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A Machine Learning Approach to TCP Throughput
Prediction

Mariyam Mirza, Joel Sommers, Paul Barford, Xiaojin Zhu

Abstract—TCP throughput prediction is an important capability
for networks where multiple paths exist between data senders and
receivers. In this paper we describe a new, lightweight method for
TCP throughput prediction. Our predictor uses Support Vector
Regression; prediction is based on both prior file transfer history,
and measurements of simple path properties. We evaluate our
predictor in a laboratory setting where ground truth can be
measured with perfect accuracy. We report the performance
of our predictor for oracular and practical measurements of
path properties over a wide range of traffic conditions and
transfer sizes. For bulk transfers in heavy traffic usingoracular
measurements, TCP throughput is predicted within 10% of
the actual value 87% of the time, representing nearly a 3-
fold improvement in accuracy over prior history-based methods.
For practical measurements of path properties, predictions can
be made within 10% of the actual value nearly 50% of the
time, approximately a 60% improvement over history-based
methods, and with much lower measurement traffic overhead.
We implement our predictor in a tool called PathPerf, test it in
the wide area, and show thatPathPerf predicts TCP throughput
accurately over diverse wide area paths.

Index Terms—TCP Throughput Prediction, Active Measure-
ments, Machine Learning, Support Vector Regression.

I. I NTRODUCTION

The availability of multiple paths between sources and
receivers enabled by content distribution, multi-homing,and
overlay or virtual networks suggests the need for the ability to
select the “best” path for a particular data transfer. A common
starting point for this problem is to define “best” in terms
of the throughput that can be achieved over a particular path
between two end hosts for a given sized TCP transfer. In this
case, the fundamental challenge is to develop a technique that
provides an accurate TCP throughput forecast for arbitraryand
possibly highly dynamic end-to-end paths.

Prior work on the problem of TCP throughput prediction
has largely fallen into two categories: those that investigate
formula-basedapproaches and those that investigatehistory-
basedapproaches. Formula-based methods, as the name sug-
gests, predict throughput using mathematical expressionsthat
relate a TCP sender’s behavior to path and end host properties
such as RTT, packet loss rate, and receive window size. In this
case, different measurement tools can be used to gather the
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input data that is then plugged into the formula to generate
a prediction. However, well-known network dynamics and
limited instrumentation access complicate the basic task of
gathering timely and accurate path information, and the ever
evolving set of TCP implementations means that a correspond-
ing set of formula-based models must be maintained.

History-based TCP throughput prediction methods are con-
ceptually straightforward. They typically use some kind of
standard time series forecasting based on throughput measure-
ments derived from prior file transfers. In recent work, Heet
al. show convincingly that history-based methods are generally
more accurate than formula-based methods. However, the
authors carefully outline the conditions under which history-
based prediction can be effective [11]. Also, history-based
approaches described to date remain relatively inaccurateand
potentially heavy weight processes focused on bulk transfer
throughput prediction.

Our goal is to develop an accurate, lightweight tool for
predicting end-to-end TCP throughput for arbitrary file sizes.
We investigate the hypothesis that the accuracy of history-
based predictors can be improved and their impact on a path
reduced by augmenting the predictor with periodic measure-
ments of simple path properties. The questions addressed in
this paper include: 1) Which path properties or combination
of path properties increase the accuracy of TCP throughput
prediction the most? and 2) What is a minimum set of file sizes
required to generate history-based throughput predictorsfor
arbitrary file sizes? Additional goals for our TCP throughput
prediction tool are: 1) to make it robust to “level shifts” (i.e.,
when path properties change significantly) which Heet al.
show to be a challenge in history-based predictors, and 2) to
include a confidence value with predictions—a metric with
little treatment in prior history-based throughput predictors.

The analytical framework for the study that we report in this
paper is based on the use of Support Vector Regression (SVR),
a powerful machine learning technique that has shown good
empirical performance in many domains. SVR has several
attractive properties that make it well suited for our study:
1) It can accept multiple inputs (i.e., multivariate features)
and will use all of these to generate the throughput prediction.
2) SVR does not commit to any particular parametric form,
unlike formula-based approaches. Instead, SVR models are
flexible based on their use of so-called non-linear kernels.
This expressive power is an important reason for the potential
for more accurate predictions than formula-based methods.
3) SVR is computationally efficient, which makes it attractive
for inclusion in a tool that can be deployed and used in the
wide area. For our application, we extend the basic SVR
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predictor with a confidence interval estimator based on an
assumption that prediction errors are normally distributed,
an assumption that we test in our laboratory experiments.
Estimation of confidence intervals is critical for on-line predic-
tion, since retraining can be triggered if measured throughput
falls outside a confidence interval computed through previous
measurements.

We begin by using laboratory-based experiments to inves-
tigate the relationship between TCP throughput and measure-
ments of path properties including available bandwidth (AB),
queuing delays (Q), and packet loss (L). The lab environment
enables us to gather highly accurate passive measurements of
throughput and all path properties, and develop and test our
SVR-based predictor over a range of realistic traffic conditions.
Our initial experiments focus on bulk transfers and compare
actual throughput of TCP flows with predictions generated
by our SVR-based tool. Our results show that throughput
predictions can be improved by as much as a factor of 3
when including path properties in the SVR-based tool versusa
history-based predictor. For example, our results show that the
SVR-based predictions are within 10% of actual 87% of the
time for bulk transfers under heavy traffic conditions (90%
average utilization on the bottleneck link). Interestingly, we
find that the path properties that provide the most improvement
to the SVR-based predictor areQ andL respectively, and that
includingAB provides almost no improvement to the predictor.

Toward our goal of developing a robust tool that can be
used in the wide area, we expand the core SVR-based tool
in three ways. First, the initial tests were based entirely on
passive traffic measurements, which are unlikely to be widely
available in the Internet. To address this, we tested our SVR-
based approach using measurements ofQ and L provided
by the BADABING tool [25]. The reduction in accuracy of
active versus passive measurements ofQ and L resulted in a
corresponding reduction in accuracy of SVR-based throughput
predictions for bulk transfers under heavy traffic conditions
on the order of about 35%—still a significant improvement
on history-base estimates. It is also important to note that
throughput prediction based on training plus lightweight active
measurements results in a dramatically lower network probe
load than prior history-based methods using long-lived TCP
transfers and heavyweight probe-based estimates of available
bandwidth such as described in [11]. We quantify this differ-
ence in Section VII. Second, we experimented with training
data in order to enable predictions over a range of file sizes
instead of only bulk transfers which is the focus of prior work.
We found that a training set of only three file sizes results in
accurate throughput predictions for a wide range of file sizes,
which highlights another strength of our SVR-based approach.
Third, He et al. showed that “level shifts” in path conditions
pose difficulties for throughput prediction [11], suggesting the
need for adaptivity. To accomplish this, we augmented the
basic SVR predictor with a confidence interval estimator as
a mechanism for triggering a retraining process. We show in
Section VI-C1 that our technique is able to adapt to level shifts
quickly and to maintain high accuracy on paths where level
shifts occur.

This combination of capabilities was sufficient for us to

develop an active probe tool for TCP throughput prediction
we call PathPerf 1 that we deployed and tested in the wide
area. We present results from 18 diverse wide area paths in the
RON testbed [3], and show thatPathPerfpredicts throughput
accurately under a broad range of conditions in real networks.

II. RELATED WORK

Since seminal work by Jacobson and Karels established the
basic mechanisms for modern TCP implementations [13], it
has been well known that many factors affect TCP through-
put. These include the TCP implementation, the underlying
network structure, and the dynamics of the traffic sharing
the links on the path between two hosts. Steps toward un-
derstanding TCP behavior have been taken in a number of
studies including [1], [2] which developed stochastic models
for TCP based on packet loss characteristics. A series of
studies develop increasingly detailed mathematical expressions
for TCP throughput based on modeling the details of the
TCP congestion control algorithm and measurements of path
properties [4], [8], [10], [17], [18]. While our predictor also
relies on measurement of path properties, the SVR-based
approach is completely distinguished from prior formula-based
models.

A large number of empirical studies of TCP file trans-
fer and throughput behavior have provided valuable insight
into TCP performance. Paxson conducted one of the most
comprehensive studies of TCP behavior [19], [20]. While
that work exposed a plethora of issues, it provided some
of the first empirical data on the characteristics of packet
delay, queuing, and loss within TCP file transfers. Barford
and Crovella’s application of critical path analysis to TCPfile
transfers provides an even more detailed perspective on how
delay, queuing, and loss relate to TCP performance [6]. In [5],
Balakrishnanet al. studied throughput from the perspective
of a large web server and showed how it varied depending
on end-host and time of day characteristics. Finally, detailed
studies of throughput variability over time and correlations
between throughput and flow size can be found in [31], [32],
respectively. These studies inform our work in terms of the
basic characteristics of throughput that must be considered
when building our predictor.

Past studies of history-based methods for TCP throughput
prediction are based on the use of standard time series fore-
casting methods. Vazhkudiaet al. compare several different
simple forecasting methods to estimate TCP throughput for
transfers of large files and find similar performance across pre-
dictors [30]. A well-known system for throughput prediction
is the Network Weather Service [28]. That system makes bulk
transfer forecasts by attempting to correlate measurements of
prior large TCP file transfers with periodic small (64KB) TCP
file transfers (referred to as “bandwidth probes”). The DualPats
system for TCP throughput prediction is described in [16].
That system makes throughput estimates based on an expo-
nentially weighted moving average of larger size bandwidth
probes (1.2MB total). Similar to our work, Luet al. found that

1PathPerf will be openly available for download at
http://wail.cs.wisc.edu/waildownload.py
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prediction errors generally followed a normal distribution. As
mentioned earlier, Heet al. extensively studied history-based
predictors using three different time series forecasts [11]. Our
SVR-based method includes information from prior transfers
for training, but otherwise only requires measurements from
lightweight probes and is generalized for all files sizes, not
just bulk transfers.

Many techniques have been developed to measure path
properties (see CAIDA’s excellent summary page for exam-
ples [9]). Prior work on path property measurement directs
our selection of lightweight probe tools to collect data forour
predictor. Recent studies have focused on measuring available
bandwidth on a path. AB is defined informally as the minimum
unused capacity on an end-to-end path, which is a conceptually
appealing property with respect to throughput prediction.A
number of studies have described techniques for measuring
AB including [14], [26], [27]. We investigate the ability of
AB measurement as well as other path properties to enhance
TCP throughput predictions.

Finally, machine learning techniques have not been widely
applied to network measurement. One notable exception is
in network intrusion detection (e.g., [12]). The only other
application of Support Vector Regression that we know of is
to the problem of using IP address structure to predict round
trip time latency [7].

III. A M ULTIVARIATE MACHINE

LEARNING TOOL

The main hypothesis of this work is that history-based TCP
throughput prediction can be improved by incorporating mea-
surements of end-to-end path properties. The task of through-
put prediction can be formulated as a regression problem,i.e.,
predicting a real-valued number based on multiple real-valued
input features. Each file transfer is represented by a feature
vectorx ∈ R

d of dimensiond. Each dimension is an observed
feature, e.g., the file size, proximal measurements of path
properties such as queuing delay, loss, available bandwidth,
etc. Givenx, we want to predict the throughputy ∈ R. This
is achieved by training a regression functionf : R

d 7→ R,
and applyingf to x. The function f is trained using training
data,i.e., historical file transfers with known features and the
corresponding measured throughput.

The analytical framework that we apply to this problem
is Support Vector Regression (SVR), a state-of-the-art machine
learning tool for multivariate regression. SVR is the regression
version of the popular Support Vector Machines [29]. It has a
solid theoretical foundation, and is favored in practice for its
good empirical performance. We briefly describe SVR below,
and refer readers to [21], [23] for details, and to [15] as an
example of an SVR software package.

To understand SVR we start from a linear regression func-
tion f (x) = β⊤x+β0. Assume we have a training set ofn file
transfers{(x1,y1), . . . ,(xn,yn)}. Training involves estimating
the d-dimensional weight vectorβ and offsetβ0 so that f (xi)
is close to the truthyi for all training examplesi = 1. . .n.
There are many ways to measure “closeness”. The traditional

measure used in SVR is theε-insensitive loss, defined as

L( f (x),y) =

{

0 if | f (x)−y| ≤ ε
| f (x)−y|− ε otherwise.

(1)

This loss function measures the absolute error between pre-
diction and truth, but with a tolerance ofε. The valueε is
application-dependent in general, and in our experiments we
set it to zero. Other loss functions (e.g., the squared loss) are
possible too, and often give similar performance. They are not
explored in this paper.

It might seem that the appropriate way to estimate the
parametersβ ,β0 is to minimize the overall loss on the training
set ∑n

i=1L( f (xi),yi). However if d is large compared to the
number of training examplesn, one can often fit the training
data perfectly. This is dangerous, because the truthy in training
data actually contain random fluctuations, andf is partly
fitting the noise. Suchf will generalize poorly,i.e.causing bad
predictions on future test data. This phenomenon is known as
overfitting. To prevent overfitting, one can reduce the degree of
freedom inf by selecting a subset of features, thus reducingd.
An implicit but more convenient alternative is to requiref to
be smooth2, defined as having a small parameter norm‖β‖2.
Combining loss and smoothness, we estimate the parameters
β ,β0 by solving the following optimization problem

min
β ,β0

C
n

∑
i=1

L( f (xi),yi)+‖β‖2
, (2)

whereC is a weight parameter to balance the two terms. The
value of C is usually selected by a procedure called cross-
validation, where the training set is randomly split into two
parts, then regression functions with differentC are trained on
one part and their performance measured on the other part,
and finally one selects theC value with the best performance.
In our experiments we usedC = 3.162 using cross-validation.
The optimization problem can be solved using a quadratic
program.

Nonetheless, a linear functionf (x) is fairly restrictive and
may not be able to describe the true functiony. A standard
mathematical trick is to augment the feature vectorx with
non-linear bases derived fromx. For example, ifx = (x1,x2)

⊤,
one can augment it withφ(x) = (x1,x2

1,x1x2,x2,x2
2). Thelinear

regressor in the augmented feature spacef (x) = β⊤φ(x)+β0

then produces anon-linear fit in the original feature space.
Note β has more dimensions than before. The more dimen-
sionsφ(x) has, the more expressivef becomes.

In the extreme (and often beneficial) caseφ(x) can even
have infinite dimensions. It seems computationally impossible
to estimate the corresponding infinite-dimensional parameter
β . However, if we convert theprimal optimization problem 2
into its dual form, one can show that the number of dual
parameters is actuallyn instead of the dimension ofφ(x). Fur-
thermore, the dual problem never uses the augmented feature
φ(x) explicitly. It only uses the inner product between pairs
of augmented featuresφ(x)⊤φ(x′) ≡ K(x,x′). The function
K is known as thekernel, and can be computed from the

2If β are the coefficients of a polynomial function, the function will tend
to be smooth (changes slowly) if‖β‖2 is small, or noisy if‖β‖2 is large.
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original feature vectorsx,x′. For instance, the Radial Basis
Function (RBF) kernelK(x,x′) = exp

(

−γ‖x−x′‖2
)

implicitly
corresponds to an infinite dimensional feature space. In our
experiments we used a RBF kernel withγ = 0.3162, again
selected by cross-validation. The dual problem can still be
efficiently solved using a quadratic program.

SVR therefore works as follows: For training, one collects
a training set{(x1,y1), . . . ,(xn,yn)}, and specifies a kernelK.
SVR solves the dual optimization problem, which equivalently
finds the potentially very high-dimensional parameterβ and
β0 in the augmented feature space defined byK. This produces
a potentially highly non-linear prediction functionf (x). The
function f (x) can then be applied to arbitrary test casesx,
and produces a prediction. In our case, test cases are the file
size for which a prediction is to be made and current path
properties based on active measurements.

IV. EXPERIMENTAL ENVIRONMENT AND METHODOLOGY

This section describes the laboratory environment and ex-
perimental procedure that we used to evaluate our throughput
predictor.

A. Experimental Environment

The laboratory testbed used in our experiments is shown
in Figure 1. It consisted of commodity end hosts connected
to a dumbbell-like topology of Cisco GSR 12000 routers.
Both measurement and background traffic was generated and
received by the end hosts. Traffic flowed from the sending
hosts on separate paths via Gigabit Ethernet to separate Cisco
GSRs (hop B in the figure) where it was forwarded on OC12
(622 Mb/s) links. This configuration was created in order
to accommodate a precision passive measurement system, as
we describe below. Traffic from the OC12 links was then
multiplexed onto a single OC3 (155 Mb/s) link (hop C in
the figure) which formed the bottleneck where congestion took
place. We used an AdTech SX-14 hardware-based propagation
delay emulator on the OC3 link to add 25 milliseconds delay
in each direction for all experiments, and configured the
bottleneck queue to hold approximately 50 milliseconds of
packets. Packets exited the OC3 link via another Cisco GSR
12000 (hop D in the figure) and passed to receiving hosts via
Gigabit Ethernet.

The measurement hosts and traffic generation hosts were
identically configured workstations running FreeBSD 5.4. The
workstations had 2 GHz Intel Pentium 4 processors with 2
GB of RAM and Intel Pro/1000 network cards. They were
also dual-homed, so that all management traffic was on a
separate network than depicted in Figure 1. We disabled
the TCP throughput history caching feature in FreeBSD 5.4,
controlled by the variable net.inet.tcp.inflight.enable,to allow
TCP throughput to be determined by current path properties
rather than throughput history.

A key aspect of our testbed was the measurement system
used to establish the true path properties for our evaluation.
Optical splitters were attached to both the ingress and egress
links at hop C and Endace DAG 3.5 and 3.8 passive monitoring
cards were used to capture traces ofall packets entering and

leaving the bottleneck node. By comparing packet headers, we
were able to identify which packets were lost at the congested
output queue during experiments, and accurately measure
available bandwidth on the congested link. Furthermore, the
fact that the measurements of packets entering and leaving hop
C were synchronized at a very fine granularity (i.e., a single
microsecond) enabled us to precisely measure queuing delays
through the congested router.

B. Experimental Protocol

We generated background traffic by running the Harpoon
IP traffic generator [24] between up to four pairs of traffic
generation hosts as illustrated in Figure 1. Harpoon produced
open-loop self-similar traffic using a heavy-tailed file size
distribution, mimicking a mix of application traffic such as
web and peer-to-peer applications common in today’s Internet.
Harpoon was configured to produce average offered loads
ranging from approximately 60% to 105% on the bottleneck
link (the OC3 between hops C and D).

Measurement traffic in the testbed consisted of file transfers,
and active measurements of queuing delay, packet loss, and
available bandwidth. For the measurement traffic hosts, we set
the TCP receive window size to 128 KB. In receive window
limited transfers, file transfer throughput was approximately
21 Mb/s. That is, if the available bandwidth on the bottleneck
link was 21 Mb/s or more, the flow was receive window (rwnd)
limited, otherwise it was congestion window (cwnd) limited.
We experimented with bothrwnd- andcwnd-limited scenarios.

For active measurements of available bandwidth and queu-
ing/loss, we used the YAZ [26] and BADABING [25] tools,
respectively. YAZ estimates end-to-end available bandwidth
using a relatively low-overhead, iterative method similarto
PATHLOAD [14]. Since the probe process is iterative, the time
taken to produce an estimate can vary from a few seconds to
tens of seconds.

BADABING reports two characteristics ofloss episodes,
namely thefrequencyof loss episodes, andmean durationof
loss episodes, using a lightweight probe process. We used a
probe probability parameterp of 0.3. Other parameters were
set according to [25]. In the rest of the paper, we refer to
both loss characteristics combined as loss orL. BADABING

requires the sender and receiver to be time-synchronized. To
accommodate our wide area experiments, the BADABING re-
ceiver was modified to reflect probes back to the sender, where
they were timestamped and logged as on the original receiver.
Thus, the sender clock was used for all probe timestamps.

We used BADABING to measure loss characteristics because
it is the most accurate loss characteristics measurement tool
currently available; if accurateloss rate measurement tools
become available in the future, loss rate may replace frequency
and duration as the loss characteristic we use for our prediction
mechanism.

The measurement collection protocol was the following:

1) Run BADABING for 30 seconds.
2) Run YAZ to obtain an estimate of the available band-

width.
3) Transfer a file.
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Fig. 1. Laboratory testbed. Cross traffic flowed across one oftwo routers at hop B, while probe traffic flowed through the other. Optical splitters connected
Endace DAG 3.5 and 3.8 passive packet capture cards to the testbed between hops B and C, and hops C and D. Measurement traffic(file transfers, loss
probes, and available bandwidth probes) flowed from left to right. Congestion in the testbed occurred at hop C.

In the remainder of the paper, we refer to the above
series of steps as a singleexperiment, and to a number of
consecutive experiments as aseries. Experiments in the wide
area omit the available bandwidth measurement. Individual
experiments in a series are separated by a 30 second pe-
riod. Series of experiments differ from each other in that
either the background traffic is different between series, or
the distribution of file sizes transferred is different, or the
experiments are conducted over different physical paths. Each
series of experiments is divided into two mutually exclusive
training and test sets for the SVR. The SVR mechanism
does not require that the sets of experiments that form the
training and test set be consecutive or contiguous in time. In
contrast, history-based prediction methods generally require
consecutive historical information since they rely on standard
timeseries-based forecasting models. In our evaluation weuse
contiguous portions for training and test sets,i.e. the beginning
part of a series becomes the training set and the rest the test
set. The number of experiments in training and test sets may
be the same or different. Notions of separate training and test
data sets are not required for history-based methods; rather,
predictions are made over the continuous notion of distant and
recent history. In our evaluation of history-based methods, we
use the final prediction of the training set as the starting point
for the test set.

From each series of experiments, we gather three different
sets of measurements. The first set,Oracular Passive Measure-
ments (OPM), are AB, Q, and L measurements during a file
transfer that we obtain from packet traces. We refer to these
measurements asoracular because they give us essentially
perfect information about network conditions. In practice, this
information would not be available when making a prediction
for an arbitrary path. We use this information to establish
the best possible accuracy of our prediction mechanism. The
second set,Active Measurements (AM), are the measurements
from our active measurement tools. Note that, unlike the
OPM, theAM provide AB, Q, and L values before the actual
transfer. The third set,Practical Passive Measurements (PPM),
are trace-based measurements of AB, Q and L taken at the
same time asAM are taken. Their purpose is to show the
best possible accuracy of our prediction mechanism with

measurements that can be obtained in practice, or to show how
much better the accuracy would be if the active measurements
had perfect accuracy. All measurements are aggregates for
conditions on the path: they are not specific to any single
TCP flow on the path.

For experiments in the wide area, we created a tool,Path-
Perf. This tool, designed to run between a pair of end hosts,
initiates TCP file transfers and path property measurements
(using our modified version of BADABING ), and produces
throughput estimates using our SVR-based method. It can be
configured to generate arbitrary file size transfers for both
training and testing and initiates retraining when level shifts
are identified as described in Section VII.

C. Evaluating Prediction Accuracy

We denote the actual throughput byR and the predicted
throughput byR̂. We use the metricrelative prediction error
E introduced in [11] to evaluate the accuracy of an individual
throughput prediction.Relative prediction erroris defined as

E =
R̂−R

min(R̂,R)

In what follows, we use the distribution of the absolute value
of E to compare different prediction methods.

V. BUILDING A ROBUST PREDICTOR

This section describes how we developed, calibrated, and
evaluated our prediction mechanism through an extensive set
of tests conducted in our lab test-bed.

A. Calibration and Evaluation in the High Traffic Scenario

The first step in developing our SVR-based throughput
predictor is to find the combination of training features which
lead to the most accurate predictions over a wide variety of
path conditions. We trained the predictor using a feature vector
for each test that contained different combination of our set
of target path measurements (AB, Q, L) and the measured
throughput. Although we refer to bothloss frequencyand loss
duration together as L or loss for expositional ease, these
measures are two different features in the feature vector. The
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trained SVR model is then used to predict throughput for a
feature vector containing the corresponding sets of network
measurements, and we compare the prediction accuracy for
the different combinations.

We also compare the accuracy of SVR to the exponentially
weighted moving average (EWMA) History-Based Predictor
(HB) described in [11],R̂i+1 = αRi +(1−α)R̂i, with an α
value of 0.3.

We do not report detailed results from tests with low
utilization on the bottleneck link,i.e., receive window bound
flows. In the low utilization scenarios there is very little
variance in throughput, so every reasonable prediction method,
such as history-based, formula-based, or SVR-based, produces
accurate predictions.

For most of the results reported, we generated an average
of 140 Mb/s of background traffic to create high utilization on
our OC3 (155 Mb/s) bottleneck link. We used one set of 100
experiments for training and another set of 100 experiments
for testing. An 8 MB file was transferred in each experiment.

Figures 2(a) to 2(h) show scatter plots comparing the actual
and predicted throughput using different prediction methods
as discussed below. A point on the diagonal represents perfect
prediction accuracy; the farther a point is from the diagonal,
the greater the prediction error.

1) Using Path Measurements from an Oracle:Figure 2(a)
shows the prediction accuracy scatter plot for the HB method.
Figures 2(b) to 2(g) show the prediction error with SVR
using Oracular Passive Measurements (OPM)for different
combinations of path measurements in the feature vector. For
example,SVR-OPM-Queuemeans that only queuing delay
measurements were used to train and test, whileSVR-OPM-
Loss-Queuemeans that both loss and queuing delay measure-
ments were used to train and test.

Table I shows relative prediction errors for HB forecasting
and for SVM-OPM-based predictions. Values in the table
indicate the fraction of predictions for a given method within
a given accuracy level. For example, the first two columns of
the first row in Table I mean that 32% of HB predictions have
relative prediction errors of 10% or smaller while 79% ofSVR-
OPM-ABpredictions have relative prediction errors of 10% or
smaller. We present scatter plots in addition to tabular data to
provide insight into how different path properties contribute
to throughput prediction in the SVR method.

From Figure 2(a), we can see that the predictions for the
HB predictor are rather diffusely scattered around the diagonal,
and that predictions in low-throughput conditions tend to have
large relative error. Figures 2(b), 2(c), and 2(d) show the
behavior of the SVR predictor using a single measure of path
properties in the feature vector—AB, L, and Q respectively.
The AB and Q graphs have a similar overall trend: predictions
are accurate (i.e., points are close to the diagonal) for high
actual throughput values, but far from the diagonal, almostin
a horizontal line, for lower values of actual throughput. The L
graph has the opposite trend: points are close to the diagonal
for lower values of actual throughput, and form a horizontal
line for higher values of actual throughput.

The explanation for these trends lies in the fact that file
transfers with low actual throughput experience loss, while

file transfers with high actual throughput do not experience
any loss. When loss occurs, the values of AB and Q for the
path are nearly constant. AB is almost zero, and Q is the
maximum possible value (which depends on the amount of
buffering available at the bottleneck link in the path). In this
case, throughput depends on the value of L. Hence, L appears
to be a good predictor when there is loss on the path, and AB
and Q, being constants in this case, have no predictive power,
resulting in horizontal lines,i.e., a single value of predicted
throughput. On the other hand, when there is no loss, L is a
constant with value zero, so L has no predictive power, while
AB and Q are able to predict throughput quite accurately.

Figure 2(e) and 2(f) show improvements in prediction
accuracy obtained by using more than one path property in the
SVR feature vector. We can see that when L is combined with
AB or Q, the horizontal lines on the graphs are replaced by
points much closer to the diagonal. Combining AB or Q with
L allows SVR to predict accurately in both lossy and lossless
conditions. Since both AB and Q help predict throughput in
lossless conditions, do we really need both AB and Q, or can
we use just one of the two and still achieve the same prediction
accuracy? To answer this question, we compared AB-Loss and
Loss-Queue predictions with each other and with AB-Loss-
Queue predictions (i.e., Figures 2(e), 2(f), and 2(g)). The
general trend in all three cases is the same: the horizontal line
of points is reduced or eliminated, suggesting that prediction
from non-constant-value measurements is occurring for both
lossy and lossless network conditions. If we compare the AB-
Loss and Loss-Queue graphs more closely, we observe two
things. First, in the lossless prediction case, the points are
closer to the diagonal in the Loss-Queue case than in the AB-
Loss case. Second, in the Loss-Queue case, the transition in
the prediction from the lossless to the lossy case is smooth,
i.e., there is no horizontal line of points, while in the AB-
Loss case there is still a horizontal line of points in the actual
throughput range of 11–14 Mb/s. This suggests that Q is a
more accurate predictor than AB in the lossless case. The
relative prediction error data of Table I supports this: SVRwith
a feature vector containing Loss-Queue information predicts
throughput within 10% of actual for 87% of transfers, while a
feature vector containing AB-Loss measurements predicts with
the same accuracy level for 78% of transfers. Finally, thereis
no difference in accuracy (either qualitatively or quantitatively)
between Loss-Queue and AB-Loss-Queue.

The above discussion suggests that AB measurements are
not required for highly accurate throughput prediction, and that
a combination of L and Q is sufficient. This observation is not
only surprising, but rather good news. Prior work has shown
that accurate measurements of AB require at least moderate
amounts of probe traffic [22], [26], and some formula-based
TCP throughput estimation schemes take as a given that AB
measurements are necessary for accurate throughput predic-
tion [11]. In contrast, measurements of L and Q can be very
lightweight probe processes [25]. We discuss measurement
overhead further in Section VII.

2) Using Practical Passive and Active Path Measurements:
So far, we have considered the prediction accuracy of SVR
based on onlyOracular Passive Measurements (OPM). This
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(b) SVR-OPM-AB
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(c) SVR-OPM-Loss
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(d) SVR-OPM-Queue
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(e) SVR-OPM-AB-Loss
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(f) SVR-OPM-Loss-Queue
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(g) SVR-OPM-AB-Loss-Queue
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(h) SVR-AM-Loss-Queue

Fig. 2. Comparison of Prediction Accuracy of HB, SVR-OPM, and SVR-AM in High Background Traffic Conditions.

gives us the baseline for the best-case accuracy with SVR,
and also provides insight into how SVR uses different path
properties for prediction. Table I shows that HB predicts
32% of transfers within 10% of actual whileSVR-OPM-
Loss-Queuepredicts 87%, an almost 3-fold improvement. In
practice, however, perfect measurements of path properties
are not available, so in what follows we assess SVR using
measurements that are more like those available in the wide
area.

Table II presents relative prediction error data for HB,
SVR-PPMandSVR-AM. Due to space limitations, we present
only Loss-Queueand AB-Loss-Queueresults for SVR. We
choose these because we expectAB-Loss-Queueto have the
highest accuracy as it has the most information about path
properties, andLoss-Queuebecause it is very lightweight and
has accuracy equal toAB-Loss-Queuefor SVR-OPM. We wish
to examine three issues: first, whether our finding thatLoss-
Queuehas the same prediction accuracy asAB-Loss-Queue
from the SVR-OPMcase holds for theSVR-PPMand SVR-
AM case; second, whetherSVR-PPMand SVR-AMhave the
same accuracy; and third, howSVR-AMaccuracy compares
with HB prediction accuracy.

All prediction accuracy results in theSVR-PPMand SVR-
AM columns in Table II are very similar.AB-Loss-Queuehas
approximately the same accuracy asLoss-Queuefor bothSVR-
PPM and SVR-AM. This is encouraging because it is consis-
tent with the observation fromSVR-OPM, i.e., that we can
achieve good prediction accuracy without having to measure
AB. SVR-AMhas accuracy similar toSVR-PPM, i.e., using
active measurement tools to estimate path properties yields
predictions almost as accurate as having ground-truth passive

TABLE I
RELATIVE ACCURACY OF HISTORY-BASED (HB) THROUGHPUT

PREDICTION AND SVR-BASED PREDICTORS USING DIFFERENT TYPES OF

ORACULAR PASSIVE PATH MEASUREMENTS(SVR-OPM) IN THE FEATURE

VECTOR. TABLE VALUES INDICATE THE FRACTION OF PREDICTIONS

WITHIN A GIVEN ACCURACY LEVEL .

Relative HB AB L Q AB-L AB-Q L-Q AB-L-Q
Error

10% 0.32 0.79 0.54 0.87 0.78 0.87 0.86 0.86
20% 0.67 0.87 0.86 0.87 0.87 0.87 0.90 0.90
30% 0.80 0.87 0.92 0.87 0.91 0.87 0.90 0.90
40% 0.87 0.87 0.94 0.87 0.92 0.87 0.93 0.93
50% 0.88 0.88 0.95 0.89 0.97 0.89 0.96 0.96
60% 0.88 0.88 0.97 0.92 0.97 0.92 0.97 0.97
70% 0.89 0.89 0.97 0.94 0.97 0.94 0.98 0.98
80% 0.92 0.91 0.98 0.95 0.98 0.95 0.99 0.99
90% 0.92 0.92 0.98 0.96 0.98 0.96 0.99 0.99

TABLE II
RELATIVE ACCURACY OF HISTORY-BASED (HB) THROUGHPUT

PREDICTION AND SVR-BASED PREDICTORS USING TRACE-BASED
PASSIVE PATH MEASUREMENTS(PPM) OR ACTIVE PATH MEASUREMENTS

(AM). TABLE VALUES INDICATE THE FRACTION OF PREDICTIONS WITHIN

A GIVEN ACCURACY LEVEL .

Relative HB PPM AM
Error AB-L-Q L-Q AB-L-Q L-Q

10% 0.32 0.49 0.53 0.49 0.51
20% 0.67 0.77 0.81 0.78 0.76
30% 0.80 0.86 0.86 0.86 0.86
40% 0.87 0.86 0.89 0.86 0.86
50% 0.88 0.88 0.89 0.86 0.87
60% 0.88 0.90 0.89 0.88 0.87
70% 0.89 0.90 0.91 0.88 0.88
80% 0.92 0.91 0.94 0.90 0.90
90% 0.92 0.92 0.95 0.92 0.92
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(b) Q-Q Plot for SVR-AM-Loss-
Queue.

Fig. 3. Normal Q-Q Plots for Prediction Errors with (a) oracular measure-
ments and (b) active measurements ofLoss-Queue.

measurements. This is important because in real wide-area
paths instrumentation is generally not available for collecting
accurate passive measurements.

Finally, we compare HB withSVR-AM. Although Fig-
ures 2(a) and 2(h) are qualitatively similar,SVR-AMhas a
tighter cluster of points around the diagonal for high actual
throughput than HB. Thus,SVR-AMappears to have higher
accuracy than HB. As Table II shows,SVR-AM-Loss-Queue
predicts throughput within 10% of actual accuracy 49% of
the time, while HB does so only 32% of the time. Hence,
for high traffic scenarios,SVR-AM-Loss-Queue, the practically
deployable lightweight version of the SVR-based prediction
mechanism, significantly outperforms HB prediction.

3) The Nature of Prediction Error:Lu et al. [16] observed
in their study that throughput prediction errors were approxi-
mately normal in distribution. As the authors noted, normality
would justify standard computations of confidence intervals.
We examined the distribution of errors in our experiments and
also found evidence suggestive of normality.

Figure 3 shows two normal quantile-quantile (Q-Q) plots
for SVR-OPM-Loss-Queue(Figure 3(a)) andSVR-AM-Loss-
Queue(Figure 3(b)). Samples that are consistent with a normal
distribution form approximately a straight line in the graph,
particularly toward the center. In Figures 3(a) and 3(b), we
see that the throughput prediction samples in each case form
approximately straight lines. These observations are consistent
with normality in the distribution of prediction errors. Error
distributions from other experiments were also consistentwith
the normal distribution, but are not shown due to space
limitations. We further discuss the issues of retraining and of
detecting estimation problems in Section VII.

B. Evaluation of Prediction Accuracy for Different File Sizes

We have so far considered only 8 MB file transfers in step
3 of the experimental protocol of Section IV-B. For a TCP
receive window of 128 KB, the majority of the lifetime of an
8 MB transfer is spent in TCP’s congestion avoidance phase.
However, our goal is an accurate predictor for a range of
file sizes, not just bulk transfers. Predicting throughput for
small files is complicated by TCP’s slow start phase in which
throughput changes rapidly with increasing file size due to the
doubling of the window every round-trip time, and because
packet loss during the transfer of a small file can have a

TABLE III
RELATIVE ACCURACY OF SVR-BASED PREDICTOR USING ORACULAR

PASSIVE MEASUREMENTS(OPM) AND TRAINING SETS CONSISTING OF1,
2, 3, 6,OR 8 DISTINCT FILE SIZES.

Relative No. of distinct file sizes in training
Error 1 2 3 6 8

10% 0.06 0.24 0.49 0.35 0.34
20% 0.16 0.40 0.57 0.48 0.51
30% 0.18 0.52 0.64 0.54 0.54
40% 0.19 0.61 0.66 0.59 0.61
50% 0.22 0.64 0.67 0.65 0.66
60% 0.24 0.67 0.68 0.66 0.67
70% 0.24 0.69 0.68 0.67 0.67
80% 0.29 0.71 0.69 0.68 0.68
90% 0.30 0.72 0.70 0.68 0.68

TABLE IV
RELATIVE ACCURACY OF SVR-BASED PREDICTOR USING ACTIVE

MEASUREMENTS(AM) AND TRAINING SETS CONSISTING OF1, 2, 3, 6,OR

8 DISTINCT FILE SIZES.

Relative No. of distinct file sizes in training
Error 1 2 3 6 8

10% 0.10 0.29 0.40 0.29 0.29
20% 0.15 0.41 0.51 0.47 0.47
30% 0.16 0.53 0.59 0.52 0.55
40% 0.19 0.58 0.64 0.57 0.61
50% 0.23 0.64 0.65 0.62 0.64
60% 0.23 0.66 0.66 0.64 0.65
70% 0.26 0.70 0.67 0.64 0.66
80% 0.28 0.70 0.68 0.64 0.67
90% 0.31 0.71 0.69 0.65 0.68

large relative impact on throughput. We hypothesize that using
different file sizes to train the SVR predictor will lead to
accurate forecasts for a broad range of file sizes - something
not treated in prior HB prediction studies.

We conducted experiments using background traffic at an
average offered load of 135 Mb/s and using a series of 9
training sets consisting of between 1 and 9 unique file sizes.
The file sizes for the training sets are between 32 KB and 8
MB. The first training set consists of a single file size of 8
MB, the second training set consists of two file sizes of 32
KB and 8 MB, and the third training set adds a file size of
512 KB. Subsequent training sets sample the range between
32 KB and 8 MB such that the fraction of a transfer lifetime
spent in slow start covers a wider range.

Test sets for our experiments consist of 100 file sizes
between 2 KB and 8 MB – a much more diverse set than
the training set. The test file sizes are drawn from a biased
random number generator in such a way that the resulting
file transfers exhibit a wide range of behavior,i.e., files that
are fully transferred during slow start, and transfers consisting
of a varying proportion of time spent in slow start versus
congestion avoidance. We use a wider range of small files in
the test set to allow us to see how our predictor performs for
unseen and difficult to predict file sizes. We do not use a wider
range for large file sizes because we expect the throughput to
be almost constant (i.e., window or congestion limited) once
slow start becomes an insignificant fraction of the transfer
time.

Tables III and IV present prediction accuracy for training
sets consisting of 1, 2, 3, 6, or 8 distinct file sizes forSVR-
OPM and SVR-AM. Graphs in Figure 4 presentSVR-AM
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(a) SVR-AMwith file size of 8 MB in training
set.
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(b) SVR-AMwith file sizes of 32 KB and 8
MB in training set.
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(c) SVR-AMwith file sizes of 32 KB, 512 KB,
and 8 MB in training set.

Fig. 4. Scatter plots for theSVR-based predictor using 1, 2, or 3 distinct file sizes in the training set. All results shown use active measurements to train the
predictor. Testing is done using a range of 100 file sizes from2 KB to 8 MB.

results for one, two, and three file sizes in the training set.
We do not include graphs for remaining training sets due to
space limitations: they are similar to those for two and three
file sizes in the training set. The first observation is that for the
single file size in training, the prediction error is very high.
This inaccuracy is expected because the predictor has been
given no information about the relationship between size and
throughput for small files. The second observation is that for
more than one file size, prediction becomes dramatically more
accurate,i.e., the predictor is able to successfully extrapolate
from a handful of sizes in training to a large number of sizes
in testing. The third observation is that relative error is low
for large file sizes (corresponding to high actual throughput)
while it is higher for small files (low actual throughput).
This is consistent with our expectation that it would be more
difficult to accurately predict throughput for small files. The
fourth observation is that for small file sizes (i.e., small actual
throughput), the error is always that of over-prediction. The
smallest file in the training set is 32KB while the smallest
file in the test set is 2KB. This difference is the cause
of over-prediction errors: the relationship between file size
and throughput is complicated for small files, and without a
broader training set, the SVR mechanism is unable to provide
accurate prediction.

An important final observation is that prediction accuracy
reaches a maximum at three file sizes in the training set,
and there is no clear trend for four to nine file sizes in the
training set. A feature of our training set is that the numberof
transfers is always constant at one hundred, so for the single
training size, there are one hundred 8 MB transfers, and for
the two training sizes, there are fifty 32 KB transfers and fifty
8 MB transfers. We believe that accuracy is maximum at three
training sizes in our experiments because there is a trade-off
between capturing a diversity of file sizes and the number
of samples for a single file size. In other words, we believe
that we would not see maximum accuracy occurring at three
file sizes and would instead see an increase in accuracy with
increasing number of file sizes in the training set if we kept the
number of samples of a single file size constant in the training
set and allowed the size of the training set to increase from
100 to 200, 300, etc., as we increase the number of file sizes
in the training set. A thorough characterization of the trade-off
between diversity of file sizes and number of samples of each

file size is future work.

VI. W IDE AREA EXPERIMENTS

To further evaluate our SVR-based TCP throughput predic-
tion method we created a prototype tool calledPathPerfthat
can generate measurements and make forecasts on wide area
paths. We usedPathPerfto conduct experiments over a set of
paths in the RON testbed [3]. This section presents the results
of our wide area experiments.

A. The RON Experimental Environment

The RON wide area experiments were conducted in January
2007 over 18 paths between 7 different node locations. Two
nodes were in Europe (in Amsterdam and London), and
the remainder were located at universities in the continental
United States (Cornell, Maryland, New Mexico, NYU, and
Utah). Of the 18 paths, two are trans-European, 9 are trans-
Atlantic, and 7 are trans-continental-US. The RON testbed has
a significantly larger number of available nodes and paths,
but two considerations limited the number of nodes and paths
that we could use. The first consideration was that the nodes
should have little or no other CPU or network load while our
experiments were running: this is required for BADABING to
measure loss accurately. The second issue was that we could
not use any nodes running FreeBSD 5.x because the TCP
throughput history caching feature in FreeBSD 5.x, controlled
by the variable net.inet.tcp.inflight.enable, is on by default,
and interfered with our experiments. Consequently, we were
restricted to using nodes running FreeBSD 4.7, which does
not have the throughput history caching feature.

We use the following convention for path names: A-B means
that A is the TCP sender and B is the receiver,i.e., the TCP
data flow direction is from A to B, and TCP ack flow is in the
reverse direction. A-B and B-A are considered two different
paths, because routing and background traffic level asymmetry
between the forward and reverse directions can lead to major
differences in throughput.

The wide area measurement protocol was the following:

1) Run BADABING for 30 seconds.
2) Transfer a 2 MB file.
3) Sleep 30 seconds.
4) Repeat the above 200 times.
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TABLE V
M INIMUM RTTS FOR THE18 RON PATHS USED FOR WIDE-AREA

EXPERIMENTS

Paths (Abbreviations) Minimum RTT (ms)

Amsterdam-London (A-L, L-A) 8
Cornell-Amsterdam (C-A) 92
Cornell-London (C-L) 83
Cornell-NYU (C-NY) 8
Cornell-Utah (C-U, U-C) 71
London-Maryland (L-M) 81
London-NYU (L-NY, NY-L) 72
London-Utah (L-U, U-L) 145
New Mexico-Maryland (NM-M) 106
New Mexico-Cornell (NM-C) 87
NYU-Amsterdam (NY-A) 80
NYU-London (NY-L) 62
NYU-Utah (NY-U, U-NY) 67

In Section V, we showed that available bandwidth measure-
ments are not required for accurate TCP throughput prediction,
so we omit running YAZ in the wide area. Thus, the wide area
prediction mechanism is theSVR-AM-Loss-Queueprotocol
from Section V. We reduced the size of the file transfers
from 8MB in the lab experiments to 2MB in the wide area
experiments because the typical throughput in the wide area
was an order of magnitude lower compared to the typical
throughput in the lab (1-2 Mbps versus 10-15 Mbps).

The measurements were carried out at different times of
the day for different paths depending upon when the nodes
were available,i.e., when the nodes had little or no other
CPU and network activity in progress. Depending again on
node availability, we ran a single set of experiments on some
paths, and multiple sets on others. We can only conduct active
measurements in the wide area because the infrastructure
required for passive measurements is not present.

Table V lists the minimum round trip times observed on the
wide area paths over all BADABING measurements taken on
each path. The shortest paths have a minimum RTT of 8ms
and the longest a minimum RTT of 145 ms. In Table V we
ignore path directions,e.g., we list Amsterdam-London and
London-Amsterdam as a single entry, because minimum RTT
is the same in both directions.

B. Wide Area Results

Figure 5 compares the accuracy of the SVR and HB
throughput predictions for the 18 wide area paths. The results
in Figure 5 are obtained by dividing the 200 measurements
gathered for each path into two consecutive sets of 100, and
using the first 100 as the training set and the second 100 as
the test set. Some paths feature more than once because node
availability allowed us to repeat experiments on those paths.

We observe two major trends from Figure 5. First, for the
majority of experiments, prediction accuracy is very high for
both HB and SVR: most paths have greater than 85% of pre-
dictions within 10% of actual throughput. Second, for 5 out of
the 26 experiments – Cornell-Amsterdam, London-Maryland-
1, London-Utah-2, London-Utah-5 and NYU-Amsterdam – the
SVR prediction accuracy is quite low, as low as 25% for
London-Utah-2. The reasons for this poor accuracy will be
analyzed in detail in Section VI-C.
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Fig. 7. London-Utah-5: An Example of a Wide Area Path with Level Shifts.
Time on the x-axis is represented in terms of file transfer number

Next, we take a more detailed approach to assessing pre-
diction accuracy. We divide the 200 samples into sets ofk
and200-k for values ofk from 1 to 199. The firstk samples
are used for training, and the remaining200-k samples are
used for testing. This allows us to understand the trade-off
between training set size and prediction accuracy, which is
important for a practical online prediction system where itis
desirable to start generating predictions as soon as possible.
This analysis also allows us to identify the points in a trace
where an event that has an impact on prediction accuracy,
such as a level shift, occurs, and whether retraining helps
maintain prediction accuracy in the face of changing network
conditions. We present this data for SVR only; for HB, there is
no division of data into training and test sets because retraining
occurs after every measurement.

Figure 6 presents the SVR prediction accuracy fork=1, 5,
and 10 for those experiments in Figure 5 that had high predic-
tion accuracy fork=100. For all but three of the experiments in
Figure 6, there is little difference between prediction accuracy
for training set sizes of 1, 5, 10, and 100. This is because
there is little variation in the throughput observed duringthe
experiments. A path with little or no variation in observed
throughput over the course of an experimental run is the easy
case for both SVR and HB throughput predictors, so these
experiments will not be discussed any further in this paper.For
three experiments in Figure 6, Amsterdam-London, London-
Utah-1, and Utah-Cornell, the prediction accuracy fork values
of 1, 5, and 10 is significantly lower compared to that for
k=100. The reason for this poor accuracy will be discussed in
detail in Section VI-C.

C. Detailed Analysis of Wide Area Results

In this section we analyze the reasons for poor SVR
prediction accuracy for 5 paths from Figure 5 (Cornell-
Amsterdam, London-Maryland-1, London-Utah-2, London-
Utah-5, and NYU-Amsterdam) and 3 paths from Figure 6
(Amsterdam-London, London-Utah-1, and Utah-Cornell). We
find that there are two dominant reasons for poor SVR predic-
tion accuracy: background traffic level shifts and changes in
background traffic on small timescales. We find that retraining
can improve prediction accuracy for level shifts but not for
changes in network conditions on small timescales.

In the analysis that follows, we use a pair of graphs
per experiment to illustrate the details of each experiment.
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Fig. 8. London-Utah-5: Comparison of SVR and HB prediction accuracy
for background traffic with level shifts. The x axis is the filetransfer timeline
starting at 145. The y axis is throughput.

Consider Figures 7(a) and 7(b) for London-Utah-5. The first
graph, thethroughput profile, is a time series representation
of the actual throughput observed during the experiment. The
second graph,prediction accuracy, is a more detailed version
of the bar graphs of Figure 6, incorporating all possible values
of k. At an x value ofk, the first k of the 200 samples are
used as the training set, and the remaining200-k samples as
the test set. The y value is the fraction of samples in the test
set of200-kwhose predicted throughput is within 10% of the
actual throughput. As the value ofk increases, the training
set becomes larger compared to the test set, because the total
number of samples is fixed at 200. For values ofk close to
200, the test set is very small, and thus the prediction accuracy
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Fig. 9. London-Maryland-1: An example of a wide area path with throughput
changes on small timescales

values, whether they are high or low, are not as meaningful.
1) Level Shifts: Level shifts were responsible for poor

prediction accuracy in four wide area experiments: Utah-
Cornell, London-Utah, London-Utah-2, and London-Utah-5.
We discuss London-Utah-5 in detail as a representative exam-
ple.

Figures 7(a) and 7(b) are thethroughput profileandpredic-
tion accuracygraphs for London-Utah-5. Figure 7(a) shows
that a level shift from a throughput of 1.4 Mbps to 0.6 Mbps
occurs after 144 file transfers, and a level shift from 0.6
Mbps back to 1.4 Mbps occurs after 176 transfers. Figure 7(b)
shows that prediction accuracy decreases from 0.84 at 1 file
transfer to a global minimum of 0.40 at 144 file transfers, and
then increases very rapidly to 1.00 at 145 file transfers. The
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prediction result can be explained by the fact that the level
shift is not included in the training data. Thus, the prediction
function will generate samples at the first throughput level
accurately, and those at the second throughput level inaccu-
rately. Prediction accuracy decreases from 1 to 144 because
there are relatively fewer samples at the first level and more
at the second level in the test set as the value of x increases,
so there are relatively more inaccurate predictions, leading to
a decreasing trend in prediction accuracy. If the division into
training and test sets is at the level shift boundary, in thiscase
the first 144 file transfers, the training set consists only of
measurement samples before the level shift and the test set of
samples after the level shift. All predictions will be inaccurate
(assuming the level shift changes the throughput by more than
10%, our threshold) because the prediction function has never
encountered the new throughput level. Hence, we observe
minimum prediction accuracy at the level shift boundary,i.e.,
144 transfers. If the division into training and test set includes
a level shift, some samples with the new network conditions
and resultant new throughput are included in the training set.
The prediction function is now aware of the new network
conditions, and is able to make better predictions in the new
conditions. In our example, including onlyone sample from
after the level shift in the training set, the 145th sample, is
sufficient to allow all throughputs at the lower levels to be
predicted accurately. That is, the SVR predictor needs the
minimum possible training set size (one single sample) for
the new network conditions before it can generate accurate
predictions.

Figures 8(a) and 8(b) compare the behavior of SVR and
HB predictors for a level shift. The training set for SVR
consisted of the first 145 samples,i.e., 144 samples at the
first throughput level and 1 sample at the second throughput
level. The test set consisted of the remaining 55 samples. For
HB, recall that there is no separation into training and test
sets, and retraining occurs after every measurement sample.
Comparing Figures 8(a) (SVR) and 8(b) (HB), we see that the
SVR predicted throughput follows the actual throughput very
closely, while the HB predicted throughput takes some time
to catch up with actual throughput after a level shift. If the
SVR predictor has knowledge of the level shift, its prediction
accuracy is much better than that of HB. After the second level
shift (176 samples) no further training of the SVR predictoris
required to predict the remaining 23 correctly. The predicted
throughput in Figure 8(a) follows the actual throughput closely
at the level shift after 176 transfers even though the training
set consists of only the first 146 samples.

The above example shows that the SVR predictor has
two advantages over the HB predictor. First, it can adapt
instantaneously,i.e., after a single training sample, to a level
shift, while the HB predictor takes longer. Second, it shows
that unlike the HB predictor, the SVR predictor needs to be
trained only once for a given set of conditions. The results
for the other three wide area experiments that contained level
shifts are similar to those of the London-Utah-5 experiment
(omitted due to space considerations).

2) Changes Over Small Timescales:Network condition
changes over small timescales reduced SVR prediction ac-

curacy for Amsterdam-London, Cornell-Amsterdam, London-
Maryland-1, and NYU-Amsterdam. We consider London-
Maryland-1 as a representative example.

Figures 9(a) and 9(b) present the throughput profile and
prediction accuracy of the London-Maryland-1 experiment.
Figure 9(a) shows that until about the 60th file transfer,
throughput is fairly steady around 2.7 Mbps, after which it
starts to vary widely in the range between approximately
1.2 Mbps and 2.7 Mbps. Figure 9(b) shows that prediction
accuracy is at a maximum of 65% at one file transfer, decreases
in accuracy between 1 and 60 transfers, and varies between
50% and 60% between 60 and 180 transfers.

Unlike for level shifts, after the throughput profile changes
and measurement samples of the new network conditions are
included in the training set, prediction accuracy does not
improve. Recall that we measure network conditions using
BADABING for 30 seconds, and then transfer a file. In this
experiment, after the 60th transfer, the network conditions
vary so rapidly that they change between the BADABING

measurement and the file transfer. Consequently, there is no
consistent mapping between the measured network conditions
and the transfer throughput, so a correct SVR predictor cannot
be constructed, leading to poor prediction accuracy.

The HB predictor also performs poorly in these conditions.
As shown in Figure 5, for 100 training samples for London-
Maryland-1, HB has a prediction accuracy of 59% while SVR
has an accuracy of 55%. When network conditions vary as
rapidly as in the above example, it is not possible to predict
throughput accurately using either SVR or HB because of the
absence of a consistent relationship in network conditionsjust
before and during a file transfer.

One difference we observed in experiments with level
shifts versus experiments with throughput changes on small
timescales was that level shifts occurred under lossless net-
work conditions while throughput changes on small timescales
occurred under conditions of sustained loss. Thus if only the
average queuing delay on a network path changes, we observe
a level shift; if a network goes from a no-loss state to a lossy
state, we observe throughput changes on small timescales.
A possible explanation is that if the network is in a lossy
state, a particular TCP flow may or may not experience loss.
Since TCP backs off aggressively after a loss, flows that
do experience loss will have significantly lower throughput
compared to those that do not experience loss, leading to
large differences in throughput of flows. However, if only
average queuing delay on a path changes, every flow on the
path (unless it is extremely short) experiences the change in
queuing delay, leading to a change in throughput of all flows,
i.e., a level shift, on the path.

VII. D ISCUSSION

This section addresses two key issues related to running
PathPerfin operational settings.
Network Load Introduced by PathPerf. Traffic introduced
by active measurement tools is a concern because it can skew
the network property being measured. Furthermore, network
operators and engineers generally wish to minimize any impact
measurement traffic may have on customer traffic.
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For history-based TCP throughput estimation methods, the
amount of traffic introduced depends on the measurement
protocol. For example, two approaches may be taken. The first
method is to periodically transfer fixed-size files; the second
is to allow a TCP connection to transfer data for a fixed time
period. The latter approach was taken in the history-based
evaluation of Heet al. [11]. To estimate the overhead of a
history-based predictor using fixed-duration transfers, assume
that (1) the TCP connection is notrwnd-limited, (2) that the
fixed duration of data transfer is 50 seconds (as in [11]),(3)
throughput measurements are initiated every 5 minutes, and
(4) throughput closely matches available bandwidth. For this
example, assume that the average available bandwidth for the
duration of the experiment is approximately 50 Mb/s. Thus,
over a 30 minute period, nearly 2 GB in measurement traffic
is produced, resulting in an average bandwidth of about 8.3
Mb/s.

In the case ofPathPerf, measurement overhead in the
training period consists of file transfers and queuing/lossprobe
measurements. In the testing phase, overhead consists solely of
loss measurements. Assume that we have a 15 minute training
period followed by a 15 minute testing period. Assume that
file sizes of 32 KB, 512 KB, and 8 MB are transferred during
the training period, using 10 samples of each file, and that
each file transfer is preceeded by a 30 second BADABING

measurement. With a probe probability of 0.3, BADABING

traffic for each measurement is about 1.5 MB. For testing,
only BADABING measurements must be ongoing. Assume that
a 30 second BADABING measurement is initiated every three
minutes. Thus, over the 15 minute training period about 130
MB of measurement traffic is produced, resulting in an average
bandwidth of about 1.2 Mb/s for the first 15 minutes. For
the testing period, a total of 7.5 MB of measurement traffic
is produced, resulting in a rate of about 66 Kb/s. Overall,
PathPerfproduces 633 Kb/s on average over the 30 minute
measurement period, dramatically different from a standard
history-based measurement approach. Even if more conser-
vative assumptions are made on the history-based approach,
the differences in overhead are significant. Again, the reason
for the dramatic savings is that once the SVR predictor has
been trained, only lightweight measurements are required for
accurate predictions.
Detecting Problems in Estimation.An important capability
for throughput estimation in live deployments is to detect when
there are significant estimation errors. Such errors could be
indicative of a change in network routing, causing an abrupt
change in delay, loss, and throughput. It could also signal a
pathological network condition, such as an ongoing denial-of-
service attack leading to endemic network loss along a path.
On the other hand, it may simply be a measurement outlier
with no network-based cause.

As discussed in Section V-A3, normality allows us to use
standard statistical machinery to compute confidence intervals
(i.e., using measured variance of prediction error). We show
that prediction errors are consistent with a normal distribution
and further propose using confidence intervals as a mechanism
for triggering retraining of the SVR in the following way.
Assume that we have trained the SVR predictor overn

measurement periods (i.e., we have n throughput samples
and n samples ofL and Q). Assume that we then collectk
additional throughput samples, making predictions for each
sample and recording the error. We therefore havek error
samples between what was predicted and what was subse-
quently measured. Given a confidence level,e.g., 95%, we can
calculate confidence intervals on the sample error distribution.
We can then, with low frequency, collect additional throughput
samples to test whether the prediction error exceeds the
interval bounds. (Note that these additional samples may be
application traffic for which predictions are used.) If so, we
may decide that retraining the SVR predictor is appropriate.
A danger in triggering an immediate retraining is that such
a policy may be too sensitive to outliers regardless of the
confidence interval chosen. More generally, we can consider
a thresholdm of consecutive prediction errors that exceed
the computed confidence interval bounds as a trigger for
retraining.

VIII. SUMMARY

In this paper we address the problem of how to generate
accurate TCP throughput predictions for arbitrary paths in
the Internet. Our approach uses a powerful machine learning
tool - Support Vector Regression - which provides an efficient
mechanism for generating a predictor using multiple inputs.
We investigate measurements of path properties including
queuing delay, packet loss, and available bandwidth that can be
used along with prior throughput measurements as the feature
set for our predictor. Through an extensive series of lab-based
experiments we find that our SVR predictor makes highly
accurate forecasts using measurements of queuing and loss,
and that available bandwidth measurements do not improve
predictions. In heavy traffic conditions, the SVR forecastsare
nearly 3 times more accurate than prior HB predictors. We
make a series of extensions to the SVR predictor to make it
operationally viable. Further lab experiments show that these
extensions enable the predictor to work well for a wide range
of file sizes, to be robust to measurements from active probe
tools, and to adapt to changing path conditions. We creat a tool
called PathPerfwhich enables us to test our SVR predictor
in the Internet. In tests on a diverse set of paths on the
RON testbed, we show thatPathPerfgenerates highly accurate
throughput predictions.PathPerfalso generates far less probe
traffic compared to a HB predictor configured as suggested in
prior work.
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