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Abstract—TCP throughput prediction is an important capability
for networks where multiple paths exist between data senderand
receivers. In this paper we describe a new, lightweight meitd for
TCP throughput prediction. Our predictor uses Support Vector
Regression; prediction is based on both prior file transfer lstory,
and measurements of simple path properties. We evaluate our
predictor in a laboratory setting where ground truth can be
measured with perfect accuracy. We report the performance
of our predictor for oracular and practical measurements of
path properties over a wide range of traffic conditions and
transfer sizes. For bulk transfers in heavy traffic usingoracular
measurements, TCP throughput is predicted within 10% of
the actual value 87% of the time, representing nearly a 3-
fold improvement in accuracy over prior history-based mettods.
For practical measurements of path properties, predictions can
be made within 10% of the actual value nearly 50% of the
time, approximately a 60% improvement over history-based
methods, and with much lower measurement traffic overhead.
We implement our predictor in a tool called PathPerf, test it in
the wide area, and show thatPathPerf predicts TCP throughput
accurately over diverse wide area paths.

Index Terms—TCP Throughput Prediction, Active Measure-
ments, Machine Learning, Support Vector Regression.

I. INTRODUCTION

The availability of multiple paths between sources an

receivers enabled by content distribution, multi-homiagd
overlay or virtual networks suggests the need for the gfiidit

select the “best” path for a particular data transfer. A camm
starting point for this problem is to define “best” in term
of the throughput that can be achieved over a particular peﬁfp
between two end hosts for a given sized TCP transfer. In tl

case, the fundamental challenge is to develop a technigie
provides an accurate TCP throughput forecast for arbitmany
possibly highly dynamic end-to-end paths.

Prior work on the problem of TCP throughput predictio

has largely fallen into two categories: those that invedég
formula-basedapproaches and those that investigaistory-

basedapproaches. Formula-based methods, as the name &

gests, predict throughput using mathematical expresshoats

relate a TCP sender’s behavior to path and end host proper
such as RTT, packet loss rate, and receive window size. $n t
case, different measurement tools can be used to gather
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input data that is then plugged into the formula to generate
a prediction. However, well-known network dynamics and
limited instrumentation access complicate the basic tdsk o
gathering timely and accurate path information, and the eve
evolving set of TCP implementations means that a correspond
ing set of formula-based models must be maintained.

History-based TCP throughput prediction methods are con-
ceptually straightforward. They typically use some kind of
standard time series forecasting based on throughput meeasu
ments derived from prior file transfers. In recent work, ete
al. show convincingly that history-based methods are generall
more accurate than formula-based methods. However, the
authors carefully outline the conditions under which higto
based prediction can be effective [11]. Also, history-lihse
approaches described to date remain relatively inaccarade
potentially heavy weight processes focused on bulk transfe
throughput prediction.

Our goal is to develop an accurate, lightweight tool for
predicting end-to-end TCP throughput for arbitrary fileesiz
We investigate the hypothesis that the accuracy of history-
based predictors can be improved and their impact on a path
reduced by augmenting the predictor with periodic measure-
lﬁents of simple path properties. The questions addressed in
this paper include: 1) Which path properties or combination
of path properties increase the accuracy of TCP throughput
prediction the most? and 2) What is a minimum set of file sizes

gequired to generate history-based throughput predidimrs

itrary file sizes? Additional goals for our TCP throughpu
%(]ediction tool are: 1) to make it robust to “level shifts’e(,
en path properties change significantly) which eteal.

eﬁmw to be a challenge in history-based predictors, and 2) to

include a confidence value with predictions—a metric with

Aittle treatment in prior history-based throughput prédirs.

The analytical framework for the study that we report in this
paper is based on the use of Support Vector Regression (SVR),

owerful machine learning technique that has shown good
er‘ﬁpirical performance in many domains. SVR has several

tractive properties that make it well suited for our study
% It can accept multiple inputs.€., multivariate features)

g will use all of these to generate the throughput pregticti
2) SVR does not commit to any particular parametric form,
unlike formula-based approaches. Instead, SVR models are
flexible based on their use of so-called non-linear kernels.
This expressive power is an important reason for the paknti
for more accurate predictions than formula-based methods.
3) SVR is computationally efficient, which makes it attraeti
for inclusion in a tool that can be deployed and used in the
wide area. For our application, we extend the basic SVR



predictor with a confidence interval estimator based on a®velop an active probe tool for TCP throughput prediction
assumption that prediction errors are normally distridutewe call PathPerff] that we deployed and tested in the wide
an assumption that we test in our laboratory experimentzea. We present results from 18 diverse wide area pathgin th
Estimation of confidence intervals is critical for on-lineedic- RON testbed [3], and show th&athPerfpredicts throughput
tion, since retraining can be triggered if measured thrgugh accurately under a broad range of conditions in real netsiork
falls outside a confidence interval computed through previo
measurements. _ _ Il. RELATED WORK
. We begin by using laboratory-based experiments to "NV Since seminal work by Jacobson and Karels established the
tigate the relationship between TCP throughput and measyre . . : . .
S . . : asic mechanisms for modern TCP implementations [13], it
ments of path properties including available bandwidiB)(

queuing delays@), and packet lossL]. The lab environment has been well known that many factors affect TCP through-

. . ut. These include the TCP implementation, the underlying
enables us to gather highly accurate passive measurenfen : ) :
) network structure, and the dynamics of the traffic sharing
throughput and all path properties, and develop and test

T
SVR-based predictor over a range of realistic traffic cdnds. ?He links on the path between two hosts. Steps toward un-

o . derstanding TCP behavior have been taken in a number of
Our initial experiments focus on bulk transfers and compi;j

actual throughput of TCP flows with predictions generat sfudies including [1], [2] which developed stochastic mede

by our SVR-based tool. Our results show that throughpur TCP based-on paf:ket Ioss_charactenstm;. A SEeMnes of
. : udies develop increasingly detailed mathematical esgivas
predictions can be improved by as much as a factor of

when including path properties in the SVR-based tool veasuél?r TCP throughput based on modeling the details of the
history-based predictor. For example, our results showttiex CP congestion controf algorithm and measurements of path

SVR-based predictions are within 10% of actual 87% of tﬂ%éﬁgsergis Eéégﬂ}e[;%]ﬁt[l;]’ [;tShl V:/:”grt?éjsr ptrrfsl(g(\)/r::ﬁ)ase d
time for bulk transfers under heavy traffic conditions (900/[ P brop ’

0 . .. . .
average utilization on the bottleneck link). Interestinghe approach is completely distinguished from prior formutesed
find that the path properties that provide the most improvgme

models.
: . A large number of empirical studies of TCP file trans-
.to the_SVR baseq predictor a@gndL respectively, and that fer and throughput behavior have provided valuable insight
includingAB provides almost no.|mprovementto the predmtoghto TCP performance. Paxson conducted one of the most
e B o e gnprehensve stuies of TGP behavr (19, 20, Whie
. . » We exp . hat work exposed a plethora of issues, it provided some
in three ways. First, the initial tests were based entirely 0

passive traffic measurements, which are unlikely to be vyide?f the first empirical data on the characteristics of packet

available in the Internet. To address this, we tested our—SV&elay’ queuing, and loss within TCP file transfers. Barford

based approach using measurementsoind L provided [ SRR SRR L X I R TSR T
by the BADABING tool [25]. The reduction in accuracy of P persp

active versus passive measurementQadndL resulted in a delay, queuing, and loss relate to TCP performance [6]. Jn [5

corresponding reduction in accuracy of SVR-based throughpBalak”Shnanet al. studied throughput from the perspective

predictions for bulk transfers under heavy traffic condito of a large web server and showed how it varied depending

on the order of about 35%—still a significant improvemenqn end-host and time of day characteristics. Finally, ddai

on history-base estimates. It is also important to note t%fjdles of throughput variability over time and correlaso

e - . it etween throughput and flow size can be found in [31], [32],
throughput prediction based on training plus lightwei C%e;éjspectively. These studies inform our work in terms of the

measurements results in a dramatically lower network probé™: o .
X . . . sic characteristics of throughput that must be consitlere
load than prior history-based methods using long-lived T - .
when building our predictor.

transfers and heavyweight probe-based estimates of biaila . :
bandwidth such asydesgribgd in [11]. We quantify this differ Past studies of history-based methods for TCP throughput
ence in SectioYI. Second, we exberimented with traininprediCtion are based on the use of standard time series fore-
data in order to enable predictions over a range of file sizglsns1 tllneg f(TrZ::h:s?isr{ Vﬁﬂﬁgg? tgl.e(:sct)img?e"eTSCel\D/e{::o?jlﬁﬁ rir':tfor
instead of only bulk transfers which is the focus of prior &or P 9 ) S gnp

o L transfers of large files and find similar performance acrass p
We found that a training set of only three file sizes results in

accurate throughput predictions for a wide range of filesizeOIICtorS [30]. A well-known system for throughput predistio

which highlights another strength of our SVR-based apgoa is the Network Weather Servipe [28]. That system makes bulk
Third, He et al. showed that “level shifts” in path conditions ransfer forecasts by attempting to correlate measuresnent

pose difficulties for throughput prediction [11], suggastthe prior large TCP file transfers with periodic small (64KB) TCP

need for adantivity. To accomplish this. we auamented tﬁi(lee transfers (referred to as “bandwidth probes”). The [Paa
PAVILY. P ! g stem for TCP throughput prediction is described in [16].

. . . . . . S
basic SVR predictor with a confidence interval estimator :
. . : o at system makes throughput estimates based on an expo-
a mechanism for triggering a retraining process. We show in

; . . . nentially weighted moving average of larger size bandwidth
SectiorVI=C1 that our technique is able to adapt to levdtshi S
quickly and to maintain high accuracy on paths where Iev8[0bes (1.2MB total). Similar to our work, Let al. found that

Shiﬂs_ occur. ) . o lpathPerf will be openly available for download at
This combination of capabilities was sufficient for us tattp://wail.cs.wisc.edu/waildownload.py



prediction errors generally followed a normal distributicAs measure used in SVR is theinsensitive loss, defined as

mentioned earlier, Het al. extensively studied history-based .

. i ; ; : 0 if |f(x)—y|<e
predictors using three different time series forecast$. [Our L(f(x),y) = ’ 1)
SVR-based method includes information from prior transfer |f(x)—yl—&  otherwise.

for training, but otherwise only requires measurementsnfropis |oss function measures the absolute error between pre-

!ightweight probes and is generalized for all files sizest NQi tion and truth, but with a tolerance af The valuee is

just bulk transfers. application-dependent in general, and in our experimemts w
Many techniques have been developed to measure padli it to zero. Other loss functions.§, the squared loss) are

properties (see CAIDA's excellent summary page for e_Xa'Ec()ssible too, and often give similar performance. They ate n

ples [9]). Prior work on path property measurement direc plored in this paper.

our s_election of Iightwgight probe tools to collect dgtacﬁtmr. It might seem that the appropriate way to estimate the

predictor. Recent studies have focused on measuring Bl@ilayarameterg, B, is to minimize the overall loss on the training

bandwidth on_apath. AB is defined mformal_ly as the MINIMUrBet 1 | ((x;),y;). However ifd is large compared to the

unused capacity on an end-to-end path, which is a concéptu@lymper of training examples, one can often fit the training

appealing property with respect to throughput predictidn. gata perfectly. This is dangerous, because the yririiraining

number of studies have described techniques for measuriigta actually contain random fluctuations, ahdis partly

AB including [14], [26], [27]. We investigate the ability of fiyting the noise. Sucli will generalize poorlyi.e. causing bad

AB measurement as well as other path properties to enhapggictions on future test data. This phenomenon is known as

TCP throughput predictions. overfitting To prevent overfitting, one can reduce the degree of
Finally, machine learning techniques have not been widefedom inf by selecting a subset of features, thus reduding

applied to network measurement. One notable exceptionag implicit but more convenient alternative is to requifeo

in network intrusion detectione(g., [12]). The only other hesmootH, defined as having a small parameter ndji|2.

application of Support Vector Regression that we know of i§ombining loss and smoothness, we estimate the parameters

to the problem of using IP address structure to predict roud 3 by solving the following optimization problem
trip time latency [7].

ELQCi;L(f(Xi)v)’i)'f‘”B”zv (@)

I1l. A M ULTIVARIATE MACHINE

whereC is a weight parameter to balance the two terms. The
LEARNING TOOL

value of C is usually selected by a procedure called cross-

The main hypothesis of this work is that history-based TC##Rlidation, where the training set is randomly split intootw
throughput prediction can be improved by incorporating megarts, then regression functions with differéhare trained on
surements of end-to-end path properties. The task of throu§@"€ Part and their performance measured on the other part,
put prediction can be formulated as a regression probiem, and finally one selects the value with the best performa_nce.
predicting a real-valued number based on multiple reakel N OUr experiments we used= 3.162 using cross-validation.
input features. Each file transfer is represented by a featdih® OPtimization problem can be solved using a quadratic
vectorx € RY of dimensiond. Each dimension is an observedrogram. _ _ o o
feature, e.g, the file size, proximal measurements of path Nonetheless, a linear fu.nctlof(x) is fairly restrlcuve and
properties such as queuing delay, loss, available bandwid'@y not be able to describe the true functipnA standard
etc. Givenx, we want to predict the throughpyte R. This mathematical trick is to augment the feature vectowith
is achieved by training a regression functidn: RY — R, Nnon-linear bases derived from Forzexample, ”;(: (x1,%2) ",
and applyingf to x. The functionf is trained using training ©N€ can augment it witlp(x) = (X1, X7, X1%2, X2, X3). Thelinear

. . . . . i _nT
data,i.e. historical file transfers with known features and th&egressor in the augmented feature sp&og = B~ ¢(x) + o
corresponding measured throughput. then produces aon-linearfit in the original feature space.

The analytical framework that we apply to this probIenINOteB has more dimensions than before. The more dimen-

is Support Vector Regression (SVYR)state-of-the-art machines'onsﬁ(x) has, the m(()jre fetzxpr(t3)35|\i?b§(|:omes.

learning tool for multivariate regression. SVR is the resgion In t ?_ (_extrde_me (a_n olen eneficial) caq_ae<) l?a_n even
version of the popular Support Vector Machines [29]. It has hdave n Inite dimensions. tgeems_ c_omp_utanor_la y imgssi
solid theoretical foundation, and is favored in practiceife o estimate the correspondmgl |nf|n|te-.d|rner?5|onal patame
good empirical performance. We briefly describe SVR belof: However, if we convert therimal optimization problenil2

and refer readers to [21], [23] for details, and to [15] as dt° It dual form, one can show that the number of dual
example of an SVR software package. parameters is actuallyinstead of the dimension @f(x). Fur-

To understand SVR we start from a linear regression funtch_ermore, the dual problem never uses the augmented feature

tion (x) = BT x+ Bo. Assume we have a training setofile @(x) explicitly. It only usesTthellnEer prO(/juct between_ pairs

L .. of augmented featureg(x)' @(x’) = K(x,x"). The function
transfers{(x1,y1),-..,(Xn,¥n)}. Training involves estimating K is known as thekerne| and can be computed from the
the d-dimensional weight vectg8 and offsetfy so thatf (x;) ! W pu

is close to the truthy; for all training examples = 1... N. 2 g are the coefficients of a polynomial function, the functiofl tend
There are many ways to measure “closeness”. The traditiomabe smooth (changes slowly) [B]|? is small, or noisy if|| 3|2 is large.



original feature vector,x’. For instance, the Radial Basisleaving the bottleneck node. By comparing packet headess, w
Function (RBF) kerneK (x,x’) = exp(—ny—x'HZ) implicity  were able to identify which packets were lost at the congkste
corresponds to an infinite dimensional feature space. In cartput queue during experiments, and accurately measure
experiments we used a RBF kernel with= 0.3162, again available bandwidth on the congested link. Furthermore, th
selected by cross-validation. The dual problem can still Bact that the measurements of packets entering and leavipng h
efficiently solved using a quadratic program. C were synchronized at a very fine granularite( a single
SVR therefore works as follows: For training, one collectmicrosecond) enabled us to precisely measure queuingsielay
a training set{(x1,y1),---,(Xn,Yn)}, and specifies a kern&. through the congested router.
SVR solves the dual optimization problem, which equivdient
finds the potentially very high-dimensional paramefeand

Bo in the augmented feature space definedKby his produces ] )
a potentially highly non-linear prediction functiof(x). The e generated background traffic by running the Harpoon

function f(x) can then be applied to arbitrary test cases P traffi(_: generator [_24] betwegn up to four pairs of traffic
and produces a prediction. In our case, test cases are the gf@eration hosts as illustrated in Figilife 1. Harpoon preduc

size for which a prediction is to be made and current paftPen-loop self-similar traffic using a heavy-tailed file esiz

web and peer-to-peer applications common in today’s letern
Harpoon was configured to produce average offered loads

. . i . ranging from approximately 60% to 105% on the bottleneck
This section describes the laboratory environment and §y;, (the OC3 between hops C and D).

perimental procedure that we used to evaluate our throughpup;easurement traffic in the testbed consisted of file trassfer

predictor. and active measurements of queuing delay, packet loss, and
available bandwidth. For the measurement traffic hosts,ete s
A. Experimental Environment the TCP receive window size to 128 KB. In receive window
The laboratory testbed used in our experiments is sholfited transfers, file transfer throughput was approxiefat
in Figure[l. It consisted of commodity end hosts connecté_)ér Mb/s. That is, if the available bandW|dth on t_he bottldnec
to a dumbbell-like topology of Cisco GSR 12000 routerdink was 21 Mb/s or more, the flow was receive windawd)
Both measurement and background traffic was generated dAtted, otherwise it was congestion windowwnd) limited.
received by the end hosts. Traffic flowed from the sendinfe experimented with bottwnd- andcwnd-limited scenarios.
hosts on separate paths via Gigabit Ethernet to separate Cis For active measurements of available bandwidth and queu-
GSRs (hop B in the figure) where it was forwarded on OC1ipg/loss, we used the AZ [26] and BADABING [25] tools,
(622 Mb/s) links. This configuration was created in orddespectively. ¥z estimates end-to-end available bandwidth
to accommodate a precision passive measurement systemd®Rg a relatively low-overhead, iterative method simiter
we describe below. Traffic from the OC12 links was thefATHLOAD [14]. Since the probe process is iterative, the time
multiplexed onto a single OC3 (155 Mb/s) link (hop C irfaken to produce an estimate can vary from a few seconds to
the figure) which formed the bottleneck where congestiok toens of seconds.
place. We used an AdTech SX-14 hardware-based propagatioBADABING reports two characteristics dbss episodes
delay emulator on the OC3 link to add 25 milliseconds deldjamely thefrequencyof loss episodes, anshean durationof
in each direction for all experiments, and configured thSS episodes, using a lightweight probe process. We used a
bottleneck queue to hold approximately 50 milliseconds @fobe probability parametgy of 0.3. Other parameters were
packets. Packets exited the OC3 link via another Cisco GSRt according to [25]. In the rest of the paper, we refer to
12000 (hop D in the figure) and passed to receiving hosts \agth loss characteristics combined as losd. 0BADABING
Gigabit Ethernet. requires the sender and receiver to be time-synchronized. T
The measurement hosts and traffic generation hosts wagommodate our wide area experiments, th@ABING re-
identically configured workstations running FreeBSD 5.4eT ceiver was modified to reflect probes back to the sender, where
workstations had 2 GHz Intel Pentium 4 processors with they were timestamped and logged as on the original receiver
GB of RAM and Intel Pro/1000 network cards. They werd hus, the sender clock was used for all probe timestamps.
also dual-homed, so that all management traffic was on aWe used BDABING to measure loss characteristics because
separate network than depicted in Figlile 1. We disabléds the most accurate loss characteristics measuremeht to
the TCP throughput history caching feature in FreeBSD 5.Qurrently available; if accuratéoss rate measurement tools
controlled by the variable net.inet.tcp.inflight.enatiteallow become available in the future, loss rate may replace frecjue
TCP throughput to be determined by current path propertié@d dura_ltion as the loss characteristic we use for our piedic
rather than throughput history. mechanism.
A key aspect of our testbed was the measurement systerﬂ'he measurement collection protocol was the following:
used to establish the true path properties for our evalnatio 1) Run BADABING for 30 seconds.
Optical splitters were attached to both the ingress andssgre 2) Run YAz to obtain an estimate of the available band-
links at hop C and Endace DAG 3.5 and 3.8 passive monitoring ~ width.
cards were used to capture tracesatifpackets entering and 3) Transfer a file.

B. Experimental Protocol

IV. EXPERIMENTAL ENVIRONMENT AND METHODOLOGY
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Fig. 1. Laboratory testbed. Cross traffic flowed across onevofrouters at hop B, while probe traffic flowed through theeottOptical splitters connected
Endace DAG 3.5 and 3.8 passive packet capture cards to ttidebetween hops B and C, and hops C and D. Measurement {fdéfi¢cransfers, loss
probes, and available bandwidth probes) flowed from leftightr Congestion in the testbed occurred at hop C.

In the remainder of the paper, we refer to the abowameasurements that can be obtained in practice, or to show how
series of steps as a singéxperiment and to a number of much better the accuracy would be if the active measurements
consecutive experiments assaries Experiments in the wide had perfect accuracy. All measurements are aggregates for
area omit the available bandwidth measurement. Individusdnditions on the path: they are not specific to any single
experiments in a series are separated by a 30 second PEP flow on the path.
riod. Series of experiments differ from each other in that For experiments in the wide area, we created a tBath-
either the background traffic is different between serias, ®erf This tool, designed to run between a pair of end hosts,
the distribution of file sizes transferred is different, dret initiates TCP file transfers and path property measurements
experiments are conducted over different physical patashE (using our modified version of AABING), and produces
series of experiments is divided into two mutually exclesivthroughput estimates using our SVR-based method. It can be
training and test sets for the SVR. The SVR mechanisoonfigured to generate arbitrary file size transfers for both
does not require that the sets of experiments that form thraining and testing and initiates retraining when leveftsh
training and test set be consecutive or contiguous in time. &re identified as described in SectlonlVIl.
contrast, history-based prediction methods generallyireq
consecutive historical information since they rely on gaml ¢ Evaluating Prediction Accuracy
timeseries-based forecasting models. In our evaluationsee
contiguous portions for training and test séts, the beginning h
part of a series becomes the training set and the rest the fr:a
set. The number of experiments in training and test sets mg
be the same or different. Notions of separate training asd te K
data sets are not required for history-based methods; rrathe ~ R-R
predictions are made over the continuous notion of distadt a - min(li, R)
recent history. In our evaluation of history-based metheds
use the final prediction of the training set as the startinigtpo
for the test set.

From each series of experiments, we gather three different V. BUILDING A ROBUST PREDICTOR

sets of measurements. The first €@tacular Passive Measure- . . . .
ments (OPM)are AB, Q, and L measurements during a file This section describes how we developed, calibrated, and

transfer that we obtain from packet traces. We refer to theg\f/}aluated our predi_ction mechanism through an extensive se
. ._of tests conducted in our lab test-bed.

measurements agracular because they give us essentially

perfect information about network conditions. In practittes o o ] ] )

information would not be available when making a predictioff- Calibration and Evaluation in the High Traffic Scenario

for an arbitrary path. We use this information to establish The first step in developing our SVR-based throughput

the best possible accuracy of our prediction mechanism. Theedictor is to find the combination of training features e¥hi

second setActive Measurements (AMare the measurementslead to the most accurate predictions over a wide variety of

from our active measurement tools. Note that, unlike thmath conditions. We trained the predictor using a featuotore

OPM, the AM provide AB, Q, and L values before the actuafor each test that contained different combination of our se

transfer. The third seRractical Passive Measurements (PPRM)of target path measurements (AB, Q, L) and the measured

are trace-based measurements of AB, Q and L taken at theoughput. Although we refer to botbss frequencwyndloss

same time asAM are taken. Their purpose is to show theluration together as L or loss for expositional ease, these

best possible accuracy of our prediction mechanism witheasures are two different features in the feature vectwe. T

We denote the actual throughput ®/and the predicted
g?ughput byR. We use the metricelative prediction error
introduced in [11] to evaluate the accuracy of an individual
oughput predictionRelative prediction erroiis defined as

In what follows, we use the distribution of the absolute ealu
of E to compare different prediction methods.



trained SVR model is then used to predict throughput forfde transfers with high actual throughput do not experience
feature vector containing the corresponding sets of nétwaany loss. When loss occurs, the values of AB and Q for the
measurements, and we compare the prediction accuracy fath are nearly constant. AB is almost zero, and Q is the
the different combinations. maximum possible value (which depends on the amount of
We also compare the accuracy of SVR to the exponentialhyffering available at the bottleneck link in the path). hist
weighted moving average (EWMA) History-Based Predictarase, throughput depends on the value of L. Hence, L appears
(HB) described in [11]R 1 = aR + (1—a)R;, with ana to be a good predictor when there is loss on the path, and AB
value of 0.3. and Q, being constants in this case, have no predictive power
We do not report detailed results from tests with lowesulting in horizontal linesi.e., a single value of predicted
utilization on the bottleneck linki,e., receive window bound throughput. On the other hand, when there is no loss, L is a
flows. In the low utilization scenarios there is very littleconstant with value zero, so L has no predictive power, while
variance in throughput, so every reasonable predictiomnotet AB and Q are able to predict throughput quite accurately.
such as history-based, formula-based, or SVR-based, pesdu Figure [2{€) and_2(f) show improvements in prediction
accurate predictions. accuracy obtained by using more than one path property in the
For most of the results reported, we generated an aver&j¢R feature vector. We can see that when L is combined with
of 140 Mb/s of background traffic to create high utilizatiom 0 AB or Q, the horizontal lines on the graphs are replaced by
our OC3 (155 Mb/s) bottleneck link. We used one set of 1Qtbints much closer to the diagonal. Combining AB or Q with
experiments for training and another set of 100 experimeritsallows SVR to predict accurately in both lossy and lossless
for testing. An 8 MB file was transferred in each experimentonditions. Since both AB and Q help predict throughput in
Figured2(d) t¢ Z(h) show scatter plots comparing the actdassless conditions, do we really need both AB and Q, or can
and predicted throughput using different prediction mdthowe use just one of the two and still achieve the same predictio
as discussed below. A point on the diagonal representsqierf@ccuracy? To answer this question, we compared AB-Loss and
prediction accuracy; the farther a point is from the diadpnd.oss-Queue predictions with each other and with AB-Loss-
the greater the prediction error. Queue predictionsi.e., Figures[2(8), [Z{), and[_2{g)). The
1) Using Path Measurements from an Oracleigure[Z2{d) general trend in all three cases is the same: the horizangal |
shows the prediction accuracy scatter plot for the HB methoaf points is reduced or eliminated, suggesting that preatict
Figures[2(0) to[ 2(¢) show the prediction error with SVRrom non-constant-value measurements is occurring foh bot
using Oracular Passive Measurements (OPNbr different lossy and lossless network conditions. If we compare the AB-
combinations of path measurements in the feature vector. Emss and Loss-Queue graphs more closely, we observe two
example, SVR-OPM-Queuaneans that only queuing delaythings. First, in the lossless prediction case, the poimés a
measurements were used to train and test, WBWWR-OPM- closer to the diagonal in the Loss-Queue case than in the AB-
Loss-Queueaneans that both loss and queuing delay measutesss case. Second, in the Loss-Queue case, the transition in
ments were used to train and test. the prediction from the lossless to the lossy case is smooth,
Tablell shows relative prediction errors for HB forecastinge., there is no horizontal line of points, while in the AB-
and for SVM-OPMbased predictions. Values in the tabldoss case there is still a horizontal line of points in theuatt
indicate the fraction of predictions for a given method with throughput range of 11-14 Mb/s. This suggests that Q is a
a given accuracy level. For example, the first two columns afore accurate predictor than AB in the lossless case. The
the first row in Tabldll mean that 32% of HB predictions haveelative prediction error data of Talle | supports this: SWigh
relative prediction errors of 10% or smaller while 79%S3WR- a feature vector containing Loss-Queue information ptsdic
OPM-ABpredictions have relative prediction errors of 10% othroughput within 10% of actual for 87% of transfers, while a
smaller. We present scatter plots in addition to tabulaadat feature vector containing AB-Loss measurements prediitts w
provide insight into how different path properties contitid the same accuracy level for 78% of transfers. Finally, there
to throughput prediction in the SVR method. no difference in accuracy (either qualitatively or quaattitely)
From Figure[2(3), we can see that the predictions for thetween Loss-Queue and AB-Loss-Queue.
HB predictor are rather diffusely scattered around the @iz, The above discussion suggests that AB measurements are
and that predictions in low-throughput conditions tend &én not required for highly accurate throughput predictiond &mat
large relative error. Figuref_2{b)[_2(c), afid_2(d) show thecombination of L and Q is sufficient. This observation is not
behavior of the SVR predictor using a single measure of patimly surprising, but rather good news. Prior work has shown
properties in the feature vector—AB, L, and Q respectivelyhat accurate measurements of AB require at least moderate
The AB and Q graphs have a similar overall trend: predictiornmounts of probe traffic [22], [26], and some formula-based
are accuratei.g., points are close to the diagonal) for highTCP throughput estimation schemes take as a given that AB
actual throughput values, but far from the diagonal, alnmwst measurements are necessary for accurate throughput predic
a horizontal line, for lower values of actual throughputeTh tion [11]. In contrast, measurements of L and Q can be very
graph has the opposite trend: points are close to the didgolightweight probe processes [25]. We discuss measurement
for lower values of actual throughput, and form a horizontaverhead further in Sectidn YIl.
line for higher values of actual throughput. 2) Using Practical Passive and Active Path Measurements:
The explanation for these trends lies in the fact that filBo far, we have considered the prediction accuracy of SVR
transfers with low actual throughput experience loss, &hibased on onlyOracular Passive Measurements (OPMhis
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Fig.

gives us the baseline for the best-case accuracy with SVR,
and also provides insight into how SVR uses different path
properties for prediction. Tabl8 | shows that HB predict$repicTion ANDSVR-BASED PREDICTORS USING DIFFERENT TYPES OF

32% of transfers within 10% of actual whil8VR-OPM-

Loss-Queusgredicts 87%, an almost 3-fold improvement. In
practice, however, perfect measurements of path progertie

are not available, so in what follows we assess SVR usi
measurements that are more like those available in the wi
area.

Table [l presents relative prediction error data for HB
SVR-PPMand SVR-AM Due to space limitations, we presen
only Loss-Queueand AB-Loss-Queugesults for SVR. We
choose these because we exp&BtLoss-Queu¢o have the
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Comparison of Prediction Accuracy of HB, SVR-OPMd&\VR-AM in High Background Traffic Conditions.

TABLE |
RELATIVE ACCURACY OF HISTORY-BASED (HB) THROUGHPUT

ORACULAR PASSIVE PATH MEASUREMENTYSVR-OPMN IN THE FEATURE

VECTOR. TABLE VALUES INDICATE THE FRACTION OF PREDICTIONS
WITHIN A GIVEN ACCURACY LEVEL.

highest accuracy as it has the most information about pa

properties, and.oss-Queudecause it is very lightweight and
has accuracy equal #B-Loss-Queuéor SVR-OPMWe wish
to examine three issues: first, whether our finding thags-
Queuehas the same prediction accuracy AB-Loss-Queue
from the SVR-OPMcase holds for th&sVR-PPMand SVR-
AM case; second, wheth&VR-PPMand SVR-AMhave the
same accuracy; and third, ho8VR-AMaccuracy compares
with HB prediction accuracy.

All prediction accuracy results in th8VR-PPMand SVR-
AM columns in Tabl&ll are very similaAB-Loss-Queudbas
approximately the same accuracylass-Queuéor bothSVR-

PPM and SVR-AM This is encouraging because it is consis-

tent with the observation fronSVR-OPM i.e., that we can

RELATIVE ACCURACY OF HISTORY-BASED (HB) THROUGHPUT

PREDICTION AND SVR-BASED PREDICTORS USING TRACEBASED

R eraive HB | AB L Q ABL ABQ LQ ABLQ
de Error H ‘
10% 0.32 | 0.79 0.54 0.87 0.78 0.87 0.86 0.8p
20% 0.67 | 0.87 0.86 0.87 0.87 0.87 0.90 0.9p
30% 0.80 | 0.87 092 0.87 0.91 0.87 0.90 0.9p
' 40% 0.87 | 0.87 094 0.87 0.92 0.87 0.93 0.93
( 50% 0.88 | 0.88 0.95 0.89 0.97 0.89 0.96 0.9
60% 0.88 | 0.88 0.97 0.92 0.97 0.92 0.97 0.9
70% 0.89 | 0.89 097 094 0.97 0.94 0.98 0.98
80% 092 | 091 098 0.9 0.98 0.95 0.99 0.9p
th 90% 0.92 | 092 098 0.96 0.98 0.96 0.99 0.9p
TABLE I

PASSIVE PATH MEASUREMENTYPPM) OR ACTIVE PATH MEASUREMENTS
(AM). TABLE VALUES INDICATE THE FRACTION OF PREDICTIONS WITHIN
A GIVEN ACCURACY LEVEL.

achieve good prediction accuracy without having to measure

AB. SVR-AMhas accuracy similar t&VR-PPM i.e., using

active measurement tools to estimate path properties syield

predictions almost as accurate as having ground-truthyeass

Relative HB PPM AM
‘ Error H ’ AB-L-Q L-Q AB-L-Q L-Q
10% 0.32 049 053 049 051
20% 0.67 0.77 0.81 0.78 0.76
30% 0.80 0.86 0.86 0.86 0.86
40% 0.87 0.86 0.89 0.86 0.86
50% 0.88 0.88 0.89 0.86 0.87
60% 0.88 0.90 0.89 0.88 0.87
70% 0.89 0.90 0.91 0.88 0.88
80% 0.92 0.91 0.94 0.90 0.90
90% 0.92 0.92 0.95 0.92 0.92




TABLE Il
RELATIVE ACCURACY OF SVRBASED PREDICTOR USING ORACULAR
PASSIVE MEASUREMENTYOPM) AND TRAINING SETS CONSISTING OFL,
2,3, 6,0R8DISTINCT FILE SIZES

‘Sample Quantik
0
|
2,
o
°
%,
o
‘Sample Quantik

Relative No. of distinct file sizes in training
Error 1 2 3 6 8

10% 0.06 024 049 035 0.34
0° o © 20% 0.16 040 057 048 0.5
’ B : : ; ’ B : : ; 30% 0.18 052 064 054 0.54
40% 019 061 066 059 0.61
50% 022 064 067 0.65 0.64

Theoretical Quantiles Theoretical Quantiles

(a) Q-Q Plot SVR-OPM-LOSS(b) Q-Q Plot for SVR-AM-Loss- 60% 0.24 0.67 0.68 0.66 0.67
Queue. Queue. 70% || 024 069 068 067 0.67
80% || 029 071 069 068 0.69

Fig. 3. Normal Q-Q Plots for Prediction Errors with (a) ortamumeasure- 90% || 0.30 0.72 0.70 0.68 0.69

ments and (b) active measurementsLobs-Queue

TABLE IV
RELATIVE ACCURACY OF SVRBASED PREDICTOR USING ACTIVE

measurements. This is important because in real wide-af&gtSUREMENTS(AM) AND TRAINING SETS CONSISTING OFL, 2, 3, 6,0R
. . . . 8 DISTINCT FILE SIZES
paths instrumentation is generally not available for axitey
accurate passive measurements.
Finally, we compare HB withSVR-AM Although Fig-

‘ Relative H No. of distinct file sizes in training

Error 1 2 3 6 8

ures[2(d) and_2(h) are qualitatively similé&BVR-AMhas a 10% || 010 029 040 029 0.2
; ; ; i 20% || 015 041 051 047 0.41
tighter cluster of points around the diagonal for h|gh_abtua 20% || 016 083 o059 052 o0&
throughput than HB. ThusSVR-AMappears to have higher 40% || 019 058 064 057 0.6]
50% 0.23 0.64 0.65 0.62 0.64

accuracy than HB. As_ T_abE]II showSVR-AM-Loss-Queue 0o || 023 o0es oea 064 0cd
predicts throughput within 10% of actual accuracy 49% of 70% || 026 070 0.67 0.64 0.6§
7 H : 80% 0.28 0.70 0.68 0.64  0.67

the time, while HB does so only 32% of the time. Hence, 00% || 031 o091 o0eo  06s 06

for high traffic scenariosSVR-AM-Loss-Queuythe practically
deployable lightweight version of the SVR-based predittio
mechanism, significantly outperforms HB prediction.

3) The Nature of Prediction ErrorLu et al.[16] observed
in their study that throughput prediction errors were appro
mately normal in distribution. As the authors noted, noitgal

S ) : . not treated in prior HB prediction studies.
would justify standard computations of confidence intesval We conducted experiments using backaround traffic at an
We examined the distribution of errors in our experimentd an P Y 9

. : . average offered load of 135 Mb/s and using a series of 9
also found evidence suggestive of normality.

Figure[3 shows two normal quantile-quantile (Q-Q) plo trainir_wg sgts consisting (_)f_between 1 and 9 unique file sizes.
for SVR-OPM-Loss-Queugigure[3@)) andSVR-AM-Loss- he file sizes for. the training sgts are betlween _32 KB and 8
Queue(Figure[3(B)). Samples that are consistent with a norm B. The first training set consists of a single file size of 8

P : . : L B, the second training set consists of two file sizes of 32
d'Str.'bUtlon form approximately a s’Fra|ght line in the ghap KB and 8 MB, and the third training set adds a file size of
particularly toward the cente_r. _In F|gur(_a) dnd B(b), 12 K. Subsequent training sets sample the range between
see that the throughput prediction samples in each case f(g?KB and 8 MB such that the fraction of a transfer lifetime
approximately straight lines. These observations areistam . .
with normality in the distribution of prediction errors. ier spent in slow start covers a wider range.

distributions from other experiments were also consistetit Test seztsté)r ogrSeﬁgnments CﬁnS'St 0;_100 file S'ﬁes
the normal distribution, but are not shown due to spa tween an — @ much more diverse set than

limitations. We further discuss the issues of retraining ah the training set. The test file sizes are drawn from a biased

detecting estimation problems in SectGaIVII random number generator in such a way that the resulting
' file transfers exhibit a wide range of behaviog,, files that

are fully transferred during slow start, and transfers ¢stirgy

B. Evaluation of Prediction Accuracy for Different File 8& of g varying proportion of time spent in slow start versus

We have so far considered only 8 MB file transfers in stegongestion avoidance. We use a wider range of small files in
3 of the experimental protocol of Secti@gn I¥-B. For a TCRhe test set to allow us to see how our predictor performs for
receive window of 128 KB, the majority of the lifetime of anunseen and difficult to predict file sizes. We do not use a wider
8 MB transfer is spent in TCP’s congestion avoidance phasange for large file sizes because we expect the throughput to
However, our goal is an accurate predictor for a range bf almost constani.¢., window or congestion limited) once
file sizes, not just bulk transfers. Predicting throughput f slow start becomes an insignificant fraction of the transfer
small files is complicated by TCP’s slow start phase in whidfme.
throughput changes rapidly with increasing file size duéneo t Tables[Ill and[I¥ present prediction accuracy for training
doubling of the window every round-trip time, and becaussets consisting of 1, 2, 3, 6, or 8 distinct file sizes 8YR-
packet loss during the transfer of a small file can have @PM and SVR-AM Graphs in Figurdl4 preserVR-AM

large relative impact on throughput. We hypothesize thatgus
different file sizes to train the SVR predictor will lead to
accurate forecasts for a broad range of file sizes - something
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Fig. 4. Scatter plots for th&VRbased predictor using 1, 2, or 3 distinct file sizes in thentng set. All results shown use active measurements to tre
predictor. Testing is done using a range of 100 file sizes fBoKB to 8 MB.

results for one, two, and three file sizes in the training sdile size is future work.
We do not include graphs for remaining training sets due to
space limitations: they are similar to those for two and ghre VI. WIDE AREA EXPERIMENTS

file sizes in the training set. The first observation is thatle To further evaluate our SVR-based TCP throughput predic-
single file size in training, the prediction error is very hig fi gnput p

2 . ; on method we created a prototype tool calleathPerfthat
This inaccuracy is expected because the predictor has been .
. . ; ; ) . ¢an generate measurements and make forecasts on wide area
given no information about the relationship between sizé an .
aths. We usefathPerfto conduct experiments over a set of

throughput for small files. The second observation is that ];gaths in the RON testbed [3]. This section presents theteesul
more than one file size, prediction becomes dramaticallyem Tt our wide area experiment.s

accuratej.e., the predictor is able to successfully extrapolate
from a handful of sizes in training to a large number of sizes

in testing. The third observation is that relative errorgsvl A. The RON Experimental Environment

for large file sizes (corresponding to high actual throughpu The RON wide area experiments were conducted in January
while it is higher for small files (low actual throughput).2007 over 18 paths between 7 different node locations. Two
This is consistent with our expectation that it would be moreodes were in Europe (in Amsterdam and London), and
difficult to accurately predict throughput for small fileshd the remainder were located at universities in the contimlent
fourth observation is that for small file sizeise(, small actual United States (Cornell, Maryland, New Mexico, NYU, and
throughput), the error is always that of over-predictiomeT Utah). Of the 18 paths, two are trans-European, 9 are trans-
smallest file in the training set is 32KB while the smallesAtlantic, and 7 are trans-continental-US. The RON testhasi h
file in the test set is 2KB. This difference is the causg significantly larger number of available nodes and paths,
of over-prediction errors: the relationship between fileesi but two considerations limited the number of nodes and paths
and throughput is complicated for small files, and without ghat we could use. The first consideration was that the nodes
broader training set, the SVR mechanism is unable to provigrould have little or no other CPU or network load while our
accurate prediction. experiments were running: this is required foRBABING to

An important final observation is that prediction accuracjeasure loss accurately. The second issue was that we could
reaches a maximum at three file sizes in the training s&0t use any nodes running FreeBSD 5.x because the TCP
and there is no clear trend for four to nine file sizes in thi@roughput history caching feature in FreeBSD 5.x, coleubl
training set. A feature of our training set is that the numafer Py the variable net.inet.tcp.inflight.enable, is on by défa
transfers is always constant at one hundred, so for theesingnd interfered with our experiments. Consequently, we were
training size, there are one hundred 8 MB transfers, and f@stricted to using nodes running FreeBSD 4.7, which does
the two training sizes, there are fifty 32 KB transfers ang fifthot have the throughput history caching feature.

8 MB transfers. We believe that accuracy is maximum at threeWe use the following convention for path names: A-B means
training sizes in our experiments because there is a trifded®at A is the TCP sender and B is the receiver, the TCP
between capturing a diversity of file sizes and the numbe@gta flow direction is from A to B, and TCP ack flow is in the
of samples for a single file size. In other words, we believ&verse direction. A-B and B-A are considered two different
that we would not see maximum accuracy occurring at thr@@ths, because routing and background traffic level asymymet
file sizes and would instead see an increase in accuracy vigfween the forward and reverse directions can lead to major
increasing number of file sizes in the training set if we kéyet t differences in throughput.

number of samples of a single file size constant in the trginin The wide area measurement protocol was the following:
set and allowed the size of the training set to increase from1l) Run BADABING for 30 seconds.

100 to 200, 300, etc., as we increase the number of file size®) Transfer a 2 MB file.

in the training set. A thorough characterization of the é-axdf 3) Sleep 30 seconds.

between diversity of file sizes and number of samples of each4) Repeat the above 200 times.
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TABLE V

MINIMUM RTTS FOR THE18 RON RATHS USED FOR WIDEAREA 16
EXPERIMENTS e

1.2
1

1

0.8

0.6

Actual Throughput (Mbps)

Accuracy after x Training Samples

[ Paths (Abbreviations) [ Minimum RTT (ms) | 038
Amsterdam-London (A-L, L-A) 8 06 o4
Cornell-Amsterdam (C-A) 92 04 02
Cornell-London (C-L) 83 02
Comell-NYU (C-NY) 8 0 0 50 100 150 200 0 0 50 100 150 200
Cornell-Utah (C'U’ U'C) 71 File Transfer Timeline File Transfer Timeline / Training Size
London-Maryland (L-M) 81 . o
London-NYU (L-NY, NY-L) 72 (a) Throughput Profile (b) Prediction Accuracy
London-Utah (L-U, U-L) 145
New Mexico-Maryland (NM-M) 106 Fig. 7. London-Utah-5: An Example of a Wide Area Path with &leShifts.
New Mexico-Cornell (NM-C) 87 Time on the x-axis is represented in terms of file transfer neim
NYU-Amsterdam (NY-A) 80
NYU-London (NY-L) 62
NYU-Utah (NY-U, U-NY) 67

Next, we take a more detailed approach to assessing pre-
diction accuracy. We divide the 200 samples into sets of
In Sectiorl Y, we showed that available bandwidth measuraad 200-k for values ofk from 1 to 199. The firsk samples
ments are not required for accurate TCP throughput predicti are used for training, and the remaini2®0-k samples are
S0 we omit running Xz in the wide area. Thus, the wide areaised for testing. This allows us to understand the trade-off
prediction mechanism is th&VR-AM-Loss-Queuprotocol between training set size and prediction accuracy, which is
from Section[¥. We reduced the size of the file transfeimportant for a practical online prediction system wherésit
from 8MB in the lab experiments to 2MB in the wide arealesirable to start generating predictions as soon as pessib
experiments because the typical throughput in the wide arghis analysis also allows us to identify the points in a trace
was an order of magnitude lower compared to the typicalhere an event that has an impact on prediction accuracy,
throughput in the lab (1-2 Mbps versus 10-15 Mbps). such as a level shift, occurs, and whether retraining helps
The measurements were carried out at different times wfaintain prediction accuracy in the face of changing nekwor
the day for different paths depending upon when the nodesnditions. We present this data for SVR only; for HB, thexe i
were available,.e., when the nodes had little or no othemo division of data into training and test sets becauseingtiga
CPU and network activity in progress. Depending again astcurs after every measurement.
node availability, we ran a single set of experiments on someFigure[® presents the SVR prediction accuracykst, 5,
paths, and multiple sets on others. We can only conducteactind 10 for those experiments in Figlile 5 that had high predic-
measurements in the wide area because the infrastructio® accuracy fok=100. For all but three of the experiments in
required for passive measurements is not present. Figurel®, there is little difference between predictionwaacy
Table[¥ lists the minimum round trip times observed on thfor training set sizes of 1, 5, 10, and 100. This is because
wide area paths over all &ABING measurements taken onthere is little variation in the throughput observed durthg
each path. The shortest paths have a minimum RTT of 8mgperiments. A path with little or no variation in observed
and the longest a minimum RTT of 145 ms. In Talkle V wéhroughput over the course of an experimental run is the easy
ignore path directionse.g., we list Amsterdam-London and case for both SVR and HB throughput predictors, so these
London-Amsterdam as a single entry, because minimum REXperiments will not be discussed any further in this pafper.
is the same in both directions. three experiments in Figufd 6, Amsterdam-London, London-
Utah-1, and Utah-Cornell, the prediction accuracyKealues
of 1, 5, and 10 is significantly lower compared to that for
B. Wide Area Results k=100. The reason for this poor accuracy will be discussed in
Figure [ compares the accuracy of the SVR and Héketail in Sectior.VI-C.
throughput predictions for the 18 wide area paths. The tesul
in Figure[® are obtained by dividing the 200 measurements
gathered for each path into two consecutive sets of 100, ard
using the first 100 as the training set and the second 100 a$n this section we analyze the reasons for poor SVR
the test set. Some paths feature more than once because moédiction accuracy for 5 paths from Figufg¢ 5 (Cornell-
availability allowed us to repeat experiments on those gpathAmsterdam, London-Maryland-1, London-Utah-2, London-
We observe two major trends from Figurk 5. First, for th&)tah-5, and NYU-Amsterdam) and 3 paths from Figlite 6
majority of experiments, prediction accuracy is very highh f (Amsterdam-London, London-Utah-1, and Utah-Cornell). We
both HB and SVR: most paths have greater than 85% of pffgid that there are two dominant reasons for poor SVR predic-
dictions within 10% of actual throughput. Second, for 5 olut dion accuracy: background traffic level shifts and changes i
the 26 experiments — Cornell-Amsterdam, London-Marylan@iackground traffic on small timescales. We find that retragni
1, London-Utah-2, London-Utah-5 and NYU-Amsterdam — thean improve prediction accuracy for level shifts but not for
SVR prediction accuracy is quite low, as low as 25% fothanges in network conditions on small timescales.
London-Utah-2. The reasons for this poor accuracy will be In the analysis that follows, we use a pair of graphs
analyzed in detail in Sectidn_VTiC. per experiment to illustrate the details of each experiment

Detailed Analysis of Wide Area Results
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Fig. 5. Wide Area Results for HB and SVR predictions: the HB &VR columns present the fraction of predictions with retaterror of 10% or less.
Training and test sets consisted of 100 samples each. 2MBtafwlas transferred. Labels use node initials; see Seclifar Yomplete node names.
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1 Training Sample ==z
5 Training Samples sz
12 10 Training Samples ;
100 Training Samples m—
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Fig. 6. Effect of training set size on SVR prediction accyrat the wide area. For paths with high prediction accurac¥igure [¥, this table shows how
large a training set size was needed to achieve high accurabgls use node initials; see Sectigh V for complete nodeesa
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Fig. 8. London-Utah-5: Comparison of SVR and HB predictiamcwumacy Fig. 9. London-Maryland-1: An example of a wide area patthwuliroughput
for background traffic with level shifts. The x axis is the fitansfer timeline changes on small timescales
starting at 145. The y axis is throughput.

values, whether they are high or low, are not as meaningful.
Consider Figuref 7{n) affd 7kb) for London-Utah-5. The first 1) Level Shifts: Level shifts were responsible for poor
graph, thethroughput profile is a time series representatiorprediction accuracy in four wide area experiments: Utah-
of the actual throughput observed during the experimeng. TEornell, London-Utah, London-Utah-2, and London-Utah-5.
second graphprediction accuracyis a more detailed version We discuss London-Utah-5 in detail as a representative exam
of the bar graphs of Figufd 6, incorporating all possibleieal ple.
of k. At an x value ofk, the firstk of the 200 samples are Figured7(d) anf_7{p) are thieroughput profileandpredic-
used as the training set, and the remain2@-k samples as tion accuracygraphs for London-Utah-5. Figufe_7(a) shows
the test set. The y value is the fraction of samples in the takat a level shift from a throughput of 1.4 Mbps to 0.6 Mbps
set 0f200-kwhose predicted throughput is within 10% of theccurs after 144 file transfers, and a level shift from 0.6
actual throughput. As the value &f increases, the training Mbps back to 1.4 Mbps occurs after 176 transfers. Fifurg 7(b)
set becomes larger compared to the test set, because the s#taws that prediction accuracy decreases from 0.84 at 1 file
number of samples is fixed at 200. For valueskoflose to transfer to a global minimum of 0.40 at 144 file transfers, and
200, the test set is very small, and thus the prediction aogur then increases very rapidly to 1.00 at 145 file transfers. The
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prediction result can be explained by the fact that the leveliracy for Amsterdam-London, Cornell-Amsterdam, London-
shift is not included in the training data. Thus, the pradict Maryland-1, and NYU-Amsterdam. We consider London-
function will generate samples at the first throughput lev@laryland-1 as a representative example.
accurately, and those at the second throughput level inaccuFigures[9(d) and 9(b) present the throughput profile and
rately. Prediction accuracy decreases from 1 to 144 becapsediction accuracy of the London-Maryland-1 experiment.
there are relatively fewer samples at the first level and mofégure [9(@) shows that until about the 60th file transfer,
at the second level in the test set as the value of x increadbspughput is fairly steady around 2.7 Mbps, after which it
so there are relatively more inaccurate predictions, legdd starts to vary widely in the range between approximately
a decreasing trend in prediction accuracy. If the divisioivi 1.2 Mbps and 2.7 Mbps. Figufe_9(b) shows that prediction
training and test sets is at the level shift boundary, in ¢hise accuracy is at a maximum of 65% at one file transfer, decreases
the first 144 file transfers, the training set consists only @fi accuracy between 1 and 60 transfers, and varies between
measurement samples before the level shift and the tesf seb@% and 60% between 60 and 180 transfers.
samples after the level shift. All predictions will be inacate Unlike for level shifts, after the throughput profile chasge
(assuming the level shift changes the throughput by mone thand measurement samples of the new network conditions are
10%, our threshold) because the prediction function hasmeincluded in the training set, prediction accuracy does not
encountered the new throughput level. Hence, we obseitgprove. Recall that we measure network conditions using
minimum prediction accuracy at the level shift boundasy,, BADABING for 30 seconds, and then transfer a file. In this
144 transfers. If the division into training and test seflides experiment, after the 60th transfer, the network condgion
a level shift, some samples with the new network conditiovary so rapidly that they change between theDpBBING
and resultant new throughput are included in the training seneasurement and the file transfer. Consequently, there is no
The prediction function is now aware of the new networkonsistent mapping between the measured network consglition
conditions, and is able to make better predictions in the neamd the transfer throughput, so a correct SVR predictor aann
conditions. In our example, including onlyne sample from be constructed, leading to poor prediction accuracy.
after the level shift in the training set, the 145th sampée, i The HB predictor also performs poorly in these conditions.
sufficient to allow all throughputs at the lower levels to bés shown in Figurdls, for 100 training samples for London-
predicted accurately. That is, the SVR predictor needs tMaryland-1, HB has a prediction accuracy of 59% while SVR
minimum possible training set size (one single sample) fbas an accuracy of 55%. When network conditions vary as
the new network conditions before it can generate accuragpidly as in the above example, it is not possible to predict
predictions. throughput accurately using either SVR or HB because of the
Figures[8(d) anfl 8(p) compare the behavior of SVR ambsence of a consistent relationship in network conditjosts
HB predictors for a level shift. The training set for SVRbefore and during a file transfer.
consisted of the first 145 samplese., 144 samples at the One difference we observed in experiments with level
first throughput level and 1 sample at the second throughgshifts versus experiments with throughput changes on small
level. The test set consisted of the remaining 55 samplas. Fimescales was that level shifts occurred under lossless ne
HB, recall that there is no separation into training and tewtork conditions while throughput changes on small timesgal
sets, and retraining occurs after every measurement samplecurred under conditions of sustained loss. Thus if ondy th
Comparing Figuref 8(p) (SVR) afd g(b) (HB), we see that tlwerage queuing delay on a network path changes, we observe
SVR predicted throughput follows the actual throughputver level shift; if a network goes from a no-loss state to a lossy
closely, while the HB predicted throughput takes some tinsate, we observe throughput changes on small timescales.
to catch up with actual throughput after a level shift. If thé possible explanation is that if the network is in a lossy
SVR predictor has knowledge of the level shift, its prediati State, a particular TCP flow may or may not experience loss.
accuracy is much better than that of HB. After the second lev@ince TCP backs off aggressively after a loss, flows that
shift (176 samples) no further training of the SVR predidtor do experience loss will have significantly lower throughput
required to predict the remaining 23 correctly. The prestict compared to those that do not experience loss, leading to
throughput in FigurE 8(h) follows the actual throughpuselly large differences in throughput of flows. However, if only
at the level shift after 176 transfers even though the tnagjini average queuing delay on a path changes, every flow on the
set consists of only the first 146 samples. path (unless it is extremely short) experiences the change i
The above example shows that the SVR predictor hgseuing delay, leading to a change in throughput of all flows,
two advantages over the HB predictor. First, it can adape., a level shift, on the path.
instantaneouslyi.e., after a single training sample, to a level
shift, while the HB predictor takes longer. Second, it shows VII. DiscussioN
that unlike the HB predictor, the SVR predictor needs to be This section addresses two key issues related to running
trained only once for a given set of conditions. The resul@athPerfin operational settings.
for the other three wide area experiments that containeel leNetwork Load Introduced by PathPerf. Traffic introduced
shifts are similar to those of the London-Utah-5 experimebly active measurement tools is a concern because it can skew
(omitted due to space considerations). the network property being measured. Furthermore, network
2) Changes Over Small Timescaledletwork condition operators and engineers generally wish to minimize any anpa
changes over small timescales reduced SVR prediction aeeasurement traffic may have on customer traffic.
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For history-based TCP throughput estimation methods, theeasurement periods.€., we haven throughput samples
amount of traffic introduced depends on the measurememdn samples ofL and Q). Assume that we then colle&t
protocol. For example, two approaches may be taken. The fiestditional throughput samples, making predictions forheac
method is to periodically transfer fixed-size files; the seto sample and recording the error. We therefore haverror
is to allow a TCP connection to transfer data for a fixed timsamples between what was predicted and what was subse-
period. The latter approach was taken in the history-basgqdently measured. Given a confidence leedl, 95%, we can
evaluation of Heet al. [11]. To estimate the overhead of acalculate confidence intervals on the sample error digidhu
history-based predictor using fixed-duration transfessume We can then, with low frequency, collect additional thropgh
that (1) the TCP connection is natvnd-limited, (2) that the samples to test whether the prediction error exceeds the
fixed duration of data transfer is 50 seconds (as in [1@), interval bounds. (Note that these additional samples may be
throughput measurements are initiated every 5 minutes, agplication traffic for which predictions are used.) If soge w
(4) throughput closely matches available bandwidth. For thisay decide that retraining the SVR predictor is appropriate
example, assume that the average available bandwidth dor  danger in triggering an immediate retraining is that such
duration of the experiment is approximately 50 Mb/s. Thus, policy may be too sensitive to outliers regardless of the
over a 30 minute period, nearly 2 GB in measurement traffeonfidence interval chosen. More generally, we can consider
is produced, resulting in an average bandwidth of about 8&3thresholdm of consecutive prediction errors that exceed
Mb/s. the computed confidence interval bounds as a trigger for

In the case ofPathPerf measurement overhead in theetraining.
training period consists of file transfers and queuing/fosbe
measurements. In the testing phase, overhead considis@le
loss measurements. Assume that we have a 15 minute training
period followed by a 15 minute testing period. Assume that In this paper we address the problem of how to generate
file sizes of 32 KB, 512 KB, and 8 MB are transferred duringccurate TCP throughput predictions for arbitrary paths in
the training period, using 10 samples of each file, and th#&e Internet. Our approach uses a powerful machine learning
each file transfer is preceeded by a 30 secombA®BING tool - Support Vector Regression - which provides an efficien
measurement. With a probe probability of 0.3amB\siNG Mechanism for generating a predictor using multiple inputs
traffic for each measurement is about 1.5 MB. For testin§ye investigate measurements of path properties including
only BADABING measurements must be ongoing. Assume th@geuing delay, packet loss, and available bandwidth thabea
a 30 second BDABING measurement is initiated every thredised along with prior throughput measurements as the featur
minutes. Thus, over the 15 minute training period about 13@t for our predictor. Through an extensive series of lakeda
MB of measurement traffic is produced, resulting in an averagxperiments we find that our SVR predictor makes highly
bandwidth of about 1.2 Mb/s for the first 15 minutes. Forccurate forecasts using measurements of queuing and loss,
the testing period, a total of 7.5 MB of measurement traffignd that available bandwidth measurements do not improve
is produced, resulting in a rate of about 66 Kb/s. Overaredictions. In heavy traffic conditions, the SVR forecasts
PathPerfproduces 633 Kb/s on average over the 30 minufarly 3 times more accurate than prior HB predictors. We
measurement period, dramatically different from a staddafake a series of extensions to the SVR predictor to make it
history-based measurement approach. Even if more condaperationally viable. Further lab experiments show thaséh
vative assumptions are made on the history-based approgfiensions enable the predictor to work well for a wide range
the differences in overhead are significant. Again, thearasof file sizes, to be robust to measurements from active probe
for the dramatic savings is that once the SVR predictor hégols, and to adapt to changing path conditions. We creatla to
been trained, only lightweight measurements are requived f£alled PathPerfwhich enables us to test our SVR predictor
accurate predictions. in the Internet. In tests on a diverse set of paths on the
Detecting Problems in Estimation.An important capability RON testbed, we show th&athPerfgenerates highly accurate
for throughput estimation in live deployments is to detehew throughput predictionsPathPerfalso generates far less probe
there are significant estimation errors. Such errors cogd Baffic compared to a HB predictor configured as suggested in
indicative of a change in network routing, causing an abrupfior work.
change in delay, loss, and throughput. It could also signal a
pathological network condition, such as an ongoing dewiial- ACKNOWLEDGMENTS

service attack leading to endemic network loss along a path. ] ] o
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