestinationUnreachable.NetworkAdministrativelyProhibited: 9>,
 <DestinationUnreachable.NetworkUnreachable: 0>,
 <DestinationUnreachable.SourceRouteFailed: 5>,
 <DestinationUnreachable.PortUnreachable: 3>,
 <DestinationUnreachable.CommunicationAdministrativelyProhibited: 13>,
 <DestinationUnreachable.HostUnreachableForTOS: 12>]

Another example, but with the much simpler EchoRequest:

>>> list(ICMPTypeCodeMap[ICMPType.EchoRequest])
[<EchoRequest.EchoRequest: 0>]

If you try to set the icmpcode to an invalid value, an exception will be
raised:

>>> i = ICMP()
>>> i.icmptype = ICMPType.DestinationUnreachable
>>> i.icmpcode = 44
Traceback (most recent call last):
...
>>>

You can either (validly) set the code using an integer, or a valid enumerated
type value:

>>> i.icmpcode = 2
>>> print(i)
ICMP DestinationUnreachable:ProtocolUnreachable 0 bytes of raw payload (b'') NextHopMTU: 0
>>> i.icmpcode = ICMPTypeCodeMap[i.icmptype].HostUnreachable
>>> print (i)
ICMP DestinationUnreachable:HostUnreachable 0 bytes of raw payload (b'') NextHopMTU: 0

Below are shown the ICMP data classes, as well as any properties that can
be inspected and/or modified on them.

	
class switchyard.lib.packet.ICMPEchoReply[source]

	
	
data

	

	
identifier

	

	
sequence

	

	
class switchyard.lib.packet.ICMPDestinationUnreachable[source]

	
	
data

	

	
nexthopmtu

	

	
origdgramlen

	

	
class switchyard.lib.packet.ICMPSourceQuench[source]

	
	
data

	

	
class switchyard.lib.packet.ICMPRedirect[source]

	
	
data

	

	
redirectto

	

	
class switchyard.lib.packet.ICMPEchoRequest[source]

	
	
data

	

	
identifier

	

	
sequence

	

	
class switchyard.lib.packet.ICMPTimeExceeded[source]

	
	
data

	

	
origdgramlen

	

Test scenario creation

	
class switchyard.lib.testing.TestScenario(name)[source]

	Test scenario definition. Given a list of packetio event objects,
generates input events and tests/verifies output events.

	
add_file(fname, text)[source]

	

	
add_interface(interface_name, macaddr, ipaddr=None, netmask=None, **kwargs)[source]

	Add an interface to the test scenario.

(str, str/EthAddr, str/IPAddr, str/IPAddr) -> None

	
expect(event, description)[source]

	Add a new event and description to the expected set of events
to occur for this test scenario.

(Event object, str) -> None

	
interfaces()[source]

	

	
name

	

	
ports()[source]

	Alias for interfaces() method.

	
class switchyard.lib.testing.PacketInputEvent(device, packet, display=None, copyfromlastout=None)[source]

	Test event that models a packet arriving at a router/switch
(e.g., a packet that we generate).

	
match(evtype, **kwargs)[source]

	Does event type match me? PacketInputEvent currently ignores
any additional arguments.

	
class switchyard.lib.testing.PacketInputTimeoutEvent(timeout)[source]

	Test event that models a timeout when trying to receive
a packet. No packet arrives, so the switchy app should
handle a NoPackets exception and continue

	
match(evtype, **kwargs)[source]

	Does event type match me? PacketInputEvent currently ignores
any additional arguments.

	
class switchyard.lib.testing.PacketOutputEvent(*args, **kwargs)[source]

	Test event that models a packet that should be emitted by
a router/switch.

	
match(evtype, **kwargs)[source]

	Does event type match me? PacketOutputEvent requires
two additional keyword args: device (str) and packet (packet object).

Application-layer

Two static methods on the ApplicationLayer class are used to send messages up a socket application and to receive messages from socket applications.

	
class switchyard.lib.socket.ApplicationLayer[source]

	
	
static recv_from_app(timeout=None)[source]

	Called by a network stack implementer to receive application-layer
data for sending on to a remote location.

Can optionally take a timeout value. If no data are available,
raises NoPackets exception.

Returns a 2-tuple: flowaddr and data.
The flowaddr consists of 5 items: protocol, localaddr, localport,
remoteaddr, remoteport.

	
static send_to_app(proto, local_addr, remote_addr, data)[source]

	Called by a network stack implementer to push application-layer
data “up” from the stack.

Arguments are protocol number, local_addr (a 2-tuple of IP address
and port), remote_addr (a 2-tuple of IP address and port), and the
message.

Returns True if a socket was found to which to deliver the message,
and False otherwise. When False is returned, a log warning is also
emitted.

Switchyard’s socket emulation module is intended to follow, relatively closely, the methods and attributes available in the built-in socket module.

	
class switchyard.lib.socket.socket(family, socktype, proto=0, fileno=0)[source]

	A socket object, emulated by Switchyard.

	
accept()[source]

	Not implemented.

	
bind(address)[source]

	Alter the local address with which this socket is associated.
The address parameter is a 2-tuple consisting of an IP address
and port number.

NB: this method fails and returns -1 if the requested port
to bind to is already in use but does not check that the
address is valid.

	
close()[source]

	Close the socket.

	
connect(address)[source]

	Set the remote address (IP address and port) with which
this socket is used to communicate.

	
connect_ex(address)[source]

	Set the remote address (IP address and port) with which
this socket is used to communicate.

	
family

	Get the address family of the socket.

	
getpeername()[source]

	Return a 2-tuple containing the remote IP address and port
associated with the socket, if any.

	
getsockname()[source]

	Return a 2-tuple containing the local IP address and port
associated with the socket.

	
getsockopt(level, option, buffersize=0)[source]

	Not implemented.

	
gettimeout()[source]

	Obtain the currently set timeout value.

	
listen(backlog)[source]

	Not implemented.

	
proto

	Get the protocol of the socket.

	
recv(buffersize, flags=0)[source]

	Receive data on the socket. The buffersize and flags
arguments are currently ignored. Only returns the data.

	
recv_into(*args)[source]

	Not implemented.

	
recvfrom(buffersize, flags=0)[source]

	Receive data on the socket. The buffersize and flags
arguments are currently ignored. Returns the data and
an address tuple (IP address and port) of the remote host.

	
recvfrom_into(*args)[source]

	Not implemented.

	
recvmsg(*args)[source]

	Not implemented.

	
send(data, flags=0)[source]

	Send data on the socket. A call to connect() must have
been previously made for this call to succeed.
Flags is currently ignored.

	
sendall(*args)[source]

	Not implemented.

	
sendmsg(*args)[source]

	Not implemented.

	
sendto(data, *args)[source]

	Send data on the socket. Accepts the same parameters as the
built-in socket sendto: data[, flags], address
where address is a 2-tuple of IP address and port.
Any flags are currently ignored.

	
setblocking(flags)[source]

	Set whether this socket should block on a call to recv*.

	
setsockopt(*args)[source]

	Not implemented.

	
settimeout(timeout)[source]

	Set the timeout value for this socket.

	
shutdown(flag)[source]

	Shut down the socket. This is currently implemented by
calling close().

	
timeout

	Obtain the currently set timeout value.

	
type

	Get the type of the socket.

Utility functions

	
switchyard.lib.logging.log_failure(s)[source]

	Convenience function for failure message.

	
switchyard.lib.logging.log_warn(s)[source]

	Convenience function for warning message.

	
switchyard.lib.logging.log_info(s)[source]

	Convenience function for info message.

	
switchyard.lib.logging.log_debug(s)[source]

	Convenience function for debugging message.

	
switchyard.lib.debugging.debugger()[source]

	Invoke the interactive debugger. Can be used anywhere
within a Switchyard program.

Release notes

The headings below refer either to branches on Switchyard’s github repo (v1 and v2) or tags (2017.01.1).

2017.01.2

Add the capability to pass arguments to a Switchyard program via -g option to swyard.
Switchyard parses and assembles *args and **kwargs to pass into the user code, being careful to only pass them if the code can accept them.

2017.01.1

Major revision; expansion of types of exercises supported (notably application-layer programs via socket emulation) and several non-backward compatible API changes. Simplified user code import (single import of switchyard.lib.userlib). Installation via standard setuptools, so easily installed via easy_install or pip. Major revision of documentation. Lots of new tests were written, bringing test coverage above 90%. Expansion of exercises is still in progress.

Some key API changes to be aware of:

	the Scenario class is renamed TestScenario. The PacketOutputEvent previously allowed Openflow 1.0-like wildcard strings to specify wildcards for matching packets; these strings are no longer supported. To specify wildcards, a tuple of (classname,attribute) must be used; refer to Test scenario creation, above.

	recv_packet always returns a timestamp now; it returns a 3-tuple (named tuple) of timestamp, input_port and packet.

	The only import required by user code is switchyard.lib.userlib, although individual imports are still fine (just more verbose).

	Instead of invoking srpy.py, a swyard program is installed during the new install process. swyard has a few command-line changes compared with srpy.py. In particular, the -s option has gone away; to run Switchyard with a test, just use the -t option with the scenario file as the argument.

v2

Complete rewrite of v1. Moved to Python 3 and created packet parsing libraries, new libpcap interface library (pcapffi). Redesigned test scenario modules and an expanded of publicly available exercises. Used at Colgate twice and University of Wisconsin-Madison twice. Available on the v2 branch on github.

v1

First version, which used the POX packet parsing libraries and had a variety of limitations. Implemented in Python 2 and used at Colgate once. Available on the v1 branch on github, but very much obsolete.

Acknowledgments and thanks

Once again, I gratefully acknowledge support from the NSF. The materials here are based upon work supported by the National Science Foundation under grant CNS-1054985 (“CAREER: Expanding the functionality of Internet routers”).
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

Thanks to Colgate COSC465 students from Spring 2014 and Spring 2015 for being guinea pigs and giving feedback for the very first versions of Switchyard. Thanks also to Prof. Paul Barford and CS640 students at the University of Wisconsin for using and providing feedback on Switchyard.

Thanks to those students who have contributed fixes and made suggestions for improvements. In particular:

	Thanks to Saul Shanabrook for several specific suggestions and bug reports that have led to improvements in Switchyard.

	Thanks to Xuyi Ruan for identifying and suggesting a fix to bugs on one of the documentation diagrams.

	Thanks to Sean Wilson for a bug fix on an infinitely recursive property setter. Oops, but this dumb bug motivated me to significantly improve test coverage, so there’s that.

	Thanks to Leon Yang for identifying a problem with kwarg processing for ICMP.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 switchyard	

 	
 	
 switchyard.lib.userlib	

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

Symbols

 	
 	
 -i <interface-name>

 	command line option

 	
 -x <interface-name>

 	command line option

 	
 	``log_debug``

 	``log_failure``

 	``log_info``

 	``log_warn``

 	``recv_packet``

A

 	
 	accept() (switchyard.lib.socket.socket method)

 	ACK (switchyard.lib.packet.TCP attribute)

 	ack (switchyard.lib.packet.TCP attribute)

 	add_file() (switchyard.lib.testing.TestScenario method)

 	add_header() (switchyard.lib.packet.Packet method)

 	add_interface() (switchyard.lib.testing.TestScenario method)

 	
 	add_next_header_class() (switchyard.lib.packet.PacketHeaderBase class method)

 	add_payload() (switchyard.lib.packet.Packet method)

 	application layer

 	ApplicationLayer (class in switchyard.lib.socket)

 	Arp (class in switchyard.lib.packet)

 	ArpOperation (class in switchyard.lib.packet.common)

B

 	
 	bind() (switchyard.lib.socket.socket method)

C

 	
 	close() (switchyard.lib.socket.socket method)

 	
 command line option

 	-i <interface-name>

 	-x <interface-name>

 	
 	connect() (switchyard.lib.socket.socket method)

 	connect_ex() (switchyard.lib.socket.socket method)

 	CWR (switchyard.lib.packet.TCP attribute)

D

 	
 	data (switchyard.lib.packet.ICMPDestinationUnreachable attribute)

 	(switchyard.lib.packet.ICMPEchoReply attribute)

 	(switchyard.lib.packet.ICMPEchoRequest attribute)

 	(switchyard.lib.packet.ICMPRedirect attribute)

 	(switchyard.lib.packet.ICMPSourceQuench attribute)

 	(switchyard.lib.packet.ICMPTimeExceeded attribute)

 	
 	debugger() (in module switchyard.lib.debugging)

 	dscp (switchyard.lib.packet.IPv4 attribute)

 	dst (switchyard.lib.packet.Ethernet attribute)

 	(switchyard.lib.packet.IPv4 attribute)

 	(switchyard.lib.packet.TCP attribute)

 	(switchyard.lib.packet.UDP attribute)

E

 	
 	ECE (switchyard.lib.packet.TCP attribute)

 	ecn (switchyard.lib.packet.IPv4 attribute)

 	end-host protocol stack

 	EthAddr (class in switchyard.lib.address)

 	
 	ethaddr (switchyard.lib.interface.Interface attribute)

 	Ethernet (class in switchyard.lib.packet)

 	EtherType (class in switchyard.lib.packet.common)

 	ethertype (switchyard.lib.packet.Ethernet attribute)

 	expect() (switchyard.lib.testing.TestScenario method)

F

 	
 	family (switchyard.lib.socket.socket attribute)

 	FIN (switchyard.lib.packet.TCP attribute)

 	flags (switchyard.lib.packet.IPv4 attribute)

 	(switchyard.lib.packet.TCP attribute)

 	
 	flagstr (switchyard.lib.packet.TCP attribute)

 	fragment_offset (switchyard.lib.packet.IPv4 attribute)

 	from_bytes() (switchyard.lib.packet.Packet static method)

 	(switchyard.lib.packet.PacketHeaderBase method)

G

 	
 	get_header() (switchyard.lib.packet.Packet method)

 	get_header_by_name() (switchyard.lib.packet.Packet method)

 	get_header_index() (switchyard.lib.packet.Packet method)

 	
 	getpeername() (switchyard.lib.socket.socket method)

 	getsockname() (switchyard.lib.socket.socket method)

 	getsockopt() (switchyard.lib.socket.socket method)

 	gettimeout() (switchyard.lib.socket.socket method)

H

 	
 	hardwaretype (switchyard.lib.packet.Arp attribute)

 	has_header() (switchyard.lib.packet.Packet method)

 	
 	headers() (switchyard.lib.packet.Packet method)

 	hl (switchyard.lib.packet.IPv4 attribute)

I

 	
 	ICMP (class in switchyard.lib.packet)

 	icmpcode (switchyard.lib.packet.ICMP attribute)

 	icmpdata (switchyard.lib.packet.ICMP attribute)

 	ICMPDestinationUnreachable (class in switchyard.lib.packet)

 	ICMPEchoReply (class in switchyard.lib.packet)

 	ICMPEchoRequest (class in switchyard.lib.packet)

 	ICMPRedirect (class in switchyard.lib.packet)

 	ICMPSourceQuench (class in switchyard.lib.packet)

 	ICMPTimeExceeded (class in switchyard.lib.packet)

 	ICMPType (class in switchyard.lib.packet.common)

 	icmptype (switchyard.lib.packet.ICMP attribute)

 	identifier (switchyard.lib.packet.ICMPEchoReply attribute)

 	(switchyard.lib.packet.ICMPEchoRequest attribute)

 	ifnum (switchyard.lib.interface.Interface attribute)

 	iftype (switchyard.lib.interface.Interface attribute)

 	insert_header() (switchyard.lib.packet.Packet method)

 	Interface (class in switchyard.lib.interface)

 	interface_by_ipaddr() (switchyard.llnetbase.LLNetBase method)

 	
 	interface_by_macaddr() (switchyard.llnetbase.LLNetBase method)

 	interface_by_name() (switchyard.llnetbase.LLNetBase method)

 	interfaces() (switchyard.lib.testing.TestScenario method)

 	(switchyard.llnetbase.LLNetBase method)

 	InterfaceType (class in switchyard.lib.interface)

 	ipaddr (switchyard.lib.interface.Interface attribute)

 	ipid (switchyard.lib.packet.IPv4 attribute)

 	ipinterface (switchyard.lib.interface.Interface attribute)

 	IPProtocol (class in switchyard.lib.packet.common)

 	IPv4 (class in switchyard.lib.packet)

 	is_bridge_filtered (switchyard.lib.address.EthAddr attribute)

 	is_global (switchyard.lib.address.EthAddr attribute)

 	is_local (switchyard.lib.address.EthAddr attribute)

 	is_multicast (switchyard.lib.address.EthAddr attribute)

 	isBridgeFiltered() (switchyard.lib.address.EthAddr method)

 	isGlobal() (switchyard.lib.address.EthAddr method)

 	isLocal() (switchyard.lib.address.EthAddr method)

 	isMulticast() (switchyard.lib.address.EthAddr method)

L

 	
 	listen() (switchyard.lib.socket.socket method)

 	LLNetBase (class in switchyard.llnetbase)

 	log_debug() (built-in function)

 	(in module switchyard.lib.logging)

 	log_failure() (built-in function)

 	(in module switchyard.lib.logging)

 	
 	log_info() (built-in function)

 	(in module switchyard.lib.logging)

 	log_warn() (built-in function)

 	(in module switchyard.lib.logging)

 	logging

M

 	
 	main, [1]

 	match() (switchyard.lib.testing.PacketInputEvent method)

 	(switchyard.lib.testing.PacketInputTimeoutEvent method)

 	(switchyard.lib.testing.PacketOutputEvent method)

N

 	
 	name (switchyard.lib.interface.Interface attribute)

 	(switchyard.lib.testing.TestScenario attribute)

 	named tuple

 	netmask (switchyard.lib.interface.Interface attribute)

 	
 	new packet header types

 	nexthopmtu (switchyard.lib.packet.ICMPDestinationUnreachable attribute)

 	NS (switchyard.lib.packet.TCP attribute)

 	num_headers() (switchyard.lib.packet.Packet method)

O

 	
 	offset (switchyard.lib.packet.TCP attribute)

 	operation (switchyard.lib.packet.Arp attribute)

 	options (switchyard.lib.packet.IPv4 attribute)

 	(switchyard.lib.packet.TCP attribute)

 	
 	origdgramlen (switchyard.lib.packet.ICMPDestinationUnreachable attribute)

 	(switchyard.lib.packet.ICMPTimeExceeded attribute)

P

 	
 	packed (switchyard.lib.address.EthAddr attribute)

 	Packet (class in switchyard.lib.packet)

 	packet headers

 	PacketHeaderBase (class in switchyard.lib.packet), [1]

 	PacketInputEvent (class in switchyard.lib.testing)

 	PacketInputTimeoutEvent (class in switchyard.lib.testing)

 	PacketOutputEvent (class in switchyard.lib.testing)

 	port_by_ipaddr() (switchyard.llnetbase.LLNetBase method)

 	
 	port_by_macaddr() (switchyard.llnetbase.LLNetBase method)

 	port_by_name() (switchyard.llnetbase.LLNetBase method)

 	ports() (switchyard.lib.testing.TestScenario method)

 	(switchyard.llnetbase.LLNetBase method)

 	prepend_header() (switchyard.lib.packet.Packet method)

 	proto (switchyard.lib.socket.socket attribute)

 	protocol (switchyard.lib.packet.IPv4 attribute)

 	protocoltype (switchyard.lib.packet.Arp attribute)

 	PSH (switchyard.lib.packet.TCP attribute)

R

 	
 	raw (switchyard.lib.address.EthAddr attribute)

 	recv() (switchyard.lib.socket.socket method)

 	recv_from_app() (switchyard.lib.socket.ApplicationLayer static method)

 	recv_into() (switchyard.lib.socket.socket method)

 	recv_packet() (switchyard.llnetbase.LLNetBase method)

 	
 	recvfrom() (switchyard.lib.socket.socket method)

 	recvfrom_into() (switchyard.lib.socket.socket method)

 	recvmsg() (switchyard.lib.socket.socket method)

 	redirectto (switchyard.lib.packet.ICMPRedirect attribute)

 	RST (switchyard.lib.packet.TCP attribute)

S

 	
 	send() (switchyard.lib.socket.socket method)

 	send_packet() (switchyard.llnetbase.LLNetBase method)

 	send_to_app() (switchyard.lib.socket.ApplicationLayer static method)

 	sendall() (switchyard.lib.socket.socket method)

 	senderhwaddr (switchyard.lib.packet.Arp attribute)

 	senderprotoaddr (switchyard.lib.packet.Arp attribute)

 	sendmsg() (switchyard.lib.socket.socket method)

 	sendto() (switchyard.lib.socket.socket method)

 	seq (switchyard.lib.packet.TCP attribute)

 	sequence (switchyard.lib.packet.ICMPEchoReply attribute)

 	(switchyard.lib.packet.ICMPEchoRequest attribute)

 	set_next_header_class_key() (switchyard.lib.packet.PacketHeaderBase class method)

 	set_next_header_map() (switchyard.lib.packet.PacketHeaderBase class method)

 	setblocking() (switchyard.lib.socket.socket method)

 	setsockopt() (switchyard.lib.socket.socket method)

 	settimeout() (switchyard.lib.socket.socket method)

 	
 	shutdown() (switchyard.lib.socket.socket method)

 	size() (switchyard.lib.packet.Packet method)

 	(switchyard.lib.packet.PacketHeaderBase method)

 	socket (class in switchyard.lib.socket)

 	socket emulation

 	SpecialIPv4Addr (class in switchyard.lib.address)

 	SpecialIPv6Addr (class in switchyard.lib.address)

 	src (switchyard.lib.packet.Ethernet attribute)

 	(switchyard.lib.packet.IPv4 attribute)

 	(switchyard.lib.packet.TCP attribute)

 	(switchyard.lib.packet.UDP attribute)

 	switchy_main

 	Switchyard program arguments, [1]

 	switchyard.lib.userlib (module)

 	swyard

 	swyard_main

 	SYN (switchyard.lib.packet.TCP attribute)

T

 	
 	targethwaddr (switchyard.lib.packet.Arp attribute)

 	targetprotoaddr (switchyard.lib.packet.Arp attribute)

 	TCP (class in switchyard.lib.packet)

 	testmode (switchyard.llnetbase.LLNetBase attribute)

 	TestScenario (class in switchyard.lib.testing)

 	timeout (switchyard.lib.socket.socket attribute)

 	to_bytes() (switchyard.lib.packet.Packet method)

 	(switchyard.lib.packet.PacketHeaderBase method)

 	
 	toRaw() (switchyard.lib.address.EthAddr method)

 	tos (switchyard.lib.packet.IPv4 attribute)

 	toStr() (switchyard.lib.address.EthAddr method)

 	total_length (switchyard.lib.packet.IPv4 attribute)

 	toTuple() (switchyard.lib.address.EthAddr method)

 	ttl (switchyard.lib.packet.IPv4 attribute)

 	type (switchyard.lib.socket.socket attribute)

U

 	
 	UDP (class in switchyard.lib.packet)

 	
 	URG (switchyard.lib.packet.TCP attribute)

 	urgent_pointer (switchyard.lib.packet.TCP attribute)

W

 	
 	window (switchyard.lib.packet.TCP attribute)

 Table of Contents

 	Switchyard documentation

 	Introduction and Overview

 	Writing a Switchyard program

 	Introducing the “network object”

 	Sending and receiving packets

 	Getting information about ports (interfaces) on the device

 	Other methods on the network object

 	Introduction to packet parsing and construction

 	Utility functions

 	Logging functions

 	Invoking the debugger

 	Passing arguments into a Switchyard program

 	Running in the test environment

 	Test output

 	Verbose test output

 	When a test fails

 	Another example

 	Even more verbose output

 	If you don't like pdb

 	Debugging Switchyard code

 	Checking code coverage

 	Test scenario creation

 	Test scenario examples

 	Compiling a test scenario

 	Running in a “live” environment

 	Basic command-line recipe

 	Including or excluding particular interfaces

 	Firewall options

 	Advanced API topics

 	Creating new packet header types

 	Creating a new packet header class

 	Configuring the lower-layer header class

 	One more example

 	Application layer socket emulation and creating full protocol stacks

 	API calls for delivering/receiving messages to/from applications

 	Switchyard's socket emulation library

 	Starting socket applications with swyard

 	Installing Switchyard

 	Operating system-specific instructions

 	MacOS X

 	Ubuntu

 	Fedora/RedHat

 	API Reference

 	Net object reference

 	Interface and InterfaceType reference

 	Ethernet and IP addresses

 	Packet parsing and construction reference

 	Header classes

 	Ethernet header

 	ARP (address resolution protocol) header

 	IP version 4 header

 	UDP (user datagram protocol) header

 	TCP (transmission control protocol) header

 	ICMP (Internet control message protocol) header

 	Test scenario creation

 	Application-layer

 	Utility functions

 	Release notes

 	2017.01.2

 	2017.01.1

 	v2

 	v1

 	Acknowledgments and thanks

 All modules for which code is available

	switchyard.lib.address

	switchyard.lib.debugging

	switchyard.lib.interface

	switchyard.lib.logging

	switchyard.lib.packet.arp

	switchyard.lib.packet.common

	switchyard.lib.packet.ethernet

	switchyard.lib.packet.icmp

	switchyard.lib.packet.ipv4

	switchyard.lib.packet.packet

	switchyard.lib.packet.tcp

	switchyard.lib.packet.udp

	switchyard.lib.socket.socketemu

	switchyard.lib.testing

	switchyard.llnetbase

 Source code for switchyard.llnetbase

from abc import ABCMeta,abstractmethod
from collections import namedtuple

from .pcapffi import pcap_devices
from .lib.logging import log_debug, log_warn
from .lib.exceptions import *
from .lib.address import *

ReceivedPacket = namedtuple('ReceivedPacket',
 ['timestamp', 'input_port', 'packet'])

def _start_usercode(entryfunction, netobj, codeargdict):
 '''
 figure out how to correctly start the user code. warn if
 args are passed on the command line, but the code doesn't
 accept them.
 '''
 # p22, python3 lang ref
 numargs = entryfunction.__code__.co_argcount
 takenet = numargs >= 1
 takeposargs = numargs - 1 # number of positional args fn takes, less the net obj
 takestarargs = entryfunction.__code__.co_flags & 0x04 == 0x04
 takekw = entryfunction.__code__.co_flags & 0x08 == 0x08

 posargs = []
 args = codeargdict['args']
 kwargs = codeargdict['kwargs']

 if takeposargs > 0:
 if len(args) < takeposargs and not takestarargs:
 raise RuntimeError("Your code requires {} arguments in addition to the net object, but you've passed {} arguments via the -g command-line option.".format(takeposargs, len(args)))
 posargs = args[:takeposargs]
 args = args[takeposargs:]

 if args and not takestarargs:
 log_warn("User code arguments passed on command line, "
 "but the user code doesn't take arguments")
 if kwargs and not takekw:
 log_warn("User code keyword args passed on command line, "
 "but the user code doesn't take kwargs")

 if not takenet:
 raise RuntimeError("Your code does not appear to accept at "
 "least one parameter for the net object")

 # omg, this sucks.
 if takeposargs and takestarargs and takekw:
 entryfunction(netobj, *posargs, *args, **kwargs)
 elif takeposargs and takestarargs:
 entryfunction(netobj, *posargs, *args)
 elif takeposargs:
 entryfunction(netobj, *posargs)
 elif takestarargs and takekw:
 entryfunction(netobj, *args, **kwargs)
 elif takestarargs:
 entryfunction(netobj, *args)
 elif takekw:
 entryfunction(netobj, **kwargs)
 else:
 entryfunction(netobj)

[docs]class LLNetBase(metaclass=ABCMeta):
 '''
 Base class for the low-level networking library in Python.
 "net" objects are constructed from classes derived from this
 class.
 '''
 def __init__(self, name=None):
 self._devupdown_callback = None
 self._devinfo = {} # dict(str -> Interface)

 def set_devupdown_callback(self, callback):
 '''
 Set the callback function to be invoked when
 an interface goes up or down. The arguments to the
 callback are: Interface (object representing the interface
 that has changed status), string (either 'up' or 'down').

 (function) -> None
 '''
 self._devupdown_callback = callback

 def intf_down(self, interface):
 '''
 Can be called when an interface goes down.
 FIXME: doesn't really do anything at this point.
 '''
 intf = self._devinfo.get(interface, None)
 if intf and self._devupdown_callback:
 self._devupdown_callback(intf, 'down')

 def intf_up(self, interface):
 '''
 Can be called when an interface is put in service.
 FIXME: not currently used; more needs to be done to
 correctly put a new intf into service.
 '''
 if interface.name not in self._devinfo:
 self._devinfo[interface.name] = interface
 if self._devupdown_callback:
 self._devupdown_callback(interface, 'up')
 else:
 raise ValueError("Interface already registered")

[docs] def interfaces(self):
 '''
 Return a list of interfaces incident on this node/router.
 Each item in the list is an Interface object, each of which includes
 name, ethaddr, ipaddr, and netmask attributes.
 '''
 return list(self._devinfo.values())

[docs] def ports(self):
 '''
 Alias for interfaces() method.
 '''
 return self.interfaces()

[docs] def interface_by_name(self, name):
 '''
 Given a device name, return the corresponding interface object
 '''
 if name in self._devinfo:
 return self._devinfo[name]
 raise KeyError("No device named {}".format(name))

[docs] def port_by_name(self, name):
 '''
 Alias for interface_by_name
 '''
 return self.interface_by_name(name)

[docs] def interface_by_ipaddr(self, ipaddr):
 '''
 Given an IP address, return the interface that 'owns' this address
 '''
 ipaddr = IPAddr(ipaddr)
 for devname,iface in self._devinfo.items():
 if iface.ipaddr == ipaddr:
 return iface
 raise KeyError("No device has IP address {}".format(ipaddr))

[docs] def port_by_ipaddr(self, ipaddr):
 '''
 Alias for interface_by_ipaddr
 '''
 return self.interface_by_ipaddr(ipaddr)

[docs] def interface_by_macaddr(self, macaddr):
 '''
 Given a MAC address, return the interface that 'owns' this address
 '''
 macaddr = EthAddr(macaddr)
 for devname,iface in self._devinfo.items():
 if iface.ethaddr == macaddr:
 return iface
 raise KeyError("No device has MAC address {}".format(macaddr))

[docs] def port_by_macaddr(self, macaddr):
 '''
 Alias for interface_by_macaddr
 '''
 return self.interface_by_macaddr(macaddr)

 @property
 def testmode(self):
 '''
 Returns True if running in test mode and False if running in
 live/real mode.
 '''
 raise NotImplementedError("This property must be overridden by derived classes")

 @abstractmethod
[docs] def recv_packet(self, timeout=None):
 '''
 Receive a packet on any port/interface.
 If a non-None timeout is given, the method will block for up
 to timeout seconds. If no packet is available, the exception
 NoPackets will be raised. If the Switchyard framework is being
 shut down, the Shutdown exception will be raised.
 If a packet is available, the ReceivedPacket named tuple
 (timestamp, input_port, packet) will be returned.
 '''
 raise NoPackets()

 @abstractmethod
[docs] def send_packet(self, output_port, packet):
 '''
 Send a packet out the given output port/interface.
 Returns None.
 '''
 pass

 @abstractmethod
 def shutdown(self):
 pass

 @property
 def name(self):
 pass

 def _lookup_devname(self, ifnum):
 for devname,iface in self._devinfo.items():
 if iface.ifnum == ifnum:
 return devname
 raise KeyError("No device has ifnum {}".format(ifnum))

 Source code for switchyard.lib.address

__author__ = 'jsommers@colgate.edu'

from ipaddress import IPv4Address, IPv4Network, IPv6Address, IPv6Network, ip_address
from enum import Enum

make aliases for built-in ip_address class
IPAddr = IPv4Address

import struct
import socket

EthAddr class modified from POX code, license below.

Copyright 2011,2012,2013 James McCauley
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at:
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

[docs]class EthAddr (object):
 """
 An Ethernet (MAC) address type.
 """
 __slots__ = ['__value']

 def __init__ (self, addr=None):
 """
 Understands Ethernet address is various forms. Hex strings, raw byte
 strings, etc.
 """
 # Always stores as a bytes object of length 6
 self.__value = None

 if isinstance(addr, bytes):
 self.__value = bytes(addr[:6])
 elif isinstance(addr, EthAddr):
 self.__value = addr.raw
 elif addr is None:
 self.__value = b'\x00' * 6
 elif isinstance(addr, str):
 possible_separators = (':','-')
 for sep in possible_separators:
 if addr.count(sep) == 5:
 self.__value = bytes([int(val,base=16) for val in addr.split(sep)])
 break

 if not self.__value:
 raise RuntimeError("Expected ethernet address string to be 6 raw "
 "bytes or some hex")

[docs] def isBridgeFiltered (self):
 """
 Checks if address is an IEEE 802.1D MAC Bridge Filtered MAC Group Address

 This range is 01-80-C2-00-00-00 to 01-80-C2-00-00-0F. MAC frames that
 have a destination MAC address within this range are not relayed by
 bridges conforming to IEEE 802.1D
 """
 return ((self.__value[0] == 0x01)
 	 and (self.__value[1] == 0x80)
 	 and (self.__value[2] == 0xC2)
 	 and (self.__value[3] == 0x00)
 	 and (self.__value[4] == 0x00)
 	 and (self.__value[5] <= 0x0F))

 @property
 def is_bridge_filtered (self):
 return self.isBridgeFiltered()

[docs] def isGlobal (self):
 """
 Returns True if this is a globally unique (OUI enforced) address.
 """
 return not self.isLocal()

[docs] def isLocal (self):
 """
 Returns True if this is a locally-administered (non-global) address.
 """
 return True if (self.__value[0] & 2) else False

 @property
 def is_local (self):
 return self.isLocal()

 @property
 def is_global (self):
 return self.isGlobal()

[docs] def isMulticast (self):
 """
 Returns True if this is a multicast address.
 """
 return True if (self.__value[0] & 1) else False

 @property
 def is_multicast (self):
 return self.isMulticast()

[docs] def toRaw (self):
 return self.raw

 @property
 def raw (self):
 """
 Returns the address as a 6-long bytes object.
 """
 return self.__value

 @property
 def packed(self):
 return self.raw

[docs] def toTuple (self):
 """
 Returns a 6-entry long tuple where each entry is the numeric value
 of the corresponding byte of the address.
 """
 return tuple(self.__value)

[docs] def toStr (self, separator = ':'):
 """
 Returns the address as string consisting of 12 hex chars separated
 by separator.
 """
 return separator.join(('{:02x}'.format(x) for x in self.__value))

 def __str__ (self):
 return self.toStr()

 def __eq__(self, other):
 other = EthAddr(other)
 return self.raw == other.raw

 def __lt__(self, other):
 other = EthAddr(other)
 return self.raw < other.raw

 def __hash__ (self):
 return hash(self.__value)

 def __repr__ (self):
 return self.__class__.__name__ + "('" + self.toStr() + "')"

 def __len__ (self):
 return 6

ethaddr = EthAddr
macaddr = EthAddr

[docs]class SpecialIPv6Addr(Enum):
 UNDEFINED = ip_address('::')
 ALL_NODES_LINK_LOCAL = ip_address('ff02::1')
 ALL_ROUTERS_LINK_LOCAL = ip_address('ff02::2')
 ALL_NODES_INTERFACE_LOCAL = ip_address('ff01::1')
 ALL_ROUTERS_INTERFACE_LOCAL = ip_address('ff01::2')

#ff02::1:3 link local multicast name resolution
#ff02::1:ff00:0/104 solicited-node
#ff02::2:ff00:0/104 node information query

[docs]class SpecialIPv4Addr(Enum):
 IP_ANY = ip_address("0.0.0.0")
 IP_BROADCAST = ip_address("255.255.255.255")

class SpecialEthAddr(Enum):
 ETHER_ANY = EthAddr(b'\x00\x00\x00\x00\x00\x00')
 ETHER_BROADCAST = EthAddr(b'\xff\xff\xff\xff\xff\xff')
 BRIDGE_GROUP_ADDRESS = EthAddr(b'\x01\x80\xC2\x00\x00\x00')
 LLDP_MULTICAST = EthAddr(b'\x01\x80\xc2\x00\x00\x0e')
 PAE_MULTICAST = EthAddr(b'\x01\x80\xc2\x00\x00\x03')
 # 802.1x Port Access Entity
 NDP_MULTICAST = EthAddr(b'\x01\x23\x20\x00\x00\x01')
 # Nicira discovery multicast

def netmask_to_cidr (dq):
 """
 Takes a netmask as either an IPAddr or a string, and returns the number
 of network bits. e.g., 255.255.255.0 -> 24
 Raise exception if subnet mask is not CIDR-compatible.
 """
 if isinstance(dq, str):
 dq = IPv4Address(dq)
 v = int(dq)
 c = 0
 while v & 0x80000000:
 c += 1
 v <<= 1
 v = v & 0xffFFffFF
 if v != 0:
 raise RuntimeError("Netmask %s is not CIDR-compatible" % (dq,))
 return c

def cidr_to_netmask (bits):
 """
 Takes a number of network bits, and returns the corresponding netmask
 as an IPAddr. e.g., 24 -> 255.255.255.0
 """
 v = (1 << bits) - 1
 v = v << (32-bits)
 return IPAddr(v)

def parse_cidr (addr, infer=True, allow_host=False):
 """
 Takes a CIDR address or plain dotted-quad, and returns a tuple of address
 and count-of-network-bits.
 Can infer the network bits based on network classes if infer=True.
 Can also take a string in the form 'address/netmask', as long as the
 netmask is representable in CIDR.

 FIXME: This function is badly named.
 """
 def check (r0, r1):
 a = int(r0)
 b = r1
 if (not allow_host) and (a & ((1<<b)-1)):
 raise RuntimeError("Host part of CIDR address is not zero (%s)"
 % (addr,))
 return (r0,32-r1)

 addr = addr.split('/', 2)
 if len(addr) == 1:
 if infer is False:
 return check(IPAddr(addr[0]), 0)
 addr = IPAddr(addr[0])
 b = 32-infer_netmask(addr)
 m = (1<<b)-1
 if (int(addr) & m) == 0:
 # All bits in wildcarded part are 0, so we'll use the wildcard
 return check(addr, b)
 else:
 # Some bits in the wildcarded part are set, so we'll assume it's a host
 return check(addr, 0)
 try:
 wild = 32-int(addr[1])
 except:
 # Maybe they passed a netmask
 m = int(IPAddr(addr[1]))
 b = 0
 while m & (1<<31):
 b += 1
 m <<= 1
 if m & 0x7fffffff != 0:
 raise RuntimeError("Netmask " + str(addr[1]) + " is not CIDR-compatible")
 wild = 32-b
 if not (wild >= 0 and wild <= 32):
 raise RuntimeError("Invalid mask length")
 return check(IPAddr(addr[0]), wild)
 if not (wild >= 0 and wild <= 32):
 raise RuntimeError("Invalid mask length")
 return check(IPAddr(addr[0]), wild)

def infer_netmask (addr):
 """
 Uses network classes to guess the number of network bits
 """
 addr = int(addr)
 if addr == 0:
 # Special case -- default network
 return 32-32 # all bits wildcarded
 if (addr & (1 << 31)) == 0:
 # Class A
 return 32-24
 if (addr & (3 << 30)) == 2 << 30:
 # Class B
 return 32-16
 if (addr & (7 << 29)) == 6 << 29:
 # Class C
 return 32-8
 if (addr & (15 << 28)) == 14 << 28:
 # Class D (Multicast)
 return 32-0 # exact match
 # Must be a Class E (Experimental)
 return 32-0

 Source code for switchyard.lib.debugging

global: use in any timer callbacks
to decide whether to handle the timer or not.
if we're in the debugger, just drop it.

from functools import wraps
import pdb

in_debugger = False
def disable_timer():
 global in_debugger
 in_debugger = True

decorate the "real" debugger entrypoint by
disabling any SIGALRM invocations -- just ignore
them if we're going into the debugger
def setup_debugger(f):
 @wraps(f)
 def wrapper(*args, **kwargs):
 disable_timer()
 return f(*args, **kwargs)
 return wrapper

@setup_debugger
[docs]def debugger():
 '''Invoke the interactive debugger. Can be used anywhere
 within a Switchyard program.'''
 pdb.Pdb(skip=['switchyard.lib.debugging']).set_trace()

 Source code for switchyard.lib.interface

from ipaddress import ip_interface, IPv6Interface, IPv4Interface, IPv6Address, IPv4Address
from enum import Enum
from socket import if_nametoindex

from .address import IPAddr,EthAddr
from .logging import log_debug
from ..pcapffi import pcap_devices

[docs]class InterfaceType(Enum):
 Unknown=1
 Loopback=2
 Wired=3
 Wireless=4

[docs]class Interface(object):
 __slots__ = ['__name','__ethaddr','__ipaddr','__ifnum','__iftype']
 __nextnum = 1

 '''
 Class that models a single logical interface on a network
 device. An interface has a name, 48-bit Ethernet MAC address,
 and (optionally) an IP address and network mask. An interface
 also has a number associated with it and a type, which is one
 of the values of the enumerated type ``InterfaceType``.
 '''
 def __init__(self, name, ethaddr, ipaddr=None, netmask=None, ifnum=None, iftype=InterfaceType.Unknown):
 self.__name = name
 self.ethaddr = ethaddr
 if netmask:
 ipaddr = "{}/{}".format(ipaddr,netmask)
 self.ipaddr = ipaddr
 self.ifnum = ifnum
 self.__iftype = iftype

 @property
 def name(self):
 '''Get the name of the interface'''
 return self.__name

 @property
 def ethaddr(self):
 '''Get the Ethernet address associated with the interface'''
 return self.__ethaddr

 @ethaddr.setter
 def ethaddr(self, value):
 if isinstance(value, EthAddr):
 self.__ethaddr = value
 elif isinstance(value, (str,bytes)):
 self.__ethaddr = EthAddr(value)
 elif value is None:
 self.__ethaddr = EthAddr('00:00:00:00:00:00')
 else:
 raise ValueError("Can't initialize ethaddr with {}".format(value))

 @property
 def ipaddr(self):
 '''Get the IPv4 address associated with the interface'''
 return self.__ipaddr.ip

 @property
 def ipinterface(self):
 '''
 Returns the address assigned to this interface as an IPInterface object. (see documentation for the built-in ipaddress module).
 '''
 return self.__ipaddr

 @ipaddr.setter
 def ipaddr(self, value):
 if isinstance(value, (str,IPAddr)):
 self.__ipaddr = ip_interface(value)
 elif value is None:
 self.__ipaddr = ip_interface('0.0.0.0')
 else:
 raise Exception("Invalid type assignment to IP address (must be string or existing IP address)")

 @property
 def netmask(self):
 '''Get the IPv4 subnet mask associated with the interface'''
 return self.__ipaddr.netmask

 @netmask.setter
 def netmask(self, value):
 if isinstance(value, (IPAddr,str,int)):
 self.__ipaddr = ip_interface("{}/{}".format(self.__ipaddr.ip, str(value)))
 elif value is None:
 self.__ipaddr = ip_interface("{}/32".format(self.__ipaddr.ip))
 else:
 raise Exception("Invalid type assignment to netmask (must be IPAddr, string, or int)")

 @property
 def ifnum(self):
 '''Get the interface number (integer) associated with the interface'''
 return self.__ifnum

 @ifnum.setter
 def ifnum(self, value):
 if not isinstance(value, int):
 value = Interface.__nextnum
 Interface.__nextnum += 1
 self.__ifnum = int(value)

 @property
 def iftype(self):
 '''Get the type of the interface as a value from the InterfaceType enumeration.'''
 return self.__iftype

 def __str__(self):
 s = "{} mac:{}".format(str(self.name), str(self.ethaddr))
 if int(self.ipaddr) != 0:
 s += " ip:{}".format(self.__ipaddr)
 return s

def make_device_list(includes=set(), excludes=set()):
 log_debug("Making device list. Includes: {}, Excludes: {}".format(includes, excludes))
 non_interfaces = set()
 devs = set([dev.name for dev in pcap_devices() if not dev.isloop or dev.name in includes])
 includes = set(includes) # may have been given as a list
 includes.intersection_update(devs) # only include devs that actually exist

 for d in devs:
 try:
 ifnum = if_nametoindex(d)
 except:
 non_interfaces.add(d)
 devs.difference_update(non_interfaces)
 log_debug("Devices found: {}".format(devs))

 # remove devs from excludelist
 devs.difference_update(set(excludes))

 # if includelist is non-empty, perform
 # intersection with devs found and includelist
 if includes:
 devs.intersection_update(includes)

 log_debug("Using these devices: {}".format(devs))
 return devs

 Source code for switchyard.lib.logging

import logging

from ..textcolor import *
from .debugging import debugger

def setup_logging(debug):
 '''
 Setup logging format and log level.
 '''
 if debug:
 level = logging.DEBUG
 else:
 level = logging.INFO
 logging.basicConfig(format="%(asctime)s %(levelname)8s %(message)s", datefmt="%H:%M:%S %Y/%m/%d", level=level)

[docs]def log_failure(s):
 '''Convenience function for failure message.'''
 with red():
 logging.fatal("{}".format(s))

[docs]def log_debug(s):
 '''Convenience function for debugging message.'''
 logging.debug("{}".format(s))

[docs]def log_warn(s):
 '''Convenience function for warning message.'''
 with magenta():
 logging.warning("{}".format(s))

[docs]def log_info(s):
 '''Convenience function for info message.'''
 logging.info("{}".format(s))

 Source code for switchyard.lib.testing

import sys
import argparse
import os
import signal
import re
import subprocess
import time
from queue import Queue,Empty
import importlib
import bz2
import hashlib
import pickle
import base64
import fnmatch
from copy import deepcopy
import textwrap
from collections import namedtuple, defaultdict
from abc import ABCMeta, abstractmethod

from .packet import *
from .address import *
from .interface import Interface
from .exceptions import *
from .logging import log_debug
from . import debugging as sdebug
from ..textcolor import *
from ..importcode import import_or_die
from ..llnetbase import ReceivedPacket
from ..outputfmt import VerboseOutput

class TestScenarioFailure(SwitchyardException):
 '''An exception that is raised when a TestScenario expectation
 is not met.'''
 pass

class _PacketMatcher(object):
 '''
 Class whose job it is to define a packet template against which
 some other packet is matched, particularly for PacketOutputEvents,
 where we want to verify that a packet emitted by Switchyard app code
 conforms to some expectation.
 '''
 def __init__(self, packet, predicates=[], wildcards=[], **kwargs):
 '''
 Instantiate the matcher delegate. template is expected
 to be a Packet object.

 An arbitrary number of predicate functions can also be
 passed as a list to the kwarg predicates. Each predicate
 function must be defined as a string with a single lambda.
 Each lambda must take a single arg (a Packet object) and
 return bool.

 wildcards is a list (or tuple) of either (1) strings that refer
 to particular header attributes that should not be compared (the
 strings are borrowed from the Openflow 1.0 spec), or (2) a 2-tuple
 or 2-list composed of a header class name and an attribute.
 The second method of wildcarding is preferred and the first is
 deprecated. The ability to specify Openflow-like attributes
 to wildcard will be removed from a future version.

 Recognized kwargs: exact.
 exact determines whether a byte-by-byte comparison is done
 against a reference packet, or a more limited set of attributes
 is used for comparison.

 The default is exact=True, i.e., all attributes are compared.

 NB: both wildcards and exact can be reasonably used together.
 exact=False simply means that fewer attributes are used by default
 (e.g., addresses, protocol numbers, etc.). Wildcarding can be used
 to compare against even fewer fields. If exact=True, *all* attributes
 are compared except for those that are explicitly wildcarded.
 '''
 self._exact = kwargs.pop('exact', True)
 self._reference_packet = deepcopy(packet)
 self._wildcards = self._check_wildcards(wildcards)
 self._predicates = self._check_predicates(predicates)
 self._compute_comparison_attrs(packet, self._exact, self._wildcards)
 if len(kwargs):
 log_warn("Ignoring unrecognized keyword arguments for building output packet matcher: {}".format(kwargs))
 self._first_header = None
 if len(self._reference_packet):
 self._first_header = self._reference_packet[0].__class__
 self._lastresults = None

 @property
 def packet(self):
 return self._reference_packet

 @staticmethod
 def _check_predicates(predicates):
 pred = []
 if len(predicates) > 0:
 boguslambda = lambda: 0
 for i in range(len(predicates)):
 if not isinstance(predicates[i], str):
 raise Exception("Predicates used for matching packets must be strings (in the form of a lambda definition)")
 try:
 fn = eval(predicates[i])
 except SyntaxError:
 raise SyntaxError("Predicate strings must conform to Python lambda syntax")
 if type(boguslambda) != type(fn):
 raise Exception("Predicate was not a lambda expression: {}".format(predicate[i]))
 pred.append(predicates[i])
 return pred

 @staticmethod
 def _check_wildcards(wildcards):
 if not isinstance(wildcards, list):
 raise TypeError("wildcards must be in a list")
 for wc in wildcards:
 if not isinstance(wc, (list,tuple)) or len(wc) != 2:
 raise ValueError("Each wildcard must be a list or tuple of length 2")
 wcklass,wcattr = wc[0],wc[1]
 if not issubclass(wcklass, PacketHeaderBase):
 raise ValueError("First element in a wildcard must be the name of a packet header class")
 if not (isinstance(wcattr, str) and hasattr(wcklass, wcattr)):
 raise ValueError("Wildcard pair must be a valid packet header class and attribute on that class")
 return wildcards

 def _compute_comparison_attrs(self, pkt, exact, wildcards):
 def _collect_header_attrs(pkthdr):
 attrlist = []
 for attr in dir(pkthdr):
 if attr.startswith('_') or attr == 'checksum':
 continue
 aval = getattr(pkthdr, attr)
 if callable(aval):
 continue
 attrlist.append(attr)
 return attrlist

 def _collect_all_attrs(pkt):
 attrhash = {}
 for hdr in pkt:
 hdrcls = hdr.__class__
 attrhash[hdrcls] = _collect_header_attrs(hdr)
 return attrhash

 def _compute_inexact(pkt):
 _inexact_comparison_attributes = {
 Ethernet: ['src', 'dst', 'ethertype'],
 Arp: ['targetprotoaddr', 'senderprotoaddr', 'targethwaddr', 'senderhwaddr'],
 IPv4: ['src', 'dst', 'protocol'],
 IPv6: ['src', 'dst', 'nextheader'],
 TCP: ['src', 'dst'],
 UDP: ['src', 'dst'],
 ICMP: ['icmptype', 'icmpcode'],
 ICMPv6: ['icmptype', 'icmpcode'],
 Vlan: ['vlanid', 'ethertype'],
 }
 attrhash = deepcopy(_inexact_comparison_attributes)
 foundclasses = set([hdr.__class__ for hdr in pkt])
 # remove classes/keys from attrhash if there aren't
 # corresponding headers in the pkt
 for hdrcls in list(_inexact_comparison_attributes.keys()):
 if hdrcls not in foundclasses:
 del attrhash[hdrcls]
 return attrhash

 def _filter_wildcards():
 for klass,attr in self._wildcards:
 attrlist = self._comparison_attrs.get(klass, [])
 if attr in attrlist:
 attrlist.remove(attr)

 if exact:
 self._comparison_attrs = _collect_all_attrs(pkt)
 else:
 self._comparison_attrs = _compute_inexact(pkt)
 _filter_wildcards()

 def _compare_packet_against_reference(self, packet):
 def _compare_header_types(packet):
 i = 0
 while i < packet.num_headers() and i < self._reference_packet.num_headers():
 if self._reference_packet[i].__class__ != packet[i].__class__:
 self._comparison_diagnosis = \
 "Packet header type is wrong at index {}: expecting {} but found {}".format(
 i, self._reference_packet[i].__class__.__name__,
 packet[i].__class__.__name__)
 return False
 i += 1

 if i < packet.num_headers():
 extras = ' | '.join([packet[j].__class__.__name__ for j in range(i, packet.num_headers())])
 self._comparison_diagnosis = "Extra headers found in your packet: {}".format(extras)
 return False

 if i < self._reference_packet.num_headers():
 missing = ' | '.join([self._reference_packet[j].__class__.__name__ for j in range(i, self._reference_packet.num_headers())])
 self._comparison_diagnosis = "Missing headers in your packet: {}".format(missing)
 return False

 return True

 def _compare_header_attrs(packet):
 differences = []
 for i,hdr in enumerate(self._reference_packet):
 attrlist = self._comparison_attrs.get(hdr.__class__, [])
 diffs = []
 for attr in attrlist:
 refattr = getattr(hdr, attr)
 curattr = getattr(packet[i], attr)
 if refattr != curattr:
 diffs.append("{} is wrong (is {} but should be {})".format(attr, curattr, refattr))

 if diffs:
 diffstr = '; '.join(diffs)
 differences.append("In the {} header, {}".format(hdr.__class__.__name__, diffstr))
 if differences:
 self._comparison_diagnosis = ', '.join(differences)
 return len(differences) == 0

 return _compare_header_types(packet) and _compare_header_attrs(packet)

 def _showpkt(self, pkt):
 def star_out_attr(hdr, attr):
 attrpriv = "_" + attr
 if not hasattr(hdr, attr):
 return
 oldattr = getattr(hdr, attr)
 newattr = '*'
 if isinstance(oldattr, IPv4Address):
 newattr = '*.*.*.*'
 elif isinstance(oldattr, IPv6Address):
 newattr = '*::*'
 elif isinstance(oldattr, EthAddr):
 newattr = '**:**:**:**:**:**'
 setattr(hdr, attrpriv, newattr)

 pktcopy = deepcopy(pkt)
 for klass,attr in self._wildcards:
 header = pktcopy.get_header(klass)
 if header is not None:
 star_out_attr(header, attr)
 return str(pktcopy)

 def fail_reason(self, packet):
 '''
 Construct/return a string that describes why a packet doesn't
 match this matcher.
 '''
 results = self._lastresults
 firstmatch = results.pop(0)
 xtype = "exact" if self._exact else "inexact"
 wc = "with wildcards " if self._wildcards else ""
 aan = 'an' if xtype == 'exact' else 'a'
 xresults = "passed" if firstmatch else "failed"
 conjunction = ', but' if firstmatch else '. '
 diagnosis = ["{} {} match {}of packet contents {}{}".format(aan, xtype, wc, xresults, conjunction)]

 # are there predicates that were tested?
 if len(results):
 diagnosis += ["when comparing the packet you sent versus what I expected,"]
 # if previous statement ended with sentence, cap the last
 # statement added.
 if diagnosis[-2].endswith('.'):
 diagnosis[-1] = diagnosis[-1].capitalize()

 # go through each predicate
 for pidx,preresult in enumerate(results):
 xresults = "passed" if preresult else "failed"
 xname = self._predicates[pidx]
 conjunction = 'and' if pidx == len(results)-1 else ''
 diagnosis += ["{} the predicate ({}) {}".format(conjunction, xname, xresults)]
 if not conjunction:
 diagnosis[-1] += ','
 diagnosis[-1] += '.'

 if firstmatch:
 # headers match, but predicate(s) failed
 diagnosis += ["\nPacket field comparisons matched correctly: {}.".format(self._showpkt(packet))]
 else:
 diagnosis.append(self._comparison_diagnosis)

 if VerboseOutput.enabled():
 diagnosis[-1] += '.'
 # packet header match failed
 diagnosis += ["\nDetails: here is the packet that failed the check: {},".format(packet)]
 diagnosis += ["\nand here is what I expected to match: {}".format(self._showpkt(packet))]
 return ' '.join(diagnosis)

 def match(self, packet):
 '''
 Determine whether packet matches our expectation.
 The packet is only a match if it meets WildcardMatch
 criteria, and all predicates return True.
 If no match, then construct a "nice" description
 of what doesn't match, and throw an exception.
 '''
 # we don't need the binary representation, but we do need to ensure
 # that any pre_serialization triggers have been executed to fill in
 # various headers correctly.
 packet.to_bytes()
 self._reference_packet.to_bytes()

 self._lastresults = [self._compare_packet_against_reference(packet)]
 self._lastresults += [eval(fn)(packet) for fn in self._predicates]
 if all(self._lastresults):
 return True
 else:
 return False

 def __getstate__(self):
 rv = self.__dict__.copy()
 rv['_reference_packet'] = rv['_reference_packet'].to_bytes()
 return rv

 def __setstate__(self, xdict):
 self.__dict__.update(xdict)
 self._reference_packet = Packet(raw=self._reference_packet, first_header=self._first_header)

class SwitchyardTestEvent(object):
 MATCH_FAIL = 0x00
 MATCH_SUCCESS = 0x01
 MATCH_PARTIAL = 0x02

 EVENT_INPUT = 0x10
 EVENT_OUTPUT = 0x20

 __metaclass__ = ABCMeta
 def __init__(self):
 self._display = None

 @abstractmethod
 def match(self, evtype, **kwargs):
 '''
 Abstract method that must be overridden in input/output
 events. Default for base class is to return failed match.
 '''
 return SwitchyardTestEvent.MATCH_FAIL

 @abstractmethod
 def fail_reason(self):
 pass

 def format_pkt(self, pkt):
 '''
 Return a string representation of a packet. If display_class is a known
 header type, just show the string repr of that header. Otherwise, dump
 the whole thing.
 '''
 cls = self._display
 if VerboseOutput.enabled():
 cls = None

 # no special header highlighted with display kw; just return the entire thing
 if cls is None:
 return str(pkt)

 idx = pkt.get_header_index(cls)
 if idx == -1:
 log_warn("Tried to find non-existent header for output formatting {}"
 " (test scenario probably needs fixing)".format(str(cls)))
 return str(pkt)
 hdrs = []
 for i in range(pkt.num_headers()):
 if i == idx:
 hdrs.append(str(pkt[i]))
 else:
 hdrs.append("{}...".format(pkt[i].__class__.__name__))
 return ' | '.join(hdrs)

[docs]class PacketInputTimeoutEvent(SwitchyardTestEvent):
 '''
 Test event that models a timeout when trying to receive
 a packet. No packet arrives, so the switchy app should
 handle a NoPackets exception and continue
 '''
 def __init__(self, timeout):
 self._timeout = timeout

 def __getstate__(self):
 return self.__dict__.copy()

 def __setstate__(self, xdict):
 self.__dict__.update(xdict)

 def __eq__(self, other):
 return isinstance(other, PacketInputTimeoutEvent) and \
 self._timeout == other._timeout

 def __str__(self):
 return "Timeout after {}s on a call to recv_packet".format(self._timeout)

[docs] def match(self, evtype, **kwargs):
 '''
 Does event type match me? PacketInputEvent currently ignores
 any additional arguments.
 '''
 if evtype == SwitchyardTestEvent.EVENT_INPUT:
 return SwitchyardTestEvent.MATCH_SUCCESS
 else:
 return SwitchyardTestEvent.MATCH_FAIL

 def generate_packet(self, timestamp, scenario):
 time.sleep(self._timeout)
 raise NoPackets()

 def fail_reason(self):
 return "Your code did not time out on a call to recv_packet"

[docs]class PacketInputEvent(SwitchyardTestEvent):
 '''
 Test event that models a packet arriving at a router/switch
 (e.g., a packet that we generate).
 '''
 def __init__(self, device, packet, display=None, copyfromlastout=None):
 self._device = device
 self._packet = packet
 if packet.num_headers() > 0:
 self._first_header = packet[0].__class__
 else:
 self._first_header = None
 self._display = display

 self._copyfromlastout = copyfromlastout
 if isinstance(copyfromlastout, (tuple,list)):
 if len(copyfromlastout) == 5 and isinstance(copyfromlastout[0], str):
 self._copyfromlastout = [copyfromlastout]
 elif isinstance(copyfromlastout[0], (tuple,list)):
 self._copyfromlastout = copyfromlastout
 elif copyfromlastout is not None:
 raise ValueError("An argument to copyfromlastout must be a list or tuple, or None")

 def __getstate__(self):
 rv = self.__dict__.copy()
 rv['_packet'] = self._packet.to_bytes()
 return rv

 def __setstate__(self, xdict):
 self.__dict__.update(xdict)
 self._packet = Packet(raw=self._packet, first_header=self._first_header)

 def __eq__(self, other):
 return isinstance(other, PacketInputEvent) and \
 self._device == other._device and \
 str(self._packet) == str(other._packet)

 def __str__(self):
 return "recv_packet {} on {}".format(self.format_pkt(self._packet), self._device)

[docs] def match(self, evtype, **kwargs):
 '''
 Does event type match me? PacketInputEvent currently ignores
 any additional arguments.
 '''
 if evtype == SwitchyardTestEvent.EVENT_INPUT:
 return SwitchyardTestEvent.MATCH_SUCCESS
 else:
 return SwitchyardTestEvent.MATCH_FAIL

 def generate_packet(self, timestamp, scenario):
 # ensure that the packet is fully parsed before
 # delivering it. cost is immaterial since this
 # is just testing code!
 self._packet = Packet(raw=self._packet.to_bytes(), first_header=self._first_header)
 if self._device not in scenario.interfaces():
 raise TestScenarioFailure("Test scenario problem: input event refers to an interface ({}) that is not configured in the scenario (these are the interfaces configured: {})".format(self._device, ', '.join(scenario.interfaces().keys())))
 if self._copyfromlastout:
 for i in range(len(self._copyfromlastout)):
 intf,outcls,outprop,incls,inprop = self._copyfromlastout[i]
 hdrval = scenario.lastout(intf, outcls, outprop)
 hdr = self._packet.get_header(incls)
 setattr(hdr, inprop, hdrval)
 return ReceivedPacket(timestamp=timestamp, input_port=self._device, packet=self._packet)

 def fail_reason(self):
 return "Your code did not call recv_packet"

[docs]class PacketOutputEvent(SwitchyardTestEvent):
 '''
 Test event that models a packet that should be emitted by
 a router/switch.
 '''
 def __init__(self, *args, **kwargs):
 self._matches = {}
 self._device_packet_map = {}
 self._display = None
 if 'display' in kwargs:
 self._display = kwargs.pop('display')

 predicates = []
 if 'predicates' in kwargs:
 pval = kwargs.pop('predicates')
 predicates.extend(pval)
 if 'predicate' in kwargs:
 pval = kwargs.pop('predicate')
 predicates.append(pval)

 wildcards = []
 if 'wildcards' in kwargs:
 wc = kwargs.pop('wildcards')
 wildcards.extend(wc)
 if 'wildcard' in kwargs:
 wc = kwargs.pop('wildcard')
 wildcards.append(wc)

 if len(args) == 0:
 raise ValueError("PacketOutputEvent expects a list of device1, pkt1, device2, pkt2, etc., but no arguments were given.")
 if len(args) % 2 != 0:
 raise ValueError("Arg list length to PacketOutputEvent must be even (device1, pkt1, device2, pkt2, etc.)")
 for i in range(0, len(args), 2):
 matcher = _PacketMatcher(args[i+1], predicates=predicates, wildcards=wildcards, **kwargs)
 self._device_packet_map[args[i]] = matcher

[docs] def match(self, evtype, **kwargs):
 '''
 Does event type match me? PacketOutputEvent requires
 two additional keyword args: device (str) and packet (packet object).
 '''
 if evtype != SwitchyardTestEvent.EVENT_OUTPUT:
 return SwitchyardTestEvent.MATCH_FAIL
 if 'device' not in kwargs or 'packet' not in kwargs:
 return SwitchyardTestEvent.MATCH_FAIL
 device = kwargs['device']
 pkt = kwargs['packet']

 if device in self._device_packet_map:
 matcher = self._device_packet_map[device]
 if matcher.match(pkt):
 self._matches[device] = pkt
 del self._device_packet_map[device]
 if len(self._device_packet_map) == 0:
 return SwitchyardTestEvent.MATCH_SUCCESS
 else:
 return SwitchyardTestEvent.MATCH_PARTIAL
 else:
 raise TestScenarioFailure("You called send_packet and while the output port {} is ok, {}.".format(device, matcher.fail_reason(pkt)))
 else:
 raise TestScenarioFailure("You called send_packet with an unexpected output port {}. Here is what Switchyard expected: {}.".format(device, str(self)))

 def fail_reason(self):
 message = ""
 if len(self._matches):
 plural = "" if len(self._matches) == 1 else "s"
 message += "your code has sent a packet on port{} {}".format(plural,
 ",".join(self._matches.keys()))
 if len(self._device_packet_map):
 message += ", but "
 if len(self._device_packet_map):
 plural = "" if len(self._device_packet_map) == 1 else "s"
 if len(self._matches):
 message += "not "
 else:
 message += "your code did not send packet{0} ".format(plural)
 message += "on port{} {}".format(
 plural, ','.join(self._device_packet_map.keys()))
 return message.capitalize()

 @property
 def matches(self):
 return self._matches

 def __str__(self):
 s = "send_packet(s) "
 # in device_packet_map, values are Match objects
 devlist = ["{} out {}".format(self.format_pkt(v.packet),k) for k,v in self._device_packet_map.items()]
 # in matches, values are packets
 devlist += ["{} out {}".format(self.format_pkt(v),k) for k,v in self._matches.items()]
 s += ' and '.join(devlist)
 return s

 def __getstate__(self):
 rv = self.__dict__.copy()
 for dev in rv['_matches']:
 pkt = rv['_matches'][dev].to_bytes()
 rv['_matches'][dev] = pkt
 return rv

 def __setstate__(self, xdict):
 self.__dict__.update(xdict)
 for dev in self._matches:
 raw = self._matches[dev]
 pkt = Packet(raw=raw)
 self._matches[dev] = pkt

 def __eq__(self, other):
 return isinstance(other, PacketOutputEvent) and \
 str(self) == str(other)

TestScenarioEvent = namedtuple('TestScenarioEvent', ['event','description','timestamp'])

[docs]class TestScenario(object):
 '''
 Test scenario definition. Given a list of packetio event objects,
 generates input events and tests/verifies output events.
 '''
 def __init__(self, name):
 self._interface_map = {}
 self._name = name
 self._pending_events = []
 self._completed_events = []
 self._timer = False
 self._next_timestamp = 0.0
 self._timeoutval = 60
 self._support_files = {}
 self._setup = None
 self._teardown = None
 self._lastout = None

 @property
 def name(self):
 return self._name

 @property
 def timeout(self):
 return self._timeoutval

 @timeout.setter
 def timeout(self, value):
 self._timeoutval = int(value)

 def lastout(self, intf, header, property):
 if self._lastout is not None:
 pkt = self._lastout.get(intf, None)
 if pkt is not None:
 hdr = pkt.get_header(header)
 return getattr(hdr, property)

[docs] def add_file(self, fname, text):
 self._support_files[fname] = text

 def write_files(self):
 for fname, text in self._support_files.items():
 with open(fname, 'w') as outfile:
 outfile.write(text)

 @property
 def setup(self):
 return self._setup

 @setup.setter
 def setup(self, value):
 self._setup = value

 def do_setup(self):
 if self._setup:
 self._setup()

 @property
 def teardown(self):
 return self._teardown

 @teardown.setter
 def teardown(self, value):
 self._teardown = value

 def do_teardown(self):
 if self._teardown:
 self._teardown()

[docs] def add_interface(self, interface_name, macaddr, ipaddr=None, netmask=None, **kwargs):
 '''
 Add an interface to the test scenario.

 (str, str/EthAddr, str/IPAddr, str/IPAddr) -> None
 '''
 if 'ifnum' not in kwargs:
 kwargs['ifnum'] = len(self._interface_map)
 if ipaddr is not None:
 kwargs['ipaddr'] = ipaddr
 if netmask is not None:
 kwargs['netmask'] = netmask
 intf = Interface(interface_name, macaddr, **kwargs)
 self._interface_map[interface_name] = intf

[docs] def interfaces(self):
 return self._interface_map

[docs] def ports(self):
 '''
 Alias for interfaces() method.
 '''
 return self.interfaces()

[docs] def expect(self, event, description):
 '''
 Add a new event and description to the expected set of events
 to occur for this test scenario.

 (Event object, str) -> None
 '''
 self._pending_events.append(TestScenarioEvent(event, description, self._next_timestamp))
 self._next_timestamp += 1.0

 def get_failed_test(self):
 '''
 Return the head of the pending_events queue. In the case of failure,
 this is the expectation that wasn't met.
 '''
 if self._pending_events:
 return self._pending_events[0]
 return None

 def next(self):
 '''
 Return the next expected event to happen.
 '''
 if not self._pending_events:
 raise TestScenarioFailure('''An internal error appears to have happened.
 next() was called on scenario '{}' to obtain the next expected event,
 but Switchyard isn't expecting anything else for this scenario'''.format(self.name))
 else:
 return self._pending_events[0].event

 def failed_test_reason(self):
 return self._pending_events[0].event.fail_reason()

 def _timer_expiry(self, signum, stackframe):
 '''
 Callback method for ensuring that send_packet gets called appropriately
 from user code (i.e., code getting tested).
 '''
 if sdebug.in_debugger:
 self._timer = False
 return

 if self._timer:
 log_debug("Timer expiration while expecting PacketOutputEvent")
 raise TestScenarioFailure('''Switchyard expected your program to call send_packet in
 order to match {} in scenario {}, but it wasn't called. After {} seconds,
 Switchyard gave up.'''.format(str(self._pending_events[0]), self.name, self.timeout))
 else:
 log_debug("Ignoring timer expiry with timer=False")

 def cancel_timer(self):
 '''
 Don't let any pending SIGALRM interrupt things.
 '''
 self._timer=False

 def testpass(self):
 '''
 Method to call if the current expected event occurs, i.e., an event
 expectation has been met.

 Move current event (head of pending list) to completed list and disable
 any timers that may have been started.
 '''
 self._timer = False
 ev = self._pending_events.pop(0)
 log_debug("Test pass: {} - {}".format(ev.description, str(ev.event)))
 self._completed_events.append(ev)

 if isinstance(ev.event, PacketOutputEvent):
 self._lastout = ev.event.matches

 if not len(self._pending_events):
 return

 # if head of expected is pktout, set alarm for 1 sec
 # or so to check that we actually receive a packet.
 if isinstance(self._pending_events[0].event, PacketOutputEvent):
 log_debug("Setting timer for next PacketOutputEvent")
 signal.alarm(self.timeout)
 signal.signal(signal.SIGALRM, self._timer_expiry)
 self._timer = True

 log_debug("Next event expected: "+str(self._pending_events[0].event))

 @staticmethod
 def wrapevent(description, expected_event, show_details=True):
 '''
 Create a "pretty" version of an event description and expectation for output.
 '''
 baseindent = 4
 wraplen = 60
 expected_event = "Expected event: {}".format(expected_event)

 outstr = '\n'.join([' ' * baseindent + s for s in textwrap.wrap(description, wraplen)])
 if show_details:
 outstr += '\n'
 outstr += '\n'.join([' ' * (baseindent*2) + s for s in textwrap.wrap(expected_event, wraplen)])
 return outstr

 def print_summary(self):
 '''
 Print a semi-nice summary of the test scenario: what passed, what
 failed, and test components that haven't been checked yet due to
 a prior failure.
 '''
 with blue():
 print ("\nResults for test scenario {}:".format(self.name), end=' ')
 print ("{} passed, {} failed, {} pending".format(len(self._completed_events), min(1,len(self._pending_events)), max(0,len(self._pending_events)-1)))

 if len(self._completed_events):
 with green():
 print ("\nPassed:")
 for idx,ev in enumerate(self._completed_events):
 idxstr = str(idx+1)
 print ("{}{}".format(idxstr, self.wrapevent(ev.description, str(ev.event), VerboseOutput.enabled())[len(idxstr):]))

 if len(self._pending_events):
 with red():
 print ("\nFailed:")
 failed_event = self._pending_events[0]
 print ("{}".format(self.wrapevent(failed_event.description, str(failed_event.event))))
 if len(self._pending_events) > 1:
 with yellow():
 print ("\nPending (couldn't test because of prior failure):")
 for idx,ev in enumerate(self._pending_events[1:]):
 idxstr = str(idx+1)
 print ("{}{}".format(idxstr, self.wrapevent(ev.description, str(ev.event), VerboseOutput.enabled())[len(idxstr):]))
 print()

 def done(self):
 '''
 Boolean method that tests whether the test scenario
 is done or not.
 '''
 return len(self._pending_events) == 0

 def __str__(self):
 return "scenario {}".format(self.name)

 def __getstate__(self):
 odict = self.__dict__.copy()
 del odict['_timer']
 odict['_events'] = odict['_pending_events'] + odict['_completed_events']
 del odict['_pending_events']
 del odict['_completed_events']
 del odict['_setup']
 del odict['_teardown']
 return odict

 def __setstate__(self, xdict):
 xdict['_pending_events'] = xdict['_events']
 del xdict['_events']
 xdict['_timer'] = None
 xdict['_completed_events'] = []
 xdict['_setup'] = None
 xdict['_teardown'] = None
 self.__dict__.update(xdict)

 def __eq__(self, other):
 if not isinstance(other, TestScenario):
 return False
 if self._next_timestamp != other._next_timestamp:
 return False
 selfev = self._pending_events + self._completed_events
 otherev = other._pending_events + other._completed_events
 if len(selfev) != len(otherev):
 return False
 for i in range(len(selfev)):
 if selfev[i] != otherev[i]:
 return False
 return True

 def scenario_sanity_check(self):
 '''
 Perform some basic sanity checks on a test scenario object:
 - make sure that events refer to devices that are registered
 - check that there are both input/output events

 Just carp warnings if anything looks incorrect, but don't
 fail: punt the problem to the user.

 Returns bool (True if no warnings, False if there are warnings)
 '''
 nowarnings = True
 log_debug("Doing sanity check on test scenario {}".format(self.name))
 for ev in self._pending_events:
 if isinstance(ev.event, PacketInputEvent):
 if ev.event._device not in self._interface_map:
 log_warn("PacketInputEvent ({}) refers to a device not part of scenario interface map".format(str(ev.event)))
 nowarnings = False
 if not isinstance(ev.event._packet, Packet):
 log_warn("PacketInputEvent ({}) refers to a non-packet object ({})".format(str(ev.event), type(ev.event._packet)))
 nowarnings = False
 elif isinstance(ev.event, PacketOutputEvent):
 if not len(ev.event._device_packet_map):
 log_warn("PacketOutputEvent ({}) doesn't have any output devices included".format(ev.event))
 nowarnings = False
 for dev,pkt in ev.event._device_packet_map.items():
 if dev not in self._interface_map:
 log_warn("PacketOutputEvent () refers to a device not part of test scenario".format(str(ev.event)))
 nowarnings = False
 if not isinstance(pkt, _PacketMatcher):
 log_warn("PacketOutputEvent ({}) refers to a non-PacketMatcher object ({}). This is probably an internal error.".format(str(ev.event), type(pkt)))
 nowarnings = False
 if pkt._predicates:
 for pred in pkt._predicates:
 try:
 xfn = eval(pred)
 except Exception as e:
 log_warn("Couldn't eval the predicate ({}): {}".format(pred, str(e)))
 nowarnings = False
 elif isinstance(ev.event, PacketInputTimeoutEvent):
 pass
 else:
 log_warn("Unrecognized event type in scenario event list: {}".format(str(type(ev.event))))
 nowarnings = False
 return nowarnings

def compile_scenario(scenario_file, output_filename=None):
 '''
 Compile a Switchy test scenario object to a serialized representation
 in a file for distribution. Assumes that the input file is a .py
 module with a 'scenario' variable that refers to some Scenario object.

 (str/filename) -> str/filename
 '''
 sobj = import_or_die(scenario_file, ('scenario',))
 sobj.scenario_sanity_check()
 outname = scenario_file.rstrip('.py') + '.srpy'
 pickle_repr = pickle.dumps(sobj, pickle.HIGHEST_PROTOCOL)
 dig = hashlib.sha512()
 dig.update(pickle_repr)
 if output_filename:
 outname = output_filename
 xfile = open(outname, 'w')
 outstr = dig.digest() + pickle_repr
 xfile.write(base64.b64encode(bz2.compress(outstr)).decode('ascii'))
 xfile.close()
 return outname

def uncompile_scenario(scenario_file):
 '''
 Takes a serialized Scenario object stored in scenario_file and returns
 the resurrected Scenario object. Compares the sha512 hash embedded
 in the serialized object file with a newly computed hash to insure that
 the contents haven't been modified.

 (str/filename) -> Scenario object
 '''
 with open(scenario_file, 'r') as infile:
 indata = infile.read()
 indata = base64.b64decode(indata.strip())
 indata = bz2.decompress(indata)
 dig = hashlib.sha512()
 digest = indata[:dig.digest_size]
 objrepr = indata[dig.digest_size:]
 dig.update(objrepr)
 if dig.digest() != digest:
 raise ValueError("Couldn't load scenario file (hash digest doesn't match)")
 sobj = pickle.loads(objrepr)
 return sobj

def get_test_scenario_from_file(sfile):
 '''
 Takes a file name as a parameter, which contains a
 scenario object either in a .py module form, or serialized
 in a .srpy form.

 (str/filename) -> Scenario object
 '''
 sobj = None
 if fnmatch.fnmatch(sfile, "*.py"):
 sobj = import_or_die(sfile, ('scenario',))
 sobj.scenario_sanity_check()
 elif fnmatch.fnmatch(sfile, "*.srpy"):
 sobj = uncompile_scenario(sfile)
 else:
 sobj = import_or_die(sfile, ('scenario',))
 return sobj

 Source code for switchyard.lib.packet.arp

from .packet import PacketHeaderBase,Packet
from ..address import EthAddr,IPAddr,SpecialIPv4Addr,SpecialEthAddr
import struct
from .common import EtherType, ArpHwType, ArpOperation
from ..exceptions import *

'''
References:
 Plummer.
 "RFC826", An Ethernet Address Resolution Protocol.
 Finlayson, Mann, Mogul, and Theimer.
 "RFC903", A Reverse Address Resolution Protocol.
 http://en.wikipedia.org/wiki/Address_Resolution_Protocol
'''

[docs]class Arp(PacketHeaderBase):
 __slots__ = ['_hwtype','_prototype','_hwaddrlen','_protoaddrlen',
 '_operation','_senderhwaddr','_senderprotoaddr',
 '_targethwaddr','_targetprotoaddr']
 _PACKFMT = '!HHBBH6s4s6s4s'
 _MINLEN = struct.calcsize(_PACKFMT)

 def __init__(self, **kwargs):
 self._hwtype = ArpHwType.Ethernet
 self._prototype = EtherType.IP
 self._hwaddrlen = 6
 self._protoaddrlen = 4
 self.operation = ArpOperation.Request
 self.senderhwaddr = SpecialEthAddr.ETHER_ANY.value
 self.senderprotoaddr = SpecialIPv4Addr.IP_ANY.value
 self.targethwaddr = SpecialEthAddr.ETHER_BROADCAST.value
 self.targetprotoaddr = SpecialIPv4Addr.IP_ANY.value
 super().__init__(**kwargs)

 def size(self):
 return struct.calcsize(Arp._PACKFMT)

 def pre_serialize(self, raw, pkt, i):
 pass

 def to_bytes(self):
 '''
 Return packed byte representation of the ARP header.
 '''
 return struct.pack(Arp._PACKFMT, self._hwtype.value, self._prototype.value, self._hwaddrlen, self._protoaddrlen, self._operation.value, self._senderhwaddr.packed, self._senderprotoaddr.packed, self._targethwaddr.packed, self._targetprotoaddr.packed)

 def from_bytes(self, raw):
 '''Return an Ethernet object reconstructed from raw bytes, or an
 Exception if we can't resurrect the packet.'''
 if len(raw) < Arp._MINLEN:
 raise NotEnoughDataError("Not enough bytes ({}) to reconstruct an Arp object".format(len(raw)))
 fields = struct.unpack(Arp._PACKFMT, raw[:Arp._MINLEN])
 try:
 self._hwtype = ArpHwType(fields[0])
 self._prototype = EtherType(fields[1])
 self._hwaddrlen = fields[2]
 self._protoaddrlen = fields[3]
 self.operation = ArpOperation(fields[4])
 self.senderhwaddr = EthAddr(fields[5])
 self.senderprotoaddr = IPAddr(fields[6])
 self.targethwaddr = EthAddr(fields[7])
 self.targetprotoaddr = IPAddr(fields[8])
 except Exception as e:
 raise Exception("Error constructing Arp packet object from raw bytes: {}".format(str(e)))
 return raw[Arp._MINLEN:]

 def __eq__(self, other):
 return self.hardwaretype == other.hardwaretype and \
 self.protocoltype == other.protocoltype and \
 self.operation == other.operation and \
 self.senderhwaddr == other.senderhwaddr and \
 self.senderprotoaddr == other.senderprotoaddr and \
 self.targethwaddr == other.targethwaddr and \
 self.targetprotoaddr == other.targetprotoaddr

 @property
 def hardwaretype(self):
 return self._hwtype

 @property
 def protocoltype(self):
 return self._prototype

 @property
 def operation(self):
 return self._operation

 @operation.setter
 def operation(self, value):
 self._operation = ArpOperation(value)

 @property
 def senderhwaddr(self):
 return self._senderhwaddr

 @senderhwaddr.setter
 def senderhwaddr(self, value):
 self._senderhwaddr = EthAddr(value)

 @property
 def senderprotoaddr(self):
 return self._senderprotoaddr

 @senderprotoaddr.setter
 def senderprotoaddr(self, value):
 self._senderprotoaddr = IPAddr(value)

 @property
 def targethwaddr(self):
 return self._targethwaddr

 @targethwaddr.setter
 def targethwaddr(self, value):
 self._targethwaddr = EthAddr(value)

 @property
 def targetprotoaddr(self):
 return self._targetprotoaddr

 @targetprotoaddr.setter
 def targetprotoaddr(self, value):
 self._targetprotoaddr = IPAddr(value)

 def next_header_class(self):
 '''
 No other headers should follow ARP.
 '''
 return None

 def __str__(self):
 return '{} {}:{} {}:{}'.format(self.__class__.__name__,
 self.senderhwaddr, self.senderprotoaddr,
 self.targethwaddr, self.targetprotoaddr)

 Source code for switchyard.lib.packet.common

import struct
import array
from enum import IntEnum
from socket import ntohs

[docs]class EtherType(IntEnum):
 NoType = 0xFFFF
 IP = 0x0800
 IPv4 = 0x0800
 ARP = 0x0806
 x8021Q = 0x8100
 Vlan = 0x8100
 VLAN = 0x8100
 IPv6 = 0x86dd
 SLOW = 0x8809
 MPLS = 0x8847
 x8021AD = 0x88a8
 LLDP = 0x88cc
 x8021AH = 0x88e7
 IEEE8023 = 0x05dc

class ArpHwType(IntEnum):
 Ethernet = 1

[docs]class ArpOperation(IntEnum):
 Request = 1
 Reply = 2
 RequestReverse = 3
 ReplyReverse = 4

[docs]class IPProtocol(IntEnum):
 IPv6HopOption = 0
 ICMP = 1
 IGMP = 2
 IPinIP = 4
 TCP = 6
 UDP = 17
 IPv6Encap = 41
 IPv6RouteOption = 43
 IPv6Fragment = 44
 RSVP = 46
 GRE = 47
 EncapsulatingSecurityPayload = 50
 AuthenticationHeader = 51
 IPMobility = 55
 TLSP = 56
 ICMPv6 = 58
 IPv6NoNext = 59
 IPv6DestinationOption = 60
 EIGRP = 88
 OSPF = 89
 IPIP = 94
 EtherIP = 97
 SCTP = 132
 IPv6Mobility = 135
 MPLSinIP = 137
 IPv6Shim6 = 140

class IPFragmentFlag(IntEnum):
 NoFragments = 0
 DontFragment = 2
 MoreFragments = 4

class IPOptionNumber(IntEnum):
 EndOfOptionList = 0
 NoOperation = 1
 LooseSourceRouting = 3
 Timestamp = 4
 RecordRoute = 7
 StrictSourceRouting = 9
 MTUProbe = 11
 MTUReply = 12
 RouterAlert = 20

[docs]class ICMPType(IntEnum):
 EchoReply = 0
 DestinationUnreachable = 3
 SourceQuench = 4
 Redirect = 5
 EchoRequest = 8
 RouterAdvertisement = 9
 RouterSolicitation = 10
 TimeExceeded = 11
 ParameterProblem = 12
 Timestamp = 13
 TimestampReply = 14
 InformationRequest = 15
 InformationReply = 16
 AddressMaskRequest = 17
 AddressMaskReply = 18

class ICMPCodeEchoReply(IntEnum):
 EchoReply = 0

class ICMPCodeDestinationUnreachable(IntEnum):
 NetworkUnreachable = 0
 HostUnreachable = 1
 ProtocolUnreachable = 2
 PortUnreachable = 3
 FragmentationRequiredDFSet = 4
 SourceRouteFailed = 5
 DestinationNetworkUnknown = 6
 DestinationHostUnknown = 7
 SourceHostIsolated = 8
 NetworkAdministrativelyProhibited = 9
 HostAdministrativelyProhibited = 10
 NetworkUnreachableForTOS = 11
 HostUnreachableForTOS = 12
 CommunicationAdministrativelyProhibited = 13
 HostPrecedenceViolation = 14
 PrecedenceCutoffInEffect = 15

class ICMPCodeSourceQuench(IntEnum):
 SourceQuench = 0

class ICMPCodeRedirect(IntEnum):
 RedirectForNetwork = 0
 RedirectForHost = 1
 RedirectForTOSAndNetwork = 2
 RedirectForTOSAndHost = 3

class ICMPCodeEchoRequest(IntEnum):
 EchoRequest = 0

class ICMPCodeRouterAdvertisement(IntEnum):
 RouterAdvertisement = 0

class ICMPCodeRouterSolicitation(IntEnum):
 RouterSolicitation = 0

class ICMPCodeTimeExceeded(IntEnum):
 TTLExpired = 0
 FragmentReassemblyTimeExceeded = 1

class ICMPCodeParameterProblem(IntEnum):
 PointerIndictatesError = 0
 MissingRequiredOption = 1
 BadLength = 2

class ICMPCodeTimestamp(IntEnum):
 Timestamp = 0

class ICMPCodeTimestampReply(IntEnum):
 TimestampReply = 0

class ICMPCodeInformationRequest(IntEnum):
 InformationRequest = 0

class ICMPCodeInformationReply(IntEnum):
 InformationReply = 0

class ICMPCodeAddressMaskRequest(IntEnum):
 AddressMaskRequest = 0

class ICMPCodeAddressMaskReply(IntEnum):
 AddressMaskReply = 0

ICMPTypeCodeMap = {
 ICMPType.EchoReply: ICMPCodeEchoReply,
 ICMPType.DestinationUnreachable: ICMPCodeDestinationUnreachable,
 ICMPType.SourceQuench: ICMPCodeSourceQuench,
 ICMPType.Redirect: ICMPCodeRedirect,
 ICMPType.EchoRequest: ICMPCodeEchoRequest,
 ICMPType.RouterAdvertisement: ICMPCodeRouterAdvertisement,
 ICMPType.RouterSolicitation: ICMPCodeRouterSolicitation,
 ICMPType.TimeExceeded: ICMPCodeTimeExceeded,
 ICMPType.ParameterProblem: ICMPCodeParameterProblem,
 ICMPType.Timestamp: ICMPCodeTimestamp,
 ICMPType.TimestampReply: ICMPCodeTimestampReply,
 ICMPType.InformationRequest: ICMPCodeInformationRequest,
 ICMPType.InformationReply: ICMPCodeInformationReply,
 ICMPType.AddressMaskRequest: ICMPCodeAddressMaskRequest,
 ICMPType.AddressMaskReply: ICMPCodeAddressMaskReply
}

class ICMPv6Type(IntEnum):
 DestinationUnreachable = 1
 PacketTooBig = 2
 TimeExceeded = 3
 ParameterProblem = 4
 PrivateExperimentation1 = 100
 PrivateExperimentation2 = 101
 EchoRequest = 128
 EchoReply = 129
 MulticastListenerQuery = 130
 MulticastListenerReport = 131
 MulticastListenerDone = 132
 RouterSolicitation = 133
 RouterAdvertisement = 134
 NeighborSolicitation = 135
 NeighborAdvertisement = 136
 RedirectMessage = 137
 RouterRenumbering = 138
 ICMPNodeInformationQuery = 139
 ICMPNodeInformationResponse = 140
 InverseNeighborDiscoverySolicitationMessage = 141
 InverseNeighborDiscoveryAdvertisementMessage = 142
 Version2MulticastListenerReport = 143
 HomeAgentAddressDiscoveryRequestMessage = 144
 HomeAgentAddressDiscoveryReplyMessage = 145
 MobilePrefixSolicitation = 146
 MobilePrefixAdvertisement = 147
 CertificationPathSolicitationMessage = 148
 CertificationPathAdvertisementMessage = 149
 ICMPmessagesutilizedbyexperimentalmobilityprotocolssuchasSeamoby = 150
 MulticastRouterAdvertisement = 151
 MulticastRouterSolicitation = 152
 MulticastRouterTermination = 153
 FMIPv6Messages = 154
 RPLControlMessage = 155
 ILNPv6LocatorUpdateMessage = 156
 DuplicateAddressRequest = 157
 DuplicateAddressConfirmation = 158
 Privateexperimentation3 = 200
 Privateexperimentation4 = 201

ICMPv6TypeCodeMap = {
 ICMPv6Type.EchoRequest: ICMPCodeEchoRequest,
 ICMPv6Type.EchoReply: ICMPCodeEchoReply
}

the following checksum function was taken from the POX openflow controller

Copyright 2011,2012 James McCauley
Copyright 2008 (C) Nicira, Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at:
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

This file is derived from the packet library in NOX, which was
developed by Nicira, Inc.

def checksum (data, start = 0, skip_word = None):
 """
 Calculate standard internet checksum over data starting at start'th byte

 skip_word: If specified, it's the word offset of a word in data to "skip"
 (as if it were zero). The purpose is when data is received
 data which contains a computed checksum that you are trying to
 verify -- you want to skip that word since it was zero when
 the checksum was initially calculated.
 """
 if len(data) % 2 != 0:
 arr = array.array('H', data[:-1])
 else:
 arr = array.array('H', data)

 if skip_word is not None:
 for i in range(0, len(arr)):
 if i == skip_word:
 continue
 start += arr[i]
 else:
 for i in range(0, len(arr)):
 start += arr[i]

 if len(data) % 2 != 0:
 start += struct.unpack('H', data[-1:]+b'\x00')[0] # Specify order?

 start = (start >> 16) + (start & 0xffff)
 start += (start >> 16)
 #while start >> 16:
 # start = (start >> 16) + (start & 0xffff)

 return ntohs(~start & 0xffff)

 Source code for switchyard.lib.packet.ethernet

import struct
from .packet import PacketHeaderBase,Packet
from ..address import EthAddr,SpecialEthAddr
from .arp import Arp
from .ipv4 import IPv4
from .ipv6 import IPv6
from .common import EtherType
from ..exceptions import *

class Vlan(PacketHeaderBase):
 '''
 Strictly speaking this header doesn't fully represent the 802.1Q header,
 but rather the 2nd half of that header and the "displaced" ethertype
 field from the Ethernet header. The first two bytes of the 802.1Q header
 basically get treated as the ethertype field in the Ethernet header,
 and that ethertype "points to" this Vlan header for parsing/understanding
 the next 4 bytes (or more, depending on whether QinQ or QinQinQ
 encapsulation is done).

 first 16 bits is TCI: tag control information
 3 bits: priority code point
 1 bit: drop eligible indicator
 12 bits: vlan id
 '''

 __slots__ = ['_vlanid', '_pcp', '_ethertype']
 _PACKFMT = '!HH'
 _MINLEN = struct.calcsize(_PACKFMT)
 _next_header_map = {
 EtherType.IP: IPv4,
 EtherType.ARP: Arp,
 EtherType.IPv6: IPv6,
 EtherType.NoType: None,
 }
 _next_header_class_key = '_ethertype'

 def __init__(self, **kwargs):
 '''
 VLAN constructor accepts an initial VLAN Id and the EtherType
 of the next header.
 '''
 self._vlanid = 0
 self._pcp = 0
 self._ethertype = EtherType.IP
 super().__init__(**kwargs)

 @property
 def vlanid(self):
 return self._vlanid

 @vlanid.setter
 def vlanid(self, value):
 self._vlanid = int(value) & 0x0fff # mask out high-order 4 bits

 @property
 def pcp(self):
 return self._pcp

 @pcp.setter
 def pcp(self, value):
 self._pcp = max(min(int(value),3),0)

 @property
 def ethertype(self):
 return self._ethertype

 @ethertype.setter
 def ethertype(self, value):
 self._ethertype = EtherType(value)

 def from_bytes(self, raw):
 if len(raw) < Vlan._MINLEN:
 raise NotEnoughDataError("Not enough bytes to unpack Vlan header; need {}, "
 "only have {}".format(Vlan._MINLEN, len(raw)))
 fields = struct.unpack(Vlan._PACKFMT, raw[:Vlan._MINLEN])
 self.vlanid = fields[0]
 self.pcp = ((fields[0] & 0xf000) >> 12)
 self.ethertype = fields[1]
 return raw[Vlan._MINLEN:]

 def to_bytes(self):
 return struct.pack(Vlan._PACKFMT, ((self._pcp << 12) | self._vlanid),
 self._ethertype.value)

 def __eq__(self, other):
 return isinstance(other, Vlan) and \
 self.vlanid == other.vlanid and self.ethertype == other.ethertype

 def size(self):
 return Vlan._MINLEN

 def __str__(self): return '{} {} {}'.format(self.__class__.__name__,
 self.vlanid, self.ethertype.name)

[docs]class Ethernet(PacketHeaderBase):
 __slots__ = ['_src','_dst','_ethertype']
 _PACKFMT = '!6s6sH'
 _MINLEN = struct.calcsize(_PACKFMT)
 _next_header_map = {
 EtherType.IP: IPv4,
 EtherType.ARP: Arp,
 EtherType.IPv6: IPv6,
 EtherType.x8021Q: Vlan,
 EtherType.NoType: None,
 }
 _next_header_class_key = '_ethertype'

 def __init__(self, **kwargs):
 self._src = self._dst = EthAddr()
 self._ethertype = EtherType.IP
 super().__init__(**kwargs)

 def size(self):
 return struct.calcsize(Ethernet._PACKFMT)

 @property
 def src(self):
 return self._src

 @src.setter
 def src(self, value):
 self._src = EthAddr(value)

 @property
 def dst(self):
 return self._dst

 @dst.setter
 def dst(self, value):
 self._dst = EthAddr(value)

 @property
 def ethertype(self):
 return self._ethertype

 @ethertype.setter
 def ethertype(self, value):
 self._ethertype = EtherType(value)

 def to_bytes(self):
 '''
 Return packed byte representation of the Ethernet header.
 '''
 return struct.pack(Ethernet._PACKFMT, self._dst.packed,
 self._src.packed, self._ethertype.value)

 def from_bytes(self, raw):
 '''Return an Ethernet object reconstructed from raw bytes, or an
 Exception if we can't resurrect the packet.'''
 if len(raw) < Ethernet._MINLEN:
 raise NotEnoughDataError("Not enough bytes ({}) to reconstruct an "
 "Ethernet object".format(len(raw)))
 dst,src,ethertype = struct.unpack(Ethernet._PACKFMT,
 raw[:Ethernet._MINLEN])
 self.src = src
 self.dst = dst
 if ethertype <= 1500:
 self.ethertype = EtherType.NoType
 else:
 self.ethertype = ethertype
 return raw[Ethernet._MINLEN:]

 def __eq__(self, other):
 return isinstance(other, Ethernet) and \
 self.src == other.src and self.dst == other.dst and \
 self.ethertype == other.ethertype

 def __str__(self):
 return '{} {}->{} {}'.format(self.__class__.__name__,
 self.src, self.dst, self.ethertype.name)

 Source code for switchyard.lib.packet.icmp

import struct
from enum import IntEnum
from ipaddress import IPv4Address

from .packet import PacketHeaderBase,Packet
from .common import checksum, ICMPType, ICMPTypeCodeMap
from ..exceptions import *

'''
References: https://www.ietf.org/rfc/rfc792.txt
 https://tools.ietf.org/html/rfc4884 (extension parameters)
TCP/IP Illustrated, Vol 1.
'''

[docs]class ICMP(PacketHeaderBase):
 '''
 A mother class for all ICMP message types. It holds a reference
 to another object that contains the specific ICMP data (icmpdata),
 given a particular ICMP type. Just setting the icmptype causes the
 data object to change (the change happens automatically when you
 set the icmptype). The icmpcode field will also change, but
 it only changes to some valid code given the new icmptype.
 '''
 __slots__ = ('_type', '_code', '_icmpdata', '_valid_types',
 '_valid_codes_map', '_classtype_from_icmptype',
 '_icmptype_from_classtype', '_checksum')
 _PACKFMT = '!BBH'
 _MINLEN = struct.calcsize(_PACKFMT)

 def __init__(self, **kwargs):
 self._valid_types = ICMPType
 self._valid_codes_map = ICMPTypeCodeMap
 self._classtype_from_icmptype = ICMPClassFromType
 self._icmptype_from_classtype = ICMPTypeFromClass
 self._type = self._valid_types.EchoRequest
 self._code = self._valid_codes_map[self._type].EchoRequest
 self._icmpdata = ICMPEchoRequest()
 self._checksum = 0
 # make sure that icmptype is set first; this has the
 # side-effect of also creating the "right" icmpdata object.
 if 'icmptype' in kwargs:
 self.icmptype = kwargs.pop('icmptype')
 # as a convenience, allow kw syntax to set icmpdata values
 popattr = []
 for attr,val in kwargs.items():
 if hasattr(self.icmpdata, attr):
 setattr(self.icmpdata, attr, val)
 popattr.append(attr)
 for pattr in popattr:
 kwargs.pop(pattr)
 super().__init__(**kwargs)

 def size(self):
 return struct.calcsize(ICMP._PACKFMT) + len(self._icmpdata.to_bytes())

 def checksum(self):
 self._checksum = checksum(b''.join((struct.pack(ICMP._PACKFMT, self._type.value, self._code.value, 0), self._icmpdata.to_bytes())))
 return self._checksum

 def to_bytes(self, dochecksum=True):
 '''
 Return packed byte representation of the UDP header.
 '''
 csum = 0
 if dochecksum:
 csum = self.checksum()
 return b''.join((struct.pack(ICMP._PACKFMT, self._type.value, self._code.value, csum), self._icmpdata.to_bytes()))

 def from_bytes(self, raw):
 if len(raw) < ICMP._MINLEN:
 raise NotEnoughDataError("Not enough bytes ({}) to reconstruct an ICMP object".format(len(raw)))
 fields = struct.unpack(ICMP._PACKFMT, raw[:ICMP._MINLEN])
 self._type = self._valid_types(fields[0])
 self._code = self._valid_codes_map[self.icmptype](fields[1])
 self._checksum = fields[2]
 self._icmpdata = self._classtype_from_icmptype(self._type)()
 self._icmpdata.from_bytes(raw[ICMP._MINLEN:])
 return raw[self.size():]

 def __eq__(self, other):
 return self.icmptype == other.icmptype and \
 self.icmpcode == other.icmpcode and \
 self.icmpdata == other.icmpdata

 @property
 def icmptype(self):
 return self._type

 @property
 def icmpcode(self):
 return self._code

 @icmptype.setter
 def icmptype(self, value):
 if not isinstance(value, self._valid_types):
 value = self._valid_types(value)
 # JS: revised following line as above; too restrictive
 # raise ValueError("ICMP type must be an {} enumeration".format(type(self._valid_types)))

 cls = self._classtype_from_icmptype(value)
 if not issubclass(self.icmpdata.__class__, cls):
 self.icmpdata = cls()
 self._type = value
 codes = self._valid_codes_map[value]
 for code in codes:
 if code.value == 0:
 self._code = code
 break

 @icmpcode.setter
 def icmpcode(self,value):
 if issubclass(value.__class__, IntEnum):
 validcodes = self._valid_codes_map[self._type]
 self._check_typecode_consistency(value)
 self._code = value
 elif isinstance(value, int):
 self._code = self._valid_codes_map[self.icmptype](value)

 def _check_typecode_consistency(self, xcode):
 validcodes = self._valid_codes_map[self._type]
 if xcode not in validcodes:
 raise ValueError("Invalid code {} for type {}".format(xcode, self._type.name, self._type))

 def __str__(self):
 typecode = self.icmptype.name
 if self.icmptype.name != self.icmpcode.name:
 typecode = '{}:{}'.format(self.icmptype.name, self.icmpcode.name)
 return '{} {} {}'.format(self.__class__.__name__, typecode, str(self.icmpdata))

 def next_header_class(self):
 return None

 def pre_serialize(self, raw, pkt, i):
 return

 @property
 def icmpdata(self):
 return self._icmpdata

 @icmpdata.setter
 def icmpdata(self, dataobj):
 if not issubclass(dataobj.__class__, ICMPData):
 raise Exception("ICMP data must be subclass of ICMPData (you gave me {})".format(dataobj.__class__.__name__))
 self._icmpdata = dataobj
 self.icmptype = self._icmptype_from_classtype(dataobj.__class__)

class ICMPData(PacketHeaderBase):
 __slots__ = ('_rawpayload',)

 def __init__(self, **kwargs):
 self._rawpayload = b''
 super().__init__(**kwargs)

 def next_header_class(self):
 return None

 def pre_serialize(self, raw, pkt, i):
 return

 def size(self):
 return len(self._rawpayload)

 def to_bytes(self):
 return self._rawpayload

 def from_bytes(self, raw):
 self._rawpayload = bytes(raw)

 @property
 def data(self):
 return self._rawpayload

 @data.setter
 def data(self, value):
 if not isinstance(value, bytes):
 self._rawpayload = bytes(value, 'utf8')
 else:
 self._rawpayload = value

 def __eq__(self, other):
 return self.data == other.data

 def __str__(self):
 return '{} bytes of raw payload ({})'.format(len(self._rawpayload), self._rawpayload[:10])

[docs]class ICMPSourceQuench(ICMPData):
 _MINLEN = 4

 def __init__(self):
 super().__init__()

 def size(self):
 return 4 + super().size()

 def to_bytes(self):
 return b''.join((b'\x00' * 4, super().to_bytes()))

 def from_bytes(self, raw):
 if len(raw) < ICMPSourceQuench._MINLEN:
 raise NotEnoughDataError("Not enough bytes ({}) to reconstruct ICMPSourceQuench data object".format(len(raw)))
 super().from_bytes(raw[4:])

[docs]class ICMPRedirect(ICMPData):
 __slots__ = ['_redirectto']
 def __init__(self):
 super().__init__()
 self._redirectto = IPv4Address('0.0.0.0')

 def to_bytes(self):
 return b''.join((self._redirectto.packed,super().to_bytes()))

 def from_bytes(self, raw):
 if len(raw) < 4:
 raise NotEnoughDataError("Not enough bytes ({}) to reconstruct ICMPRedirect data object".format(len(raw)))
 fields = struct.unpack('!I', raw[:4])
 self._redirectto = IPv4Address(fields[0])
 super().from_bytes(raw[4:])

 def __str__(self):
 return '{} RedirectAddress: {}'.format(super().__str__(), self._redirectto)

 @property
 def redirectto(self):
 return self._redirectto

 @redirectto.setter
 def redirectto(self, value):
 self._redirectto = IPv4Address(value)

[docs]class ICMPDestinationUnreachable(ICMPData):
 __slots__ = ('_origdgramlen', '_nexthopmtu')
 def __init__(self):
 super().__init__()
 self._nexthopmtu = 0
 self._origdgramlen = 0

 def to_bytes(self):
 return b''.join((struct.pack('!xBH', self._origdgramlen, self._nexthopmtu), super().to_bytes()))

 def from_bytes(self, raw):
 if len(raw) < 4:
 raise NotEnoughDataError("Not enough bytes ({}) to reconstruct ICMPDestinationUnreachable data object".format(len(raw)))
 fields = struct.unpack('!xBH', raw[:4])
 self._origdgramlen = fields[0]
 self._nexthopmtu = fields[1]
 super().from_bytes(raw[4:])

 @property
 def origdgramlen(self):
 return self._origdgramlen

 @origdgramlen.setter
 def origdgramlen(self, value):
 self._origdgramlen = int(value)

 @property
 def nexthopmtu(self):
 return self._nexthopmtu

 @nexthopmtu.setter
 def nexthopmtu(self, value):
 self._nexthopmtu = int(value)

 def __str__(self):
 return '{} NextHopMTU: {}'.format(super().__str__(), self._nexthopmtu)

[docs]class ICMPEchoRequest(ICMPData):
 __slots__ = ['_identifier','_sequence']
 _PACKFMT = '!HH'
 _MINLEN = struct.calcsize(_PACKFMT)

 def __init__(self):
 super().__init__()
 self._identifier = 0
 self._sequence = 0

 def next_header_class(self):
 return None

 def pre_serialize(self, raw, pkt, i):
 return

 def size(self):
 return self._MINLEN + super().size()

 def from_bytes(self, raw):
 if len(raw) < 4:
 raise NotEnoughDataError("Not enough bytes ({}) to reconstruct {} data object".format(len(raw)))
 fields = struct.unpack(ICMPEchoRequest._PACKFMT,
 raw[:ICMPEchoRequest._MINLEN])
 self._identifier = fields[0]
 self._sequence = fields[1]
 super().from_bytes(raw[4:])
 return b''

 def to_bytes(self):
 return b''.join((struct.pack(ICMPEchoRequest._PACKFMT,
 self._identifier, self._sequence), super().to_bytes()))

 def __str__(self):
 return '{} {} ({} data bytes)'.format(self._identifier, self._sequence, len(self.data))

 def __eq__(self, other):
 return self.identifier == other.identifier and \
 self.sequence == other.sequence and \
 self.data == other.data

 @property
 def identifier(self):
 return self._identifier

 @property
 def sequence(self):
 return self._sequence

 @identifier.setter
 def identifier(self, value):
 self._identifier = int(value)

 @sequence.setter
 def sequence(self, value):
 self._sequence = int(value)

[docs]class ICMPEchoReply(ICMPEchoRequest):
 pass

[docs]class ICMPTimeExceeded(ICMPData):
 __slots__ = ('_nexthopmtu','_origdgramlen',)
 def __init__(self):
 super().__init__()
 self._origdgramlen = 0

 def to_bytes(self):
 return b''.join((struct.pack('!xBH', self._origdgramlen, 0), super().to_bytes()))
 # FIXME: origdgram len should be padded to 4 bytes for v4, and 8 bytes for v6

 def from_bytes(self, raw):
 if len(raw) < 4:
 raise NotEnoughDataError("Not enough bytes ({}) to reconstruct ICMPTimeExceeded data object".format(len(raw)))
 fields = struct.unpack('!xBH', raw[:4])
 self._origdgramlen = fields[0]
 self._nexthopmtu = fields[1]
 super().from_bytes(raw[4:])

 @property
 def origdgramlen(self):
 return self._origdgramlen

 @origdgramlen.setter
 def origdgramlen(self, value):
 self._origdgramlen = int(value)

 def __str__(self):
 return '{} OrigDgramLen: {}'.format(super().__str__(), self._origdgramlen)

class ICMPAddressMaskRequest(ICMPData):
 __slots__ = ['_identifier','_sequence','_addrmask']
 _PACKFMT = '!HH'
 _MINLEN = struct.calcsize(_PACKFMT)

 def __init__(self):
 super().__init__()
 self._identifier = 0
 self._sequence = 0
 self._addrmask = IPv4Address('0.0.0.0')

 def next_header_class(self):
 return None

 def pre_serialize(self, raw, pkt, i):
 return

 def size(self):
 return ICMPAddressMaskRequest._MINLEN

 def to_bytes(self):
 return b''.join((struct.pack(ICMPAddressMaskRequest._PACKFMT,
 self._identifier, self._sequence), self._addrmask.packed))

 def from_bytes(self, raw):
 if len(raw) < ICMPAddressMaskRequest._MINLEN:
 raise NotEnoughDataError("Not enough bytes to unpack ICMPAddressMaskRequest object")
 fields = struct.unpack(ICMPAddressMaskRequest._PACKFMT, raw[:4])
 self._identifier = fields[0]
 self._sequence = fields[1]
 self._addrmask = IPv4Address(raw[4:8])
 return b''

 @property
 def addrmask(self):
 return self._addrmask

 @addrmask.setter
 def addrmask(self, value):
 self._addrmask = IPv4Address(value)

 @property
 def identifier(self):
 return self._identifier

 @identifier.setter
 def identifier(self, value):
 self._identifier = int(value)

 @property
 def sequence(self):
 return self._sequence

 @sequence.setter
 def sequence(self, value):
 self._sequence = int(value)

 def __str__(self):
 return '{} {} {}'.format(self._identifier, self._sequence, self._addrmask)

class ICMPAddressMaskReply(ICMPAddressMaskRequest):
 pass

class ICMPInformationRequest(ICMPData):
 pass

class ICMPInformationReply(ICMPData):
 pass

class ICMPRouterAdvertisement(ICMPData):
 pass

class ICMPRouterSolicitation(ICMPData):
 pass

class ICMPParameterProblem(ICMPData):
 pass

class ICMPTimestamp(ICMPData):
 pass

class ICMPTimestampReply(ICMPData):
 pass

def construct_icmp_class_map():
 clsmap = {}
 for xtype in ICMPType:
 clsname = "ICMP{}".format(xtype.name)
 cls = eval(clsname)
 clsmap[xtype] = cls
 def inner(icmptype):
 icmptype = ICMPType(icmptype)
 return clsmap.get(icmptype, None)
 return inner

def construct_icmp_type_map():
 typemap = {}
 for xtype in ICMPType:
 clsname = "ICMP{}".format(xtype.name)
 cls = eval(clsname)
 typemap[cls] = xtype
 def inner(icmpcls):
 return typemap.get(icmpcls, None)
 return inner

ICMPClassFromType = construct_icmp_class_map()
ICMPTypeFromClass = construct_icmp_type_map()

 Source code for switchyard.lib.packet.ipv4

import struct
from abc import ABCMeta, abstractmethod
from ipaddress import IPv4Address
from collections import namedtuple

from .packet import PacketHeaderBase,Packet
from ..address import EthAddr,IPAddr,SpecialIPv4Addr,SpecialEthAddr
from ..logging import log_warn
from .common import IPProtocol,IPFragmentFlag,IPOptionNumber, checksum
from .icmp import ICMP
from .udp import UDP
from .tcp import TCP
from ..exceptions import *

'''
References:
 RFC791, INTERNET PROTOCOL. DARPA INTERNET PROGRAM PROTOCOL SPECIFICATION.
 September 1981.
 RFC 1063, MTU discovery options.
 RFC 2113, Router alert option.
'''

class IPOption(object, metaclass=ABCMeta):
 _PACKFMT = 'B'
 __slots__ = ['_optnum']
 def __init__(self, optnum):
 self._optnum = IPOptionNumber(optnum)

 @property
 def optnum(self):
 return self._optnum

 def length(self):
 return struct.calcsize(IPOption._PACKFMT)

 def to_bytes(self):
 return struct.pack(IPOption._PACKFMT, self._optnum.value)

 def from_bytes(self, raw):
 return self.length()

 def __eq__(self, other):
 return self._optnum == other._optnum

 def __str__(self):
 return "{}".format(self.__class__.__name__)

class IPOptionNoOperation(IPOption):
 def __init__(self):
 super().__init__(IPOptionNumber.NoOperation)

class IPOptionEndOfOptionList(IPOption):
 def __init__(self):
 super().__init__(IPOptionNumber.EndOfOptionList)

class IPOptionXRouting(IPOption):
 _PACKFMT = 'BBB'
 __slots__ = ['_routedata','_ptr']
 def __init__(self, ipoptnum, numaddrs=9):
 super().__init__(ipoptnum)
 if numaddrs < 1 or numaddrs > 9:
 raise Exception("Invalid number of addresses for IP routing-type option (must be 1-9)")
 self._routedata = [IPv4Address("0.0.0.0")] * numaddrs
 self._ptr = 4

 def length(self):
 return struct.calcsize(IPOptionXRouting._PACKFMT)+len(self._routedata)*4

 def __len__(self):
 return len(self._routedata)

 def to_bytes(self):
 raw = struct.pack(IPOptionXRouting._PACKFMT,self.optnum.value,self.length(), self._ptr)
 for ipaddr in self._routedata:
 raw += ipaddr.packed
 return raw

 def from_bytes(self, raw):
 xtype = raw[0]
 length = raw[1]
 pointer = raw[2]
 numaddrs = ((length - 3) // 4)
 self._routedata = []
 for i in range(numaddrs):
 self._routedata.append(IPv4Address(raw[(3+(i*4)):(7+(i*4))]))
 self.pointer = pointer
 return length

 @property
 def pointer(self):
 return self._ptr

 @pointer.setter
 def pointer(self, value):
 xval = value // 4 - 1
 if not 0 <= xval < len(self._routedata):
 raise ValueError("Invalid pointer value")
 self._ptr = value

 def num_addrs(self):
 return len(self._routedata)

 def __getitem__(self, index):
 if index < 0:
 index = len(self._routedata) + index
 if not 0 <= index < len(self._routedata):
 raise IndexError("Index out of range")
 return self._routedata[index]

 def __setitem__(self, index, addr):
 if not isinstance(addr, (str,IPv4Address)):
 raise ValueError("Value must be IPv4Address or str")
 if index < 0:
 index = len(self._routedata) + index
 if not 0 <= index < len(self._routedata):
 raise IndexError("Index out of range")
 self._routedata[index] = IPv4Address(addr)

 def __delitem__(self, index):
 if index < 0:
 index = len(self._routedata) + index
 if not 0 <= index < len(self._routedata):
 raise IndexError("Index out of range")
 del self._routedata[index]

 def __eq__(self, other):
 return self.optnum == other.optnum and \
 self._ptr == other._ptr and \
 self._routedata == other._routedata

 def __str__(self):
 return "{} ({})".format(self.__class__.__name__,
 ', '.join([str(addr) for addr in self._routedata]))

class IPOptionLooseSourceRouting(IPOptionXRouting):
 def __init__(self, numaddrs=9):
 super().__init__(IPOptionNumber.LooseSourceRouting, numaddrs)

class IPOptionStrictSourceRouting(IPOptionXRouting):
 def __init__(self, numaddrs=9):
 super().__init__(IPOptionNumber.StrictSourceRouting, numaddrs)

class IPOptionRecordRoute(IPOptionXRouting):
 def __init__(self, numaddrs=9):
 super().__init__(IPOptionNumber.RecordRoute, numaddrs)

TimestampEntry = namedtuple('TimestampEntry', ['ipv4addr','timestamp'])

class IPOptionTimestamp(IPOption):
 __slots__ = ['_entries','_ptr','_flag']

 def __init__(self):
 super().__init__(IPOptionNumber.Timestamp)
 self._entries = [TimestampEntry(IPv4Address("0.0.0.0"), 0)] * 4
 self._ptr = 5
 # flags: 0x0 only timestamps, 0x1 ipaddr and timestamp, 0x3 optlist initialized
 # with up to 4 pairs of ipaddr and 0 timestamps
 self._flag = 0x1

 def length(self):
 entrysize = 8
 if self._flag == 0: entrysize = 4
 return 4 + len(self._entries)*entrysize

 @property
 def flag(self):
 return self._flag

 @flag.setter
 def flag(self, value):
 self._flag = int(value)

 def to_bytes(self):
 raw = struct.pack('!BBBB', 0x40 | self.optnum.value, self.length(),
 self._ptr, self._flag)
 for i in range(len(self._entries)):
 if self._flag > 0:
 raw += self._entries[i].ipv4addr.packed
 raw += struct.pack('!I', self._entries[i].timestamp)
 return raw

 def from_bytes(self, raw):
 fields = struct.unpack('!BBBB', raw[:4])
 self._ptr = fields[2]
 self._flag = fields[3]&0x0f
 self._entries = []
 xlen = fields[1]
 if xlen > len(raw):
 raise NotEnoughDataError("Not enough data to unpack raw {}: need {} but only have {}".format(self.__class__.__name__, xlen, len(raw)))
 raw = raw[4:xlen]
 haveipaddr = self._flag != 0
 unpackfmt = '!II'
 if not haveipaddr:
 unpackfmt = '!I'
 for tstup in struct.iter_unpack(unpackfmt, raw):
 if haveipaddr:
 ts = TimestampEntry(IPv4Address(tstup[0]), tstup[1])
 else:
 ts = TimestampEntry(None, tstup[0])
 self._entries.append(ts)
 return xlen

 def num_timestamps(self):
 return len(self._entries)

 def timestamp_entry(self, index):
 return self._entries[index]

 def __eq__(self, other):
 return isinstance(other, IPOptionTimestamp) and \
 self._entries == other._entries and \
 self._flag == other._flag

 def __str__(self):
 return "{} ({})".format(self.__class__.__name__,
 ", ".join([str(e) for e in self._entries]))

class IPOption4Bytes(IPOption):
 __slots__ = ['_value', '_copyflag']
 _PACKFMT = '!BBH'

 def __init__(self, optnum, value=0, copyflag=False):
 super().__init__(optnum)
 self._value = value
 self._copyflag = 0
 if copyflag:
 self._copyflag = 0x80

 def length(self):
 return struct.calcsize(IPOption4Bytes._PACKFMT)

 def from_bytes(self, raw):
 fields = struct.unpack(IPOption4Bytes._PACKFMT, raw[:4])
 self._value = fields[2]
 return self.length()

 def to_bytes(self):
 return struct.pack(IPOption4Bytes._PACKFMT,
 self._copyflag | self.optnum.value, self.length(), self._value)

 def __eq__(self, other):
 return self.optnum == other.optnum and \
 self._value == other._value and \
 self._copyflag == other._copyflag

class IPOptionRouterAlert(IPOption4Bytes):
 def __init__(self):
 super().__init__(IPOptionNumber.RouterAlert, copyflag=True)

class IPOptionMTUProbe(IPOption4Bytes):
 def __init__(self):
 super().__init__(IPOptionNumber.MTUProbe, value=1500, copyflag=False)

class IPOptionMTUReply(IPOption4Bytes):
 def __init__(self):
 super().__init__(IPOptionNumber.MTUReply, value=1500, copyflag=False)

IPOptionClasses = {
 IPOptionNumber.EndOfOptionList: IPOptionEndOfOptionList,
 IPOptionNumber.NoOperation: IPOptionNoOperation,
 IPOptionNumber.LooseSourceRouting: IPOptionLooseSourceRouting,
 IPOptionNumber.Timestamp: IPOptionTimestamp,
 IPOptionNumber.RecordRoute: IPOptionRecordRoute,
 IPOptionNumber.StrictSourceRouting: IPOptionStrictSourceRouting,
 IPOptionNumber.MTUProbe: IPOptionMTUProbe,
 IPOptionNumber.MTUReply: IPOptionMTUReply,
 IPOptionNumber.RouterAlert: IPOptionRouterAlert,
}

class IPOptionList(object):
 def __init__(self):
 self._options = []

 @staticmethod
 def from_bytes(rawbytes):
 '''
 Takes a byte string as a parameter and returns a list of
 IPOption objects.
 '''
 ipopts = IPOptionList()

 i = 0
 while i < len(rawbytes):
 opttype = rawbytes[i]
 optcopied = opttype >> 7 # high order 1 bit
 optclass = (opttype >> 5) & 0x03 # next 2 bits
 optnum = opttype & 0x1f # low-order 5 bits are optnum
 optnum = IPOptionNumber(optnum)
 obj = IPOptionClasses[optnum]()
 eaten = obj.from_bytes(rawbytes[i:])
 i += eaten
 ipopts.append(obj)
 return ipopts

 def to_bytes(self):
 '''
 Takes a list of IPOption objects and returns a packed byte string
 of options, appropriately padded if necessary.
 '''
 raw = b''
 if not self._options:
 return raw
 for ipopt in self._options:
 raw += ipopt.to_bytes()
 padbytes = 4 - (len(raw) % 4)
 raw += b'\x00'*padbytes
 return raw

 def append(self, opt):
 if isinstance(opt, IPOption):
 self._options.append(opt)
 else:
 raise Exception("Option to be added must be an IPOption object")

 def __len__(self):
 return len(self._options)

 def __getitem__(self, i):
 if i < 0:
 i = len(self._options) + i
 if 0 <= i < len(self._options):
 return self._options[i]
 raise IndexError("Invalid IP option index")

 def __setitem__(self, i, val):
 if i < 0:
 i = len(self._options) + i
 if not issubclass(val.__class__, IPOption):
 raise ValueError("Assigned value must be of type IPOption, but {} is not.".format(val.__class__.__name__))
 if 0 <= i < len(self._options):
 self._options[i] = val
 else:
 raise IndexError("Invalid IP option index")

 def __delitem__(self, i):
 if i < 0:
 i = len(self._options) + i
 if 0 <= i < len(self._options):
 del self._options[i]
 else:
 raise IndexError("Invalid IP option index")

 def raw_length(self):
 return len(self.to_bytes())

 def size(self):
 return len(self._options)

 def __eq__(self, other):
 if not isinstance(other, IPOptionList):
 return False
 if len(self._options) != len(other._options):
 return False
 return self._options == other._options

 def __str__(self):
 return "{} ({})".format(self.__class__.__name__,
 ", ".join([str(opt) for opt in self._options]))

IPTypeClasses = {
 IPProtocol.ICMP: ICMP,
 IPProtocol.TCP: TCP,
 IPProtocol.UDP: UDP,
}

[docs]class IPv4(PacketHeaderBase):
 __slots__ = ['_tos','_totallen','_ttl',
 '_ipid','_flags','_fragoffset',
 '_protocol','_csum',
 '_src','_dst','_options']
 _PACKFMT = '!BBHHHBBH4s4s'
 _MINLEN = struct.calcsize(_PACKFMT)
 _next_header_map = IPTypeClasses
 _next_header_class_key = '_protocol'

 def __init__(self, **kwargs):
 # fill in fields with (essentially) zero values
 self.tos = 0x00
 self._totallen = IPv4._MINLEN
 self.ipid = 0x0000
 self.ttl = 0
 self._flags = IPFragmentFlag.NoFragments
 self._fragoffset = 0
 self.protocol = IPProtocol.ICMP
 self._csum = 0x0000
 self.src = SpecialIPv4Addr.IP_ANY.value
 self.dst = SpecialIPv4Addr.IP_ANY.value
 self._options = IPOptionList()
 super().__init__(**kwargs)

 def size(self):
 return struct.calcsize(IPv4._PACKFMT) + self._options.raw_length()

 def pre_serialize(self, raw, pkt, i):
 self._totallen = self.size() + len(raw)

 def to_bytes(self):
 iphdr = struct.pack(IPv4._PACKFMT,
 4 << 4 | self.hl, self.tos, self._totallen,
 self.ipid, self._flags.value << 13 | self.fragment_offset,
 self.ttl, self.protocol.value, self.checksum,
 self.src.packed, self.dst.packed)
 return iphdr + self._options.to_bytes()

 def from_bytes(self, raw):
 if len(raw) < 20:
 raise NotEnoughDataError("Not enough data to unpack IPv4 header (only {} bytes)".format(len(raw)))
 headerfields = struct.unpack(IPv4._PACKFMT, raw[:20])
 v = headerfields[0] >> 4
 if v != 4:
 raise ValueError("Version in raw bytes for IPv4 isn't 4!")
 hl = (headerfields[0] & 0x0f) * 4
 if len(raw) < hl:
 raise NotEnoughDataError("Not enough data to unpack IPv4 header (only {} bytes, but header length field claims {})".format(len(raw), hl))
 optionbytes = raw[20:hl]
 self.tos = headerfields[1]
 self._totallen = headerfields[2]
 self.ipid = headerfields[3]
 self.flags = IPFragmentFlag(headerfields[4] >> 13)
 self.fragment_offset = headerfields[4] & 0x1fff
 self.ttl = headerfields[5]
 self.protocol = IPProtocol(headerfields[6])
 self._csum = headerfields[7]
 self.src = headerfields[8]
 self.dst = headerfields[9]
 self._options = IPOptionList.from_bytes(optionbytes)
 return raw[hl:]

 def __eq__(self, other):
 return self.tos == other.tos and \
 self.ipid == other.ipid and \
 self.flags == other.flags and \
 self.fragment_offset == other.fragment_offset and \
 self.ttl == other.ttl and \
 self.protocol == other.protocol and \
 self.src == other.src and \
 self.dst == other.dst

 # accessors and mutators
 @property
 def options(self):
 return self._options

 @property
 def total_length(self):
 return self._totallen

 @property
 def ttl(self):
 return self._ttl

 @ttl.setter
 def ttl(self, value):
 value = int(value)
 if not (0 <= value <= 255):
 raise ValueError("Invalid TTL value {}".format(value))
 self._ttl = value

 @property
 def tos(self):
 return self._tos

 @tos.setter
 def tos(self, value):
 if not (0 <= value < 256):
 raise ValueError("Invalid type of service value; must be 0-255")
 self._tos = value

 @property
 def dscp(self):
 return self._tos >> 2

 @property
 def ecn(self):
 return (self._tos & 0x03)

 @dscp.setter
 def dscp(self, value):
 if not (0 <= value < 64):
 raise ValueError("Invalid DSCP value; must be 0-63")
 self._tos = (self._tos & 0x03) | value << 2

 @ecn.setter
 def ecn(self, value):
 if not (0 <= value < 4):
 raise ValueError("Invalid ECN value; must be 0-3")
 self._tos = (self._tos & 0xfa) | value

 @property
 def ipid(self):
 return self._ipid

 @ipid.setter
 def ipid(self, value):
 if not (0 <= value < 65536):
 raise ValueError("Invalid IP ID value; must be 0-65535")
 self._ipid = value

 @property
 def protocol(self):
 return self._protocol

 @protocol.setter
 def protocol(self, value):
 self._protocol = IPProtocol(value)

 @property
 def src(self):
 return self._src

 @src.setter
 def src(self, value):
 self._src = IPAddr(value)

 @property
 def dst(self):
 return self._dst

 @dst.setter
 def dst(self, value):
 self._dst = IPAddr(value)

 @property
 def flags(self):
 return self._flags

 @flags.setter
 def flags(self, value):
 self._flags = IPFragmentFlag(value)

 @property
 def fragment_offset(self):
 return self._fragoffset

 @fragment_offset.setter
 def fragment_offset(self, value):
 if not (0 <= value < 2**13):
 raise ValueError("Invalid fragment offset value")
 self._fragoffset = value

 @property
 def hl(self):
 return self.size() // 4

 @property
 def checksum(self):
 data = struct.pack(IPv4._PACKFMT,
 (4 << 4) + self.hl, self.tos,
 self._totallen, self.ipid,
 (self.flags.value << 13) | self.fragment_offset,
 self.ttl,
 self.protocol.value, 0, self.src.packed, self.dst.packed)
 data += self._options.to_bytes()
 self._csum = checksum(data, 0)
 return self._csum

 def __str__(self):
 return '{} {}->{} {}'.format(self.__class__.__name__, self.src, self.dst, self.protocol.name)

 Source code for switchyard.lib.packet.packet

from abc import ABCMeta, abstractmethod
from copy import deepcopy

from ..logging import log_warn
from ..exceptions import *

[docs]class Packet(object):
 '''
 Base class for packet headers.
 '''
 __slots__ = ['_headers','_raw']

 def __init__(self, raw=None, first_header=None):
 self._headers = []
 self._raw = None
 if raw:
 self._raw = raw
 self._parse(raw, first_header)

 def __len__(self):
 '''Return the packed length of this packet, and all
 subsequent headers and payloads.'''
 return self.size()

[docs] def size(self):
 '''Return the packed length of this header'''
 return sum([len(ph) for ph in self._headers])

[docs] def to_bytes(self):
 '''
 Returns serialized bytes object representing all headers/
 payloads in this packet'''
 rawlist = []
 i = len(self._headers)-1
 while i >= 0:
 self._headers[i].pre_serialize(b''.join(rawlist), self, i)
 rawlist.insert(0, self._headers[i].to_bytes())
 i -= 1
 self._raw = b''.join(rawlist)
 return self._raw

 def _parse(self, raw, next_cls):
 '''
 Parse a raw bytes object and construct the list of packet header
 objects (and possible remaining bytes) that are part of this packet.
 '''
 if next_cls is None:
 from switchyard.lib.packet import Ethernet
 next_cls = Ethernet

 self._headers = []
 while issubclass(next_cls, PacketHeaderBase):
 packet_header_obj = next_cls()
 raw = packet_header_obj.from_bytes(raw)
 self.add_header(packet_header_obj)
 next_cls = packet_header_obj.next_header_class()
 if next_cls is None:
 break
 if raw:
 self.add_header(RawPacketContents(raw))

 @staticmethod
[docs] def from_bytes(raw, first_header):
 '''Create a new packet by parsing the contents of a bytestring'''
 p = Packet(raw, first_header)
 return p

 def __iadd__(self, ph):
 '''Add the packet header to the end of this packet; return
 this packet header. Only += (iadd) is defined, since
 this method is inherently mutating.'''
 if not isinstance(ph, (PacketHeaderBase, bytes)):
 raise Exception("Invalid operand type for +: can't add {} to a Packet".format(type(ph)))
 self.add_header(ph)
 return self

 def __add__(self, pobj):
 if isinstance(pobj, Packet):
 p = deepcopy(self)
 for header in pobj:
 p.add_header(header)
 return p
 elif isinstance(pobj, (PacketHeaderBase, bytes)):
 p = deepcopy(self)
 p.add_header(pobj)
 return p
 else:
 raise Exception("Invalid operand type for +: can't add {} and {} together".format(type(self), type(pobj)))

[docs] def headers(self):
 '''
 Return a list of packet header names in this packet.
 '''
 return [ph.__class__.__name__ for ph in self._headers]

[docs] def num_headers(self):
 '''
 Return the number of headers in the packet.
 '''
 return len(self._headers)

[docs] def prepend_header(self, ph):
 '''
 Insert a PacketHeader object at the beginning of this packet
 (i.e., as the first header of the packet).
 '''
 self._headers.insert(0, ph)

[docs] def add_header(self, ph):
 '''
 Add a PacketHeaderBase derived class object, or a raw bytes object
 as the next "header" item in this packet. Note that 'header'
 may be a slight misnomer since the last portion of a packet is
 considered application payload and not a header per se.
 '''
 if isinstance(ph, bytes):
 ph = RawPacketContents(ph)
 if isinstance(ph, PacketHeaderBase):
 self._headers.append(ph)
 return self
 raise Exception("Payload for a packet header must be an object that is a subclass of PacketHeaderBase, or a bytes object.")

[docs] def insert_header(self, idx, ph):
 '''
 Insert a PacketHeaderBase-derived object at index idx the list of headers.
 Any headers previously in the Packet from index idx:len(ph) are shifted to
 make room for the new packet.
 '''
 self._headers.insert(idx, ph)

[docs] def add_payload(self, ph):
 '''Alias for add_header'''
 self.add_header(ph)

[docs] def has_header(self, hdrclass):
 '''
 Return True if the packet has a header of the given hdrclass,
 False otherwise.
 '''
 if isinstance(hdrclass, str):
 return self.get_header_by_name(hdrclass) is not None
 return self.get_header(hdrclass) is not None

[docs] def get_header_by_name(self, hdrname):
 '''
 Return the header object that has the given (string) header
 class name. Returns None if no such header exists.
 '''
 for hdr in self._headers:
 if hdr.__class__.__name__ == hdrname:
 return hdr
 return None

[docs] def get_header(self, hdrclass, returnval=None):
 '''
 Return the first header object that is of
 class hdrclass, or None if the header class isn't
 found.
 '''
 if isinstance(hdrclass, str):
 return self.get_header_by_name(hdrclass)

 for hdr in self._headers:
 if isinstance(hdr, hdrclass):
 return hdr
 return returnval

[docs] def get_header_index(self, hdrclass, startidx=0):
 '''
 Return the first index of the header class hdrclass
 starting at startidx (default=0), or -1 if the
 header class isn't found in the list of headers.
 '''
 for hdridx in range(startidx, len(self._headers)):
 if isinstance(self._headers[hdridx], hdrclass):
 return hdridx
 return -1

 def __iter__(self):
 return iter(self._headers)

 def _checkidx(self, index):
 if isinstance(index, int):
 if index < 0:
 index = len(self._headers) + index
 if not (0 <= index < len(self._headers)):
 raise IndexError("Index out of range")
 return index

 def __getitem__(self, index):
 if isinstance(index, int):
 index = self._checkidx(index)
 return self._headers[index]
 elif isinstance(index, type) and issubclass(index, PacketHeaderBase):
 idx = self.get_header_index(index)
 if idx == -1:
 raise KeyError("No such header type exists.")
 return self._headers[idx]
 else:
 raise IndexError("Indexes must be integers or header class names")

 def __setitem__(self, index, value):
 if not isinstance(index, int):
 raise TypeError("Index must be an integer")
 index = self._checkidx(index)
 if not isinstance(value, (PacketHeaderBase, bytes)):
 raise TypeError("Can't assign a non-packet header in a packet")
 self._headers[index] = value

 def __contains__(self, obj):
 for ph in self._headers:
 if ph is obj or \
 (isinstance(obj, ph.__class__) and ph == obj):
 return True
 return False

 def __delitem__(self, index):
 if isinstance(index, int):
 index = self._checkidx(index)
 del self._headers[index]
 elif isinstance(index, type) and issubclass(index, PacketHeaderBase):
 idx = self.get_header_index(index)
 if idx == -1:
 raise KeyError("No such header type exists.")
 del self._headers[idx]
 else:
 raise IndexError("Indexes must be integers or header class names")

 def __eq__(self, other):
 if not isinstance(other, Packet):
 raise TypeError("Can't compare Packet with non-Packet for equality")
 if len(self.headers()) != len(other.headers()):
 return False
 for i in range(len(other.headers())):
 if not isinstance(other[i], self[i].__class__) \
 or self[i] != other[i]:
 return False
 return True

 def __str__(self):
 return ' | '.join([str(ph) for ph in self._headers if isinstance(ph, PacketHeaderBase)])

[docs]class PacketHeaderBase(metaclass=ABCMeta):
 '''
 Base class for packet headers.
 '''
 __slots__ = []
 _next_header_map = {}
 _next_header_class_key = ''

 def __init__(self, **kwargs):
 for attrname, value in kwargs.items():
 setattr(self, attrname, value)

 def __len__(self):
 '''Return the packed length of this packet; calls
 abstract method size(), which must be overridden in
 derived classes.'''
 return self.size()

[docs] def size(self):
 '''Returns the number of bytes that the header would consist of when serialized to wire format'''
 return len(self.to_bytes())

 @classmethod
[docs] def set_next_header_class_key(cls, attr):
 '''Indicate which attribute is used to decide the type of packet
 header that comes after this one. For example, the IPv4
 protocol attribute.'''
 cls._next_header_class_key = attr

 @classmethod
[docs] def add_next_header_class(cls, attr, hdrcls):
 '''Add a new mapping between a next header type value and a Python
 class that implements that header type.'''
 cls._next_header_map[attr] = hdrcls

 @classmethod
[docs] def set_next_header_map(cls, mapdict):
 '''(Re)initialize a dictionary that maps a "next header type" attribute
 to a Python class that implements that header type.'''
 cls._next_header_map = mapdict

 def next_header_class(self):
 '''Return class of next header, if known.'''
 if self._next_header_class_key == '':
 return None
 key = getattr(self, self._next_header_class_key)
 rv = self._next_header_map.get(key, None)
 if rv is None:
 log_warn("No class exists to handle next header value {}".format(key))
 return rv

 def pre_serialize(self, raw, packet, i):
 '''
 This method is called by the Switchyard framework just before any
 subsequent packet headers (i.e., headers that come *after* this one)
 are serialized into a byte sequence. The main purpose for this callback
 is to allow the header to compute its checksum, especially if it needs
 access to header fields that are outside its scope (e.g., in IPv6,
 the checksum includes the IPv6 source/dst addresses).

 The three parameters to this method are the raw (bytes) representation
 of the "tail" of the packet (i.e., headers that come after this one),
 a reference to the full packet object, and the index of the current header.
 This method should not return anything.
 '''
 pass

 @abstractmethod
[docs] def to_bytes(self):
 '''Return a 'packed' byte-level representation of this packet header.'''
 return b''

 @abstractmethod
[docs] def from_bytes(self, raw):
 '''
 Reconstruct the attributes of a header given the bytes object named raw. The method returns any bytes that are *not* used to reconstruct a header. An exception (typically a ValueError) is raised if there is some kind of problem deserializing the bytes object into packet header attributes.
 '''
 pass

 def __add__(self, ph):
 '''Add two packet headers together to get a new packet object.'''
 if not TypeError(ph, (bytes, PacketHeaderBase)):
 raise Exception("Only objects derived from PacketHeaderBase and bytes objects can be added to create a new packet.")
 p = Packet()
 p.add_header(self)
 p.add_header(ph)
 return p

 def __eq__(self, other):
 return isinstance(other, self.__class__) and \
 self.to_bytes() == other.to_bytes()

 def __str__(self):
 return self.__class__.__name__

class NullPacketHeader(PacketHeaderBase):
 def __init__(self):
 PacketHeaderBase.__init__(self)

 def to_bytes(self):
 return b''

 def from_bytes(self, raw):
 return raw

 def __getattr__(self, attr):
 return self

 def __call__(self, *args, **kwargs):
 return self

 def __str__(self):
 return 'NullPacketHeader'

 def __eq__(self, other):
 return isinstance(self, other.__class__)

 def __repr__(self):
 return 'NullPacketHeader()'

class RawPacketContents(PacketHeaderBase):
 __slots__ = ['_raw']

 def __init__(self, raw=None):
 if isinstance(raw, str):
 raw = bytes(raw, 'utf8')
 elif isinstance(raw, bytes):
 pass
 else:
 raise TypeError("RawPacketContents must be initialized with either str or bytes. You gave me {}".format(raw.__class__.__name__))
 self._raw = raw

 def to_bytes(self):
 return self._raw

 @property
 def data(self):
 return self._raw

 def from_bytes(self, raw):
 if isinstance(raw, bytes):
 self._raw = bytes(raw)
 elif isinstance(raw, str):
 self._raw = bytes(raw, 'utf8')
 else:
 raise TypeError("RawPacketContents must be initialized with either str or bytes. You gave me {}".format(raw.__class__.__name__))

 def size(self):
 return len(self._raw)

 def __eq__(self, other):
 return isinstance(self, other.__class__) and \
 self.to_bytes() == other.to_bytes()

 def __str__(self):
 ellipse = '...'
 if len(self._raw) < 10:
 ellipse = ''
 return '{} ({} bytes) {}{}'.format(self.__class__.__name__,
 len(self._raw), self._raw[:10], ellipse)

 Source code for switchyard.lib.packet.tcp

import struct
from enum import IntEnum
from abc import ABCMeta, abstractmethod

from .packet import PacketHeaderBase,Packet
from .common import checksum
from ..exceptions import *

'''
References:
 IETF RFCs 675, 793, 1122, 2581, 3540, 5681
'''

class TCPOption(metaclass=ABCMeta):
 @abstractmethod
 def to_bytes(self):
 pass

 @abstractmethod
 def from_bytes(self, raw):
 pass

 @abstractmethod
 def __eq__(self, other):
 pass

EndOfOptions, Padding, MaxSegmentSize, WindowScaling, SACK, Timestamp, AltChecksum

class TCPOptions(PacketHeaderBase):
 __slots__ = ['_optlist']
 def __init__(self, **kwargs):
 self._optlist = []
 super().__init__(**kwargs)

 def size(self):
 return len(self.to_bytes())

 def next_header_class(self):
 return

 def pre_serialize(self, raw, pkt, i):
 return

 def __eq__(self, other):
 if self.size() != other.size():
 return False
 return True # FIXME

 def to_bytes(self):
 return b''.join([opt.to_bytes() for opt in self._optlist])

 def from_bytes(self, raw):
 # FIXME
 return 0

class TCPFlags(IntEnum):
 FIN = 0
 SYN = 1
 RST = 2
 PSH = 3
 ACK = 4
 URG = 5
 ECE = 6 # ECN-echo RFC 3168
 CWR = 7 # Congestion-window reduced RFC 3168
 NS = 8 # ECN-nonce concealment protection RFC 3540

[docs]class TCP(PacketHeaderBase):
 __slots__ = ['_src','_dst','_seq','_ack',
 '_flags','_window','_urg','_options','_len', '_checksum']
 _PACKFMT = '!HHIIHHHH'
 _MINLEN = struct.calcsize(_PACKFMT)
 _next_header_map = {}
 _next_header_class_key = ''

 def __init__(self, **kwargs):
 self.src = self.dst = 0
 self.seq = self.ack = 0
 self._flags = 0x000
 self.window = 0
 self.urgent_pointer = 0
 self._options = TCPOptions()
 self._checksum = 0
 self._len = 0
 super().__init__(**kwargs)

 def size(self):
 return struct.calcsize(TCP._PACKFMT)

 def _compute_checksum_ipv4(self, ip4, xdata):
 if ip4 is None:
 return 0
 phdr = struct.pack('!IIxBH', int(ip4.src), int(ip4.dst),
 ip4.protocol.value, self._len)
 tcphdr = self._make_header(0)
 return checksum(phdr + tcphdr + xdata)

 def pre_serialize(self, raw, pkt, i):
 self._len = self.size() + len(raw)
 # checksum calc currently assumes we're only dealing with ipv4.
 # will need to be modified for ipv6 support...
 self._checksum = self._compute_checksum_ipv4(pkt.get_header_by_name('IPv4'), raw)

 def _make_header(self, csum):
 offset_flags = self.offset << 12 | self._flags
 header = struct.pack(TCP._PACKFMT, self.src, self.dst,
 self.seq, self.ack, offset_flags, self.window,
 csum, self.urgent_pointer)
 return header

 def to_bytes(self):
 '''
 Return packed byte representation of the TCP header.
 '''
 header = self._make_header(self._checksum)
 return header + self._options.to_bytes()

 def from_bytes(self, raw):
 '''Return an Ethernet object reconstructed from raw bytes, or an
 Exception if we can't resurrect the packet.'''
 if len(raw) < TCP._MINLEN:
 raise NotEnoughDataError("Not enough bytes ({}) to reconstruct an TCP object".format(len(raw)))
 fields = struct.unpack(TCP._PACKFMT, raw[:TCP._MINLEN])
 self._src = fields[0]
 self._dst = fields[1]
 self._seq = fields[2]
 self._ack = fields[3]
 offset = fields[4] >> 12
 self._flags = fields[4] & 0x01ff
 self._window = fields[5]
 csum = fields[6]
 self._urg = fields[7]
 headerlen = offset * 4
 optlen = headerlen - TCP._MINLEN
 self._options.from_bytes(raw[TCP._MINLEN:headerlen])
 return raw[headerlen:]

 def __eq__(self, other):
 return self.src == other.src and \
 self.dst == other.dst and \
 self.seq == other.seq and \
 self.ack == other.ack and \
 self.offset == other.offset and \
 self.flags == other.flags and \
 self.window == other.window and \
 self.urgent_pointer == other.urgent_pointer and \
 self.options == other.options

 @property
 def offset(self):
 return TCP._MINLEN // 4 + len(self._options.to_bytes()) // 4

 @property
 def src(self):
 return self._src

 @property
 def dst(self):
 return self._dst

 @src.setter
 def src(self,value):
 self._src = value

 @dst.setter
 def dst(self,value):
 self._dst = value

 def __str__(self):
 return '{} {}->{} ({} {}:{})'.format(self.__class__.__name__,
 self.src, self.dst, self.flagstr, self.seq, self.ack)

 @property
 def seq(self):
 return self._seq

 @seq.setter
 def seq(self, value):
 self._seq = value

 @property
 def ack(self):
 return self._ack

 @ack.setter
 def ack(self, value):
 self._ack = value

 @property
 def window(self):
 return self._window

 @window.setter
 def window(self, value):
 self._window = value

 @property
 def checksum(self):
 return self._checksum

 @property
 def flags(self):
 return self._flags

 @property
 def flagstr(self):
 flist = []
 for f in range(9):
 if self._isset(f):
 flist.append(TCPFlags(f).name[0])
 return "".join(flist)

 @property
 def urgent_pointer(self):
 return self._urg

 @urgent_pointer.setter
 def urgent_pointer(self, value):
 self._urg = value

 @property
 def options(self):
 return self._options

 def _isset(self, flag):
 if isinstance(flag, int):
 flag = TCPFlags(flag)
 mask = 0x01 << flag.value
 return (self._flags & mask) == mask

 def _setflag(self, flag, value):
 mask = 0x01 << flag.value
 if value:
 self._flags = self._flags | mask
 else:
 self._flags = self._flags & ~mask

 @property
 def NS(self):
 return self._isset(TCPFlags.NS)

 @NS.setter
 def NS(self, value):
 self._setflag(TCPFlags.NS, value)

 @property
 def CWR(self):
 return self._isset(TCPFlags.CWR)

 @CWR.setter
 def CWR(self, value):
 self._setflag(TCPFlags.CWR, value)

 @property
 def ECE(self):
 return self._isset(TCPFlags.ECE)

 @ECE.setter
 def ECE(self, value):
 self._setflag(TCPFlags.ECE, value)

 @property
 def URG(self):
 return self._isset(TCPFlags.URG)

 @URG.setter
 def URG(self, value):
 self._setflag(TCPFlags.URG, value)

 @property
 def ACK(self):
 return self._isset(TCPFlags.ACK)

 @ACK.setter
 def ACK(self, value):
 self._setflag(TCPFlags.ACK, value)

 @property
 def PSH(self):
 return self._isset(TCPFlags.PSH)

 @PSH.setter
 def PSH(self, value):
 self._setflag(TCPFlags.PSH, value)

 @property
 def RST(self):
 return self._isset(TCPFlags.RST)

 @RST.setter
 def RST(self, value):
 self._setflag(TCPFlags.RST, value)

 @property
 def SYN(self):
 return self._isset(TCPFlags.SYN)

 @SYN.setter
 def SYN(self, value):
 self._setflag(TCPFlags.SYN, value)

 @property
 def FIN(self):
 return self._isset(TCPFlags.FIN)

 @FIN.setter
 def FIN(self, value):
 self._setflag(TCPFlags.FIN, value)

 Source code for switchyard.lib.packet.udp

import struct

from .packet import PacketHeaderBase
from .common import checksum
from ..exceptions import *

'''
References:
 IETF RFC 768
'''

FIXME: checksum is broken for ip6

[docs]class UDP(PacketHeaderBase):
 __slots__ = ['_src','_dst','_len','_checksum']
 _PACKFMT = '!HHHH'
 _MINLEN = struct.calcsize(_PACKFMT)
 _next_header_map = {}
 _next_header_class_key = ''

 def __init__(self, **kwargs):
 self.src = self.dst = 0
 self._len = self.size()
 self._checksum = 0
 super().__init__(**kwargs)

 def size(self):
 return struct.calcsize(UDP._PACKFMT)

 def to_bytes(self):
 '''
 Return packed byte representation of the UDP header.
 '''
 return struct.pack(UDP._PACKFMT, self._src, self._dst,
 self._len, self._checksum)

 def from_bytes(self, raw):
 '''Return an Ethernet object reconstructed from raw bytes, or an
 Exception if we can't resurrect the packet.'''
 if len(raw) < UDP._MINLEN:
 raise NotEnoughDataError("Not enough bytes ({}) to reconstruct an UDP object".format(len(raw)))
 fields = struct.unpack(UDP._PACKFMT, raw[:UDP._MINLEN])
 self._src = fields[0]
 self._dst = fields[1]
 self._len = fields[2]
 self._checksum = fields[3]
 return raw[UDP._MINLEN:]

 def __eq__(self, other):
 return self.src == other.src and \
 self.dst == other.dst

 @property
 def src(self):
 return self._src

 @property
 def dst(self):
 return self._dst

 @src.setter
 def src(self,value):
 self._src = value

 @dst.setter
 def dst(self,value):
 self._dst = value

 @property
 def checksum(self):
 return self._checksum

 def __str__(self):
 return '{} {}->{}'.format(self.__class__.__name__, self.src, self.dst)

 def _compute_checksum_ipv4(self, ip4, xdata):
 if ip4 is None:
 return 0
 xhdr = struct.pack('!IIxBHHHHH', int(ip4.src), int(ip4.dst),
 ip4.protocol.value, self._len,
 self.src, self.dst, self._len, 0)
 return checksum(xhdr + xdata)

 def pre_serialize(self, raw, pkt, i):
 self._len = self.size() + len(raw)
 # checksum calc currently assumes we're only dealing with ipv4.
 # will need to be modified for ipv6 support...
 self._checksum = self._compute_checksum_ipv4(pkt.get_header_by_name('IPv4'), raw)

 Source code for switchyard.lib.socket.socketemu

import sys
from queue import Queue, Empty
from threading import Lock
from subprocess import getoutput
import re
import random
from textwrap import indent
from copy import copy
from collections import namedtuple
from time import time
import socket
from socket import error as sockerr

carefully control what we export to user code; we provide our own
implementation for some symbols, and others simply aren't supported
ugly, but working within limitations of importlib, etc....
implist = copy(socket.__all__)
from socket import *
dontimport = ('setdefaulttimeout', 'getdefaulttimeout', 'has_ipv6',
 'socket', 'socketpair', 'fromfd', 'dup', 'create_connection', 'CMSG_LEN',
 'CMSG_SPACE')
for name in dontimport:
 implist.remove(name)

explist = ['socket', 'ApplicationLayer', 'getdefaulttimeout', 'setdefaulttimeout', 'has_ipv6']
explist.extend(implist)
__all__ = explist

from ...hostfirewall import Firewall
from ...pcapffi import PcapLiveDevice
from ..exceptions import NoPackets
from ..logging import log_debug, log_info, log_warn, setup_logging, red, yellow
from ..packet import IPProtocol
from ..address import ip_address

has_ipv6 = True

_lock = Lock()

def _gather_ports():
 portset = set()
 out = getoutput("netstat -an | grep ^udp")
 for x in out.split('\n'):
 fields = x.split()
 if len(fields) < 5:
 continue
 ports = fields[3].strip()
 mobj = re.search('[\.:](\d+|*)$', ports)
 if mobj:
 port = (mobj.groups()[0])
 if port != '*':
 portset.add(int(port))
 return portset

def _get_ephemeral_port():
 with _lock:
 ports = _gather_ports()
 while True:
 p = random.randint(30000,60000)
 if p not in ports and p not in ApplicationLayer._emuports():
 return p

_default_timeout = None

def getdefaulttimeout():
 '''
 Get the default timeout value for a socket. The preset default
 is None, meaning to block indefinitely.
 '''
 return _default_timeout

def setdefaulttimeout(tmo):
 '''
 Set the default timeout value for a socket to the given value.
 Calling this function does not affect any preexisting sockets.
 '''
 global _default_timeout
 with _lock:
 _default_timeout = tmo

def _normalize_addrs(addrtuple):
 return (ip_address(addrtuple[0]), int(addrtuple[1]))

def _stringify_addrs(addrtuple):
 return (str(addrtuple[0]), int(addrtuple[1]))

[docs]class ApplicationLayer(object):
 _isinit = False
 _to_app = None
 _from_app = None

 def __init__(self):
 '''
 Don't try to create an instance of this class. Switchyard internally
 handles initialization. Users should only ever call the
 recv_from_app() and send_to_app() static methods.
 '''
 raise RuntimeError("Ouch. Please don't try to create an instance "
 "of {}. Use the static init() method "
 "instead.".format(self.__class__.__name__))
 @staticmethod
 def _init():
 '''
 Internal switchyard static initialization method.
 '''
 if ApplicationLayer._isinit:
 return
 ApplicationLayer._isinit = True
 ApplicationLayer._to_app = {}
 ApplicationLayer._from_app = Queue()

 @staticmethod
 def _emuports():
 s = set()
 for sockid,_ in ApplicationLayer._to_app.items():
 s.add(sockid[-1])
 return s

 @staticmethod
[docs] def recv_from_app(timeout=_default_timeout):
 '''
 Called by a network stack implementer to receive application-layer
 data for sending on to a remote location.

 Can optionally take a timeout value. If no data are available,
 raises NoPackets exception.

 Returns a 2-tuple: flowaddr and data.
 The flowaddr consists of 5 items: protocol, localaddr, localport,
 remoteaddr, remoteport.
 '''
 try:
 return ApplicationLayer._from_app.get(timeout=timeout)
 except Empty:
 pass
 raise NoPackets()

 @staticmethod
[docs] def send_to_app(proto, local_addr, remote_addr, data):
 '''
 Called by a network stack implementer to push application-layer
 data "up" from the stack.

 Arguments are protocol number, local_addr (a 2-tuple of IP address
 and port), remote_addr (a 2-tuple of IP address and port), and the
 message.

 Returns True if a socket was found to which to deliver the message,
 and False otherwise. When False is returned, a log warning is also
 emitted.
 '''
 proto = IPProtocol(proto)
 local_addr = _normalize_addrs(local_addr)
 remote_addr = _normalize_addrs(remote_addr)
 xtup = (proto, local_addr[0], local_addr[1])
 with _lock:
 sockqueue = ApplicationLayer._to_app.get(xtup, None)

 if sockqueue is not None:
 sockqueue.put((local_addr,remote_addr,data))
 return True

 # no dice, try local IP addr of 0.0.0.0
 local2 = _normalize_addrs(("0.0.0.0", local_addr[1]))
 xtup = (proto, local2[0], local2[1])
 with _lock:
 sockqueue = ApplicationLayer._to_app.get(xtup, None)
 if sockqueue is not None:
 sockqueue.put((local_addr,remote_addr,data))
 return True

 log_warn("No socket queue found for local proto/address: {}".format(xtup))
 return False

 @staticmethod
 def _register_socket(s):
 '''
 Internal method used by socket emulation layer to create a new "upward"
 queue for an app-layer socket and to register the socket object.
 Returns two queues: "downward" (fromapp) and "upward" (toapp).
 '''
 queue_to_app = Queue()
 with _lock:
 ApplicationLayer._to_app[s._sockid()] = queue_to_app
 return ApplicationLayer._from_app, queue_to_app

 @staticmethod
 def _registry_update(s, oldid):
 '''
 Internal method used to update an existing socket registry when the socket
 is re-bound to a different local port number. Requires the socket object
 and old sockid. Returns None.
 '''
 with _lock:
 sock_queue = ApplicationLayer._to_app.pop(oldid)
 ApplicationLayer._to_app[s._sockid()] = sock_queue

 @staticmethod
 def _unregister_socket(s):
 '''
 Internal method used to remove the socket from AppLayer registry.
 Warns if the "upward" socket queue has any left-over data.
 '''
 with _lock:
 sock_queue = ApplicationLayer._to_app.pop(s._sockid())
 if not sock_queue.empty():
 log_warn("Socket being destroyed still has data enqueued for application layer.")

[docs]class socket(object):
 '''
 A socket object, emulated by Switchyard.
 '''
 __slots__ = ('_family','_socktype','_protoname','_proto',
 '_timeout','_block','_remote_addr','_local_addr',
 '_socket_queue_app_to_stack','_socket_queue_stack_to_app')

 def __init__(self, family, socktype, proto=0, fileno=0):
 if not ApplicationLayer._isinit:
 raise RuntimeError("ApplicationLayer isn't initialized; this socket class can only be used within a Switchyard program.")
 family = AddressFamily(family)
 if family not in (AddressFamily.AF_INET, AddressFamily.AF_INET6):
 raise NotImplementedError(
 "socket for family {} not implemented".format(family))
 # only UDP is supported right now...
 if socktype not in (SOCK_DGRAM,):
 raise NotImplementedError(
 "socket type {} not implemented".format(socktype))
 self._family = family
 self._socktype = socktype
 self._protoname = 'udp'
 self._proto = IPProtocol.UDP
 if proto != 0:
 self._proto = proto
 self._timeout = _default_timeout
 self._block = True
 self._remote_addr = (None,None)
 self._local_addr = (ip_address('0.0.0.0'),_get_ephemeral_port())
 self.__set_fw_rules()
 self._socket_queue_app_to_stack, self._socket_queue_stack_to_app = \
 ApplicationLayer._register_socket(self)

 def __set_fw_rules(self):
 hostrule = "{}:{}".format(self._protoname, self._local_addr[1])
 pcaprule = "{} dst port {} or icmp or icmp6".format(self._protoname,
 self._local_addr[1])
 log_debug("Preventing host from receiving traffic on {}".format(hostrule))
 log_debug("Selecting only '{}' for receiving on pcap devices".format(pcaprule))
 try:
 # prevent host networking stack from receiving traffic on port
 # that we're using.
 Firewall.add_rule(hostrule)
 # only receive packets with destination port of local port,
 # or any icmp packets
 PcapLiveDevice.set_bpf_filter_on_all_devices(pcaprule)
 except Exception as e:
 with yellow():
 print ("Unable to complete socket emulation setup (failed on "
 "firewall/bpf filter installation). Did you start the "
 " program via switchyard?")
 import traceback
 print ("Here is the raw exception information:")
 with red():
 print(indent(traceback.format_exc(), ' '))
 raise e

 @property
 def family(self):
 '''
 Get the address family of the socket.
 '''
 return self._family

 @property
 def type(self):
 '''
 Get the type of the socket.
 '''
 return self._socktype

 @property
 def proto(self):
 '''
 Get the protocol of the socket.
 '''
 return self._proto

 def _sockid(self):
 return (IPProtocol(self._proto), self._local_addr[0], self._local_addr[1])

 def _flowaddr(self):
 return (self._proto, self._local_addr[0], self._local_addr[1],
 self._remote_addr[0], self._remote_addr[1])

[docs] def accept(self):
 '''
 Not implemented.
 '''
 raise NotImplementedError()

[docs] def close(self):
 '''
 Close the socket.
 '''
 try:
 ApplicationLayer._unregister_socket(self)
 except:
 # ignore any errors (e.g., double-close)
 pass
 return 0

[docs] def bind(self, address):
 '''
 Alter the local address with which this socket is associated.
 The address parameter is a 2-tuple consisting of an IP address
 and port number.

 NB: this method fails and returns -1 if the requested port
 to bind to is already in use but does *not* check that the
 address is valid.
 '''
 portset = _gather_ports().union(ApplicationLayer._emuports())
 if address[1] in portset:
 log_warn("Port is already in use.")
 return -1

 oldid = self._sockid()
 # block firewall port
 # set stack to only allow packets through for addr/port
 self._local_addr = _normalize_addrs(address)
 # update firewall and pcap filters
 self.__set_fw_rules()
 ApplicationLayer._registry_update(self, oldid)
 return 0

[docs] def connect(self, address):
 '''
 Set the remote address (IP address and port) with which
 this socket is used to communicate.
 '''
 self._remote_addr = _normalize_addrs(address)
 return 0

[docs] def connect_ex(self, address):
 '''
 Set the remote address (IP address and port) with which
 this socket is used to communicate.
 '''
 self._remote_addr = _normalize_addrs(address)
 return 0

[docs] def getpeername(self):
 '''
 Return a 2-tuple containing the remote IP address and port
 associated with the socket, if any.
 '''
 return _stringify_addrs(self._remote_addr)

[docs] def getsockname(self):
 '''
 Return a 2-tuple containing the local IP address and port
 associated with the socket.
 '''
 return _stringify_addrs(self._local_addr)

[docs] def getsockopt(self, level, option, buffersize=0):
 '''
 Not implemented.
 '''
 raise NotImplementedError()

[docs] def gettimeout(self):
 '''
 Obtain the currently set timeout value.
 '''
 return self._timeout

 @property
 def timeout(self):
 '''
 Obtain the currently set timeout value.
 '''
 return self._timeout

[docs] def listen(self, backlog):
 '''
 Not implemented.
 '''
 raise NotImplementedError()

[docs] def recv(self, buffersize, flags=0):
 '''
 Receive data on the socket. The buffersize and flags
 arguments are currently ignored. Only returns the data.
 '''
 ,,data = self._recv(buffersize)
 return data

[docs] def recv_into(self, *args):
 '''
 Not implemented.
 '''
 raise NotImplementedError("*_into calls aren't implemented")

[docs] def recvfrom(self, buffersize, flags=0):
 '''
 Receive data on the socket. The buffersize and flags
 arguments are currently ignored. Returns the data and
 an address tuple (IP address and port) of the remote host.
 '''
 _,remoteaddr,data = self._recv(buffersize)
 return data,remoteaddr

[docs] def recvfrom_into(self, *args):
 '''
 Not implemented.
 '''
 raise NotImplementedError("*_into calls aren't implemented")

 def _recv(self, nbytes):
 try:
 localaddr,remoteaddr,data = self._socket_queue_stack_to_app.get(
 block=self._block, timeout=self._timeout)
 return _stringify_addrs(localaddr),_stringify_addrs(remoteaddr),data
 except Empty as e:
 pass
 raise timeout("timed out")

[docs] def send(self, data, flags=0):
 '''
 Send data on the socket. A call to connect() must have
 been previously made for this call to succeed.
 Flags is currently ignored.
 '''
 if self._remote_addr == (None,None):
 raise sockerr("ENOTCONN: socket not connected")
 return self._send(data, self._flowaddr())

[docs] def sendto(self, data, *args):
 '''
 Send data on the socket. Accepts the same parameters as the
 built-in socket sendto: data[, flags], address
 where address is a 2-tuple of IP address and port.
 Any flags are currently ignored.
 '''
 remoteaddr = args[-1]
 remoteaddr = _normalize_addrs(remoteaddr)
 return self._send(data, (self._proto, self._local_addr[0],
 self._local_addr[1], remoteaddr[0], remoteaddr[1]))

 def _send(self, data, flowaddr):
 self._socket_queue_app_to_stack.put((flowaddr, data))
 return len(data)

[docs] def sendall(self, *args):
 '''
 Not implemented.
 '''
 raise NotImplementedError("sendall isn't implemented")

[docs] def sendmsg(self, *args):
 '''
 Not implemented.
 '''
 raise NotImplementedError("*msg calls aren't implemented")

[docs] def recvmsg(self, *args):
 '''
 Not implemented.
 '''
 raise NotImplementedError("*msg calls aren't implemented")

[docs] def setblocking(self, flags):
 '''
 Set whether this socket should block on a call to recv*.
 '''
 self._block = bool(flags)

[docs] def setsockopt(self, *args):
 '''
 Not implemented.
 '''
 raise NotImplementedError("set/get sockopt calls aren't implemented")

[docs] def settimeout(self, timeout):
 '''
 Set the timeout value for this socket.
 '''
 if timeout is None:
 self._block = True
 elif float(timeout) == 0.0:
 self._block = False
 else:
 self._timeout = float(timeout)
 self._block = True

[docs] def shutdown(self, flag):
 '''
 Shut down the socket. This is currently implemented by
 calling close().
 '''
 return self.close()

 _images/packet.png
Packet class acts as a
‘container of packet
header abiects.

Packet

Ethernet

pua

00

_images/srpyarch.png
from s specific

‘A conventional Switchyard
application implements
the core logic components of
the network device (e.g.2

Send or hub, bridge, switch, router,

packet to

firewall, etc.)

Basic AT calls:

port on the > send packet() ports() 4
e reey_packet()

The modeled
network
device, with
ppore
@inhis
fgure)

Switchyard framework.

Retrisv info
sbout ports an
device e

names snd

addreszes

sssgned o
esch)

_images/applayer.png
A (nearly) unmocified Python socet program.

Instead of irport. socket,
import switchyard. Lib. socket

Componenss
2 Swchyard user
neads el

prowde

Switchyard socket emubition hyer
p— Switchyard program:a protocol stack implementation
componencs

Use net object for sending and receiving packets toffrom necwork
interfaces. Use ApplicationLayer methods for delveringreceving
messages tolfrom an application

Network interfaces (rea.or simulated for tests)

_images/applayer_detail.png
spplcanon yer

U

M

ApplcstionLayrsend_to_spp(.) ApplcationLayerrecy from spp(.)

@ deiver s messge
Spplcason

(eg.a

Teodket 8 receve a message rom 3 socket
spplcation

Switchyard program
protocol stack implementation)

Use necrec_pac(.) Usenecsend_pace.)
o recene packes fom o send 3 packat out 3
Sneswark miereeport. necwerk intrfceore.

[

nav.xhtml

 Table of Contents

 		Switchyard documentation

 		Introduction and Overview

 		Writing a Switchyard program

 		Introducing the “network object”

 		Sending and receiving packets

 		Getting information about ports (interfaces) on the device

 		Other methods on the network object

 		Introduction to packet parsing and construction

 		Utility functions

 		Logging functions

 		Invoking the debugger

 		Passing arguments into a Switchyard program

 		Running in the test environment

 		Test output

 		Verbose test output

 		When a test fails

 		Another example

 		Even more verbose output

 		If you don't like pdb

 		Debugging Switchyard code

 		Checking code coverage

 		Test scenario creation

 		Test scenario examples

 		Compiling a test scenario

 		Running in a “live” environment

 		Basic command-line recipe

 		Including or excluding particular interfaces

 		Firewall options

 		Advanced API topics

 		Creating new packet header types

 		Creating a new packet header class

 		Configuring the lower-layer header class

 		One more example

 		Application layer socket emulation and creating full protocol stacks

 		API calls for delivering/receiving messages to/from applications

 		Switchyard's socket emulation library

 		Starting socket applications with swyard

 		Installing Switchyard

 		Operating system-specific instructions

 		MacOS X

 		Ubuntu

 		Fedora/RedHat

 		API Reference

 		Net object reference

 		Interface and InterfaceType reference

 		Ethernet and IP addresses

 		Packet parsing and construction reference

 		Header classes

 		Ethernet header

 		ARP (address resolution protocol) header

 		IP version 4 header

 		UDP (user datagram protocol) header

 		TCP (transmission control protocol) header

 		ICMP (Internet control message protocol) header

 		Test scenario creation

 		Application-layer

 		Utility functions

 		Release notes

 		2017.01.2

 		2017.01.1

 		v2

 		v1

 		Acknowledgments and thanks

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

