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Abstract—Geolocation of Internet addresses is widely used
by content providers to tailor services and content to users
and to restrict access to content. IP geolocation in practice
typically relies on databases that include geographic information
about individual addresses or address prefixes. Prior studies
have assessed the accuracy of these databases by using a set
of addresses with known or estimated locations and comparing
them with database-reported locations.

In this paper we investigate IP geolocation accuracy from the
standpoint of web clients, by exploiting geolocation information
embedded in non-standard HTTP response headers and in
unencrypted HTTP cookies. We identify a set of 10,476 websites
and content providers that include non-standard HTTP headers
and unencrypted cookies with geographic information. We launch
HTTP requests to each of these sites from 113 client vantage
points with known locations distributed across 6 continents and
60 countries and extract available geographic information from
the responses using a battery of hand-crafted regular expressions.
We find that the country of the client is included in more than
90% of all responses. Moreover, we observe that about 75%
of all responses only include the country name or code and that
the remaining responses include some combination of geographic
information, such as continent, country, city, postcode, region,
and coordinates. We observe that accuracy is greatest for the
coarsest geographic scope (continent) and least accurate for finer
scopes (e.g., coordinate), but that accuracy varies widely across
vantage points regardless of the continent or country from which
the request is launched.

Index Terms—HTTP cookies, HTTP headers, IP geolocation.

I. INTRODUCTION

Many sites and applications on the web today are designed
to be location-aware. Knowing or estimating the geographic
location of a client host can be used for adapting content to
a given locale, for restricting content that can or cannot be
viewed in a given jurisdiction, for delivering relevant ads,
for estimating shipping time or costs, and for many other
purposes. Although many smartphones and other devices have
embedded GPS radios that can provide accurate geographic
location, not all client hosts have such capabilities and not all
users want to share their location. To geolocate these hosts,
servers typically rely on geolocation databases which contain
per-address or per-prefix location information, which may
include continent, country, city, coordinates, and/or postcode.

IP geolocation has been of significant commercial interest
for several years as well as an active area of research, and
a number of prior studies (e.g., [1]–[10]) have focused on
development of new techniques for estimating host locations.

Several past studies have focused on evaluating the accuracy
of IP geolocation databases, e.g., [11]–[13]. Evaluating the
accuracy of geolocated IP addresses or prefixes poses a signif-
icant challenge: it relies on having either precise ground truth
locations for a set of hosts/addresses or on ways to estimate the
locations of a set of addresses or prefixes with high confidence.

In this paper, we examine IP geolocation accuracy from
a new perspective — the viewpoint of web clients. We do
this by exploiting geographic information embedded in non-
standard HTTP response headers and in unencrypted HTTP
cookies. We observe that web application software libraries
may cache information about client location in unencrypted
cookies and that some sites include client location information
in non-standardized HTTP response headers, ostensibly for
diagnostics and debugging. By launching HTTP requests from
113 clients with Internet connectivity distributed across six
continents and 60 countries with known country—and, for
a subset, known city—locations to a set of 10,476 servers
that we identify to include geographic information, we gain a
new, application-level perspective on IP geolocation accuracy.
Although the set of servers we identify to include geographic
information is relatively small, it is comprised of hosts that
have a broad diversity of ranking within the widely-used
Alexa top 1 Million websites. Furthermore, while collecting
the geographic data is simple, extracting it poses significant
obstacles: there is no standard for how this information is
named or structured, and the geographic information extracted
may actually refer to the server (or some other location)
instead of the client.

We overcome these complications with (1) a manually in-
tensive process of creating regular expressions for identifying
geographic data for extraction, and (2) by observing that
geographic information in HTTP responses collected by clients
at disparate locations should be different if this information
is intended to refer to the client’s location. Upon extracting
and analyzing the geographic information we first observe
that the data vary significantly in geographic scope, i.e., the
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level of geographic detail. Perhaps not surprisingly, we also
observe that accuracy varies widely across client locations
and servers. Specifically, we find that the country of the
client is included in more than 90% of all responses and that
about 75% of all responses only include the country name or
code. The remaining responses include some combination of
continent, country, city, postcode, region, and coordinates. We
observe that accuracy is greatest for the coarsest geographic
scope (continent) and least accurate for finer scopes (e.g.,
coordinate), but that accuracy varies widely across client
location and thus network prefix regardless of the continent
or country from which the request is launched. Our results
provide support for conclusions of prior work regarding in-
accuracies in geolocation databases, but from the application-
level perspective of web transactions. Our results also provide
additional context for prior studies on the effectiveness (or not)
of censorship, content blocking or authorization by geolocation
[14]–[17].

The contributions of this research are as follows. First, we
identify non-standard HTTP response headers and unencrypted
HTTP cookies as a new data source for evaluating IP ge-
olocation accuracy and scope. To the best of our knowledge,
HTTP responses have not previously been tapped for gaining
a perspective on IP geolocation. Second, we develop meth-
ods and software for extracting geographic information from
HTTP responses. In the interest of openness and for providing
ways to reevaluate our work, the software created for this
study will be made available to the community. Third, we
analyze geographic information embedded in HTTP responses,
examining both the scope of geographic information in HTTP
responses as well as accuracy.

The rest of this paper is organized as follows. In Section II
we discuss related work. In the following section, we describe
our client vantage points, how we identify servers to collect
measurements from, and our data collection and analysis
methods; the results of data analysis are shown in Section IV.
Finally, we summarize and discuss future work in Section V.

II. RELATED WORK

An early and experimental Internet standard proposed the
inclusion of host coordinates in DNS [18]. Perhaps because
of its lack of deployment, geolocation of IP addresses using
active measurements or using databases created and provided
by analytics firms has been of significant interest over the last
several years.

Investigation of techniques for estimating the geographic
locations of IP addresses and prefixes has been of longstanding
interest. Active measurement-based techniques for estimating
host locations generally rely on traceroute and/or latency mea-
surements, typically between landmarks with known locations
and the hosts for which the location is being estimated [1]–
[7], [19], [20]. Besides works that investigate new geoloca-
tion techniques, other research has evaluated the geographic
span of IP prefixes, finding that associating a prefix with
a single location is misleading [21]–[23], and geolocation

inaccuracies arising due to NAT and high latencies with mobile
devices [24].

Works investigating new active measurement-based tech-
niques have often used hosts with known locations, or free or
commercial geolocation databases in order to assess the ac-
curacy of a newly proposed technique. Other works have cast
doubt on the accuracy of geolocation databases, e.g. [11]–[13],
finding that accuracy varies greatly across available databases
and that significant inaccuracies exist in all databases. Fur-
thermore, some techniques have used DNS naming hints or
WHOIS data for geolocating routers and hosts [25]–[28].
Other work has found that WHOIS records can be the subject
of manipulation in order to mask the location of a prefix [16].
The most similar work to ours is that of Guo et al. [29] who
analyzed web page contents for geographic clues to where
a server may be located. They used additional measurements
such as traceroutes and WHOIS to further refine the estimated
server location.

Lastly, a recent work by Weinberg et al. [30] uses refined
versions of existing active measurement-based geolocation
techniques to identify locations of proxies for a number of
commercial VPN services in order to evaluate claims made
by these VPN providers about where their connection points
exist. We use this latter work to validate locations of our VPN-
based client locations.

Our work differs from prior work in this area in that we
examine IP geolocation from the perspective of web trans-
actions. We do not have information about what geolocation
technique (either database or active measurement technique) is
used by any server, nor do we attempt in this paper to associate
the geographic information identified in HTTP responses with
any particular database. Evidence we show in Section IV-B
suggests, however, that it may be possible; this is the subject
of ongoing and future work.

III. DATA COLLECTION AND ANALYSIS METHODS

There are two steps involved in the collection of HTTP
responses and extraction of geolocation data which form the
basis of our analysis. First, we identify servers of interest from
which to collect HTTP responses. Second, we collect HTTP
responses and extract geographic information from them. Our
method relies on launching HTTP requests from a set of VPN-
based clients with known locations; we also discuss in this
section how we validate those locations.

A. Identifying servers of interest

To identify servers that embed geolocation information
in HTTP responses, we first aggregated two weeks of
Alexa top 1M lists (28 February 2019–13 March 2019)
to produce a combined set of 4,625,371 unique domain
names. We used the Alexa toplist data available through
toplists.github.io [31]. From a client attached to our
university network, we made HTTP requests to this set of
domains, capturing all response headers for each HTTP trans-
action. For each HTTP request, we followed HTTP redirects
up to 30 times before declaring failure. We manually inspected



the response data to develop a set of regular expressions
(regexes) to identify a set of hosts that include geographic
information in HTTP responses. While the manual inspection
of response data was intensive, our only goal at this stage was
to identify hosts that probably include geographic information.
In other words, the set of hosts we identified at this stage
surely included false positives (i.e., servers that do not include
any geographic information); the elimination of false positives
happened at a later step.

Code for this step was written in Go and Python.
There are approximately 100 regexes used to
detect geographic information, examples of which
include country, continent, latitude, lng,
geo.{0,2}(ip|loc|code|data|info|cc), and
(region|area).*code. We also used regexes to search for
geographic information about our university site in responses,
such as the city, region, country names, and coordinate digits.
We did this to amass as broad a set of HTTP server domain
names as possible that may include geographic information
in responses.

The set of servers resulting from this step was 13,553.
Although this number is small in comparison to the set of hosts
from which we gathered responses, it represents a large variety
of ranks in the Alexa top 1M lists, as shown in Figure 1. Note
that for hosts that appear in multiple top lists, we used the
lowest rank observed for constructing the plot. We see in the
plot that the overall distribution of hosts is skewed toward
higher ranks, but that a very broad set of ranks are included.
Moreover, these servers come from 5,632 unique /24 IPv4
prefixes. Of these, about 12% are hosted within Amazon; this
was the most of any cloud and/or hosting provider that we
were able to identify.
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Fig. 1. Alexa top 1M Ranks of hosts that are identified to include geographic
information in HTTP responses.

B. Validating client VPN locations

For gathering a set of HTTP responses from which to extract
and analyze geolocation information, we used a commercial
VPN provider in addition to a host on our university’s network.
The connection points we chose from the VPN provider
are distributed across 6 continents and 60 countries. For a
smaller set of client locations, the VPN provider identifies
the city location. We requested from the VPN provider to
confirm the country location of each connection point and
the city locations for those locations that identify the city,
which the provider indeed did. Recent work, however, has cast
doubt that the locations provided by some VPN providers are

accurate [30]. We used the software provided by this work
to further validate the locations of these VPN sites; there
were no instances of conflicting information. Furthermore,
we ran traceroutes through each of these locations back to
our university and analyzed DNS names available. Again,
in no instance did we find conflicting information, i.e., no
location information inferred in a DNS name conflicted with
the provider-given location, and in all cases any location-
relevant information in DNS names supported the provider-
given location. Thus, we have evidence to believe that our
clients were connected from the locations where we claim
them to be.

We also compared the geographic information about our set
of client/VPN locations with publicly available IP geolocation
data sources. In particular, we used Maxmind’s free GeoIP
service [32], ipgeolocation.io [33], ipinfo.io [34], and country-
level information available through Team Cymru’s WHOIS
service [35]. Results are shown in Table II. We observe that
continent and country-level information from these databases
is in strong agreement with VPN-advertised locations for all
sources except for the WHOIS information (which is known to
be less accurate and falsifiable [16]). Where the three databases
are incorrect, there is little overlap on what locations they
are incorrect about. In particular, the only VPN location for
which country-level information was incorrect for more than
one data source was Algeria (ipgeolocation.io and MaxMind
indicate Cyprus, and the WHOIS data indicates the Nether-
lands; ipinfo.io is correct). Otherwise, there is no overlap
in erroneous locations. As we will see later in this paper,
the high accuracy for the three databases (ipgeolocation.io,
ipinfo.io, and MaxMind) we observe here—specifically for
country location—and low accuracy for some locations we
observe in our results below suggests that some servers use
low-quality geolocation data.

In total, we used 113 client locations (112 from the com-
mercial VPN). There is some redundancy in these locations;
in a small number of cases there are multiple connection
points located in the same city but attached to a different
network provider (and thus with a different IP prefix). In fact,
IP addresses for all client locations except for two locations
in Singapore are in distinct /24 IPv4 prefixes (i.e., the two
Singapore VPN locations use the same /24 prefix). In this
study, we only use IPv4-attached locations; we are considering
IPv6 locations in our future work. Table I provides a summary
of the client locations used in this study.

TABLE I
NUMBER OF CLIENT LOCATIONS ON EACH CONTINENT AND NUMBER OF

COUNTRIES INCLUDED.

Continent AF AS EU NA OC SA Total
Locations 4 19 48 30 7 5 113
Countries 4 12 32 6 2 4 60

C. Extracting geographic information from HTTP responses

The last step of our data collection process was to launch
HTTP requests using each of the 13,553 server domain names



TABLE II
FRACTION OF PUBLICLY AVAILABLE GEOLOCATION DATA SOURCES THAT

AGREE WITH VPN-ADVERTISED LOCATIONS.

Data source Continent Country Coordinates
Team Cymru WHOIS — 0.65 —
ipgeolocation.io 0.98 0.96 0.84
ipinfo.io — 0.96 0.75
MaxMind (Free) 0.98 0.98 0.75

from each of the 113 client locations. We manually created
a set of regular expressions and code (in Python) to extract
geographic information from the HTTP responses collected
at this step. Recall that the first step in our data collection
process only identifies hosts that probably include geographic
information in HTTP responses; the regexes used at this final
step are fine-grained. As a result, we found it necessary
to create far more regexes at this step compared with our
initial set (≈100 for the first step and ≈2000 for this step).
As part of our future work, we intend to develop methods
for automatically generating regexes to extract geographic
information using techniques such as those in [36]–[38].

Table III shows three examples each of unencrypted cook-
ies and non-standard HTTP response headers that contain
geographic information about the client (and for which we
wrote regexes). We note that it is common practice for web
application frameworks and libraries to cache IP geolocation
information in cookies (both encrypted and unencrypted) to
avoid further queries for that IP address, e.g., see [39], [40],
providing at least one reason why such information may
appear in cookies. Further, we observed some non-standard
header names to explicitly include words such as “debug”,
suggesting that at least one use for this information is in
debugging and diagnostics of site operation. Each of the
examples in the table was collected from a client connected
through Frankfurt am Main, Germany. These examples are
drawn from responses from six different servers.

In the examples in Table III, we first observe different geo-
graphic scopes referenced, e.g., country, region, city, postcode
and/or coordinates. We also observe a wide variety of text
structure in the header values. On the one hand, two of the non-
standard HTTP response header values are simply ISO 3166
alpha-2 country [41] or continent codes. On the other hand,
while other values have recognizable geographic information
there is no standard pattern. For example, the first cookie uses
a colon character (:) as a separator in a string containing
geographic information while the other two cookie values use a
JSON (or JSON-like) syntax and the third non-standard HTTP
header uses other types of separators. Lastly, with the first
unencrypted cookie example we also observe some inaccuracy
in the city reported (Berlin instead of Frankfurt am Main).

The variety of examples in Table III highlights the challenge
of defining regexes to identify geographic information and then
parsing the data. For example, for the first cookie in the table,
extraction would involve treating the colon as a field separator
and splitting the string to derive the country code, region code,
etc. This is a “simple” example: we observed some sites to

include complex JSON structures and other sites to include
serialized PHP objects, among many other peculiarities. Since
there are no standards governing how these data are embedded,
we manually wrote code to identify and extract each of the
relevant pieces of geographic information from a given header
or cookie value. In our code we included a number of self-
consistency checks in order to minimize the errors that might
have been introduced through this process. For example, we
compared country and continent names and codes against
published lists, e.g. [42], and whether coordinate values were
within the correct numeric range, among other checks. We
also emitted a file containing headers and cookies from which
no geographic information was extracted and manually went
through these items to make sure that important information
was not missed.

We observed that for some sites all extracted geographic
information was identical, indicating that the information is
about the server site (or some other location) rather than
the client. We identified all such sites (a total of 3,386) and
discarded results for them1. In the end, we extracted usable
geographic information from a total 10,476 sites. Of the sites
and HTTP transactions that we do not discard, there were
590,512 non-standard HTTP headers and 993,791 unencrypted
cookies from which we extracted geographic information.
Interestingly, the number of bytes we extracted from cookies
varies greatly: header values consumed on average 29 bytes
(99th percentile is 50 bytes), but cookie values consumed 61
bytes on average, and the distribution was heavily skewed.
The median number of bytes in a cookie value was only 24
bytes, but the 90th percentile was 129 bytes, and the 99th
percentile was 508 bytes. Looking into the values themselves,
we also observed that the number of decimal digits included
with coordinates varied and represented highly misleading
precision. The mode of the distribution was 4 decimal dig-
its (31253 measurements out of ≈ 60000, which represents
roughly precision of 11 meters), but there were ≈ 15000
measurements that included 5 or more decimal digits (about 1
meter of precision) and some responses included coordinates
with 21 digits of precision!

IV. RESULTS

We analyzed two main aspects of the geographic informa-
tion extracted from the HTTP response data collected and
described in the previous section: (1) What is the geographic
scope of information that is included with HTTP responses?
Does the geographic information in HTTP responses vary
from the perspective of different client locations?; and (2)
How accurate is the geographic information embedded in
HTTP responses compared with known client locations? In
this section, we address these questions. Below, we use the

1A potential issue with our site filtering method may occur if there are
multiple servers at distinct geographic locations which use IP Anycast:
location information in HTTP responses about the server will also be distinct
but our method may infer those locations to be about the client. From
examination of HTTP headers and cookies and BGP routing information from
multiple locations, we do not believe that there are servers we used that are
affected by this issue.



TABLE III
EXAMPLES OF UNENCRYPTED COOKIES AND HTTP RESPONSE HEADERS CONTAINING GEOGRAPHIC INFORMATION.

unencrypted cookies
1 set-cookie: GeoIP=DE:BE:Berlin: ...
2 set-cookie: fly_geo={"countryCode": "de"}; ...
3 set-cookie: geo=j:{"range":[1533874176,1533878271],"country":"DE","region":"",

"city":"","ll":[51.2993,9.491],"metro":0,"zip":0}

non-standard HTTP response headers
1 x-geoip-country-code: DE
2 Geoip_city_continent_code: EU
3 X-Location: lat=51.2993;lng=9.491;country=Germany;city=;ip= ...

term site to refer to an HTTP server represented by a particular
domain name.

A. Scope of geographic information in HTTP responses

We first evaluate the scope or geographic granularity of
information extracted from HTTP responses. We consider
continent, country, province/state/region, city, postcode, and
coordinates (latitude and longitude) as scopes of interest.
Figure 2 considers the fraction of all HTTP responses that
include information for a given scope. We show results for
all responses across all client locations, and results broken
down by continent (i.e., results for clients within a given
continent are aggregated). We first observe that country is—
by far—the most commonly-included geographic information;
more than 90% of sites across all continents and locations
include a country code or name. Overall, there are 7,872
sites that only include a country name or code, which is
about 75% of all sites. If these results are reflective of the
broader ecosystem of websites, they suggest that the majority
of sites are concerned with coarse (i.e., country-level) rather
than detailed (e.g., coordinate-level) information.
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Fig. 2. Fraction of HTTP responses that include information of a given
geographic scope.

For the remaining 25% of sites, responses include multiple
types of geographic information. The most common com-
bination is to include country, region, and city information
(172), but there are many variations beyond that. Overall we
observed 32 combinations of different geographic information
in responses for a given site. We also analyzed how the scope
of geographic information included in a response varies from
the perspective of different client locations for a given site. We

found that 8,818 sites respond with geographic information of
exactly the same scope across all client locations (about 84%
of sites) but that the remaining 16% of sites respond differently
to requests arriving from different locations. We hypothesize
that these differences are due to the availability of geographic
information in different databases for different addresses or
prefixes, e.g., the postcode and/or coordinates may be available
for some locations but not others.

For a number of sites, no geographic information is em-
bedded in the HTTP response when a request is made from
a particular client location, suggesting that the geolocation
database(s) or other techniques used by a given site are
incomplete or failed. We view it as less likely that the results
are intentionally omitted, though this is also a possibility.
Although we do not show detailed results, we found that
VPs for which no geographic information is provided are
not concentrated on any one continent. The VP with the
most responses that do not include geographic information
information is in South Africa; these responses comprise about
5% of all responses. For the majority of VPs, fewer than 1%
of responses do not contain any geographic information.

B. Accuracy of geographic information in HTTP responses

To assess the accuracy of the information embedded in
HTTP responses, we start with known information about each
client location (country, and possibly city). For each country or
country/city combination, we queried the Nominatim service
of OpenStreetMaps [43] to obtain a coordinate bounding box
around the country or country+city of the client and the region
name if the city is known. Note that since we consider a
coarse bounding box our evaluation of coordinate accuracy
is imprecise since areas are almost certainly included in the
bounding box that are not actually part of the country or city
in question. Still, more than 90% of the bounding boxes we
identify for VPs with known city locations are tighter than the
40 km bounds used in prior work [11], [21]. Lastly, we do not
show detailed results regarding continent, region (e.g., state or
province) or city below due to space limitations.

First, we examine the accuracy of country information
included in HTTP responses in Figure 3. Client locations are
sorted from least to most accurate along the x-axis. Moreover,
only responses from sites that include an indication of country
are included. We observe that for about 100 locations, country
accuracy is 80% or better. For some locations, however,
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Fig. 3. Accuracy of country information in HTTP responses.

accuracy is poor. For example, with the RU location, about 72%
of responses indicate that the site is in Kazakhstan instead of
Russia and for the PA location about 38% of responses indicate
that the site is in Argentina instead of Panama. Although not
shown, we note that for all but 10 locations, continent accuracy
is 90% or greater; accuracy for 3 of the remaining locations
is less than 60%. Overall, we do not observe any clear
relationship regarding client location and country or continent
geolocation accuracy. We also do not observe a relationship
between RIR of the client prefix and geolocation accuracy
(e.g., the 5 least accurate client locations have prefixes in 4 of
5 RIRs). We hypothesize that accuracy is less related to the
specific country or continent of the client than the geographic
reach of the prefix used; prior work has also suggested this
reason for poor geolocation accuracy [21], [22].

In Figure 4 we show accuracy results of geographic co-
ordinates embedded in HTTP responses. We consider the
coordinate accurate if it is within the bounding box for the
country or city of the client. We show plots for country-level
accuracy in the top plot and for city-level accuracy in the
bottom plot. We first observe a similar profile as results for
country code accuracy (cf. Fig. 3). In particular, we see that
many country-level locations are 80% accurate or better, but
that there are a smaller number with lower (or much lower)
accuracy. In this plot we only examine VPs for which the
country is known. We focus on country identification because
it is the granularity typically used for content blocking or
authorization.

Interestingly, there are some VPs for which the country
or country code indicated in HTTP headers and cookies is
rather accurate but for which coordinates are not, and vice
versa. In particular, while coordinates for the RU VP are
quite accurate, the country information is not, and while
coordinates for the GE location are inaccurate, the country
code is highly accurate (cf., Fig. 3). This observation suggests
possible internal inconsistencies in geolocation databases. For

city-level accuracy (bottom plot of Figure 4), we observe that
the majority of locations have significant inaccuracies; only a
small number are 80% accurate or better.

Figure 5 provides a different perspective on the accuracy of
coordinates embedded in HTTP responses. The plots show em-
pirical cumulative distribution functions of distances between
coordinates embedded in a response and the center of the true
location; distance is computed using the Haversine formula.
The figure shows results for locations within Australia (left
plot), Canada (center plot), and Spain (right plot); note that
these are all city-level locations. We first observe that for some
locations (e.g., AU-Syd2, Au-Syd3, AU-Bri, CA-Tor1, and
CA-Van) accuracy is high; more than 85% of the coordinates
we extract are within 10km of the true location, and certainly
within city limits. Accuracy for other client locations, however,
can be poor. For the AU-Per location, for example, less than
30% of coordinates are within 10km of the true location,
and the remaining coordinates are 1800km away or farther.
Interestingly, we also observe from the vertical lines in the
figure that there are a number of coordinates extracted from
HTTP responses that are identical or very nearly so. We
hypothesize that this effect is caused by a relatively small
number of geolocation databases or geolocation API providers
in use in the Internet. For example, with AU-Per, one may
estimate this number at somewhat greater than 4 (there are at
least 4 distinct vertical line segments in the curve for AU-Per).

V. SUMMARY AND FUTURE WORK

In this paper, we evaluate IP geolocation from the per-
spective of web clients and geographic information embedded
in non-standard HTTP response headers and in unencrypted
HTTP cookies. We identify a set of 10,476 sites that include
geographic information in HTTP responses and launch HTTP
requests from a set of 113 client locations with known country
or country+city locations. We find that the country of the client
is included in more than 90% of all responses, that about
75% of all responses only include the country name or code



GE M
X

KR
1 PA M
Y BE FI

HK
4 AT NO PL KR
2

SE
2 KE BR
2 BR HK
2 RO CH
2 ZA CH NZ CL IL SK LU BG IS SI LT CR AL DK PT HK
3 EE UA DZ KG AR UZ EG AZ IE SE TH GR CO BS HU M
D CZ TW
2 RS RU

Client location

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

wi
th

in
 c

ou
nt

ry
 b

ou
nd

in
g 

bo
x

DE
-D

ar
DE

-N
ur

IT
-C

os
GB

-D
oc

k
NL

-H
ag

US
-A

tl
US

-S
F1

CA
-V

an
US

-B
os

US
-T

am
US

-M
ia

2
US

-P
ho

GB
-B

er
1

US
-S

F2
US

-W
DC

2
US

-W
DC

1
GB

-B
er

2
GB

-K
en

CA
-M

on
AU

-M
el

FR
-P

ar
1

NL
-R

ot
US

-L
A5

DE
-F

ra
1

AU
-P

er
US

-K
C

US
-V

ir
JP

-T
ok

3
US

-C
hi

DE
-F

ra
2

US
-N

YC
1

ES
-B

ar
AU

-S
yd

1
US

-S
ea

US
-D

al
2

US
-N

YC
2

US
-L

A2
FR

-S
tr

GB
-L

on
IT

-M
il

ES
-M

ad
US

-D
en

US
-L

A3
FR

-P
ar

2
US

-D
al

1
SG

-S
in

1
CA

-T
or

1
NL

-A
m

s
CA

-T
or

2
AU

-S
yd

3
JP

-T
ok

2
JP

-T
ok

1
AU

-S
yd

2
SG

-S
in

2
SG

-S
in

3
US

-L
A1

AU
-B

ri
US

-S
J

Client location

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

wi
th

in
 c

ity
 b

ou
nd

in
g 

bo
x

Fig. 4. Accuracy of latitude/longitude coordinates considering if the coordinates lie within a bounding box around the client location. Results for VPs with
known country locations are shown on top; results for known city locations are on bottom.
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Fig. 5. Empirical CDF of distance from true location for coordinates in HTTP responses for locations in AU (left), CA (center), and ES (right).

and that the remaining responses include some combination of
additional geographic information. We observe that accuracy
is greatest for the broadest geographic scopes (continent and
country) and least accurate for finer scopes, but that accuracy
varies widely across client locations and network prefix. In
future work, we intend to develop methods for inferring the
source of geographic information for a set of websites (e.g.,
which database or API) and to analyze the effects of inaccurate
geolocation on Internet censorship and content authorization.
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