
Accurate and Efficient SLA Compliance Monitoring

Joel Sommers

Paul Barford

Nick Duffield

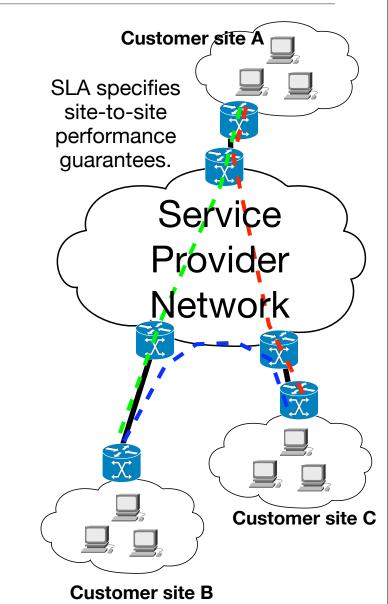
Amos Ron

University ofUniversity ofAT&T Labs-Wisconsin-MadisonWisconsin-MadisonResearch/ Colgate University

University of Wisconsin-Madison

> ACM SIGCOMM Kyoto, Japan 29 August 2007

Motivation


- •Service level agreements (SLAs) specify performance guarantees made by Internet service providers.
 - Example metrics: packet loss, delay, delay variation.
- •Accurate and robust SLA compliance monitoring is important for service providers and their customers.
 - Lightweight, effective monitoring is a key challenge.
 - Measurement on a single path.
 - Network-wide monitoring.

• Non-compliance can have serious consequences!

Service Level Agreements

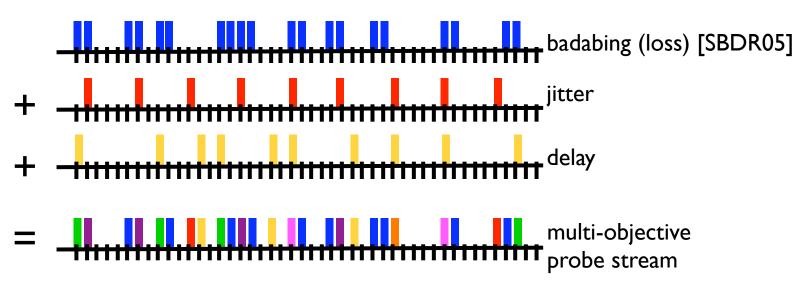
- Performance guarantees made by providers to customers.
 - *E.g.*, customer buys VPN service, wants guarantee of good service.
 - Metrics: packet loss, delay, delay variation, network availability.
 - Specific to origin-destination sites (*e.g.*, delay between A and C versus B and C).
 - Different statistics used, *e.g.*, mean, 95th percentile, maximum.
 - Metrics typically averaged over long time periods.

SLA Monitoring Challenges

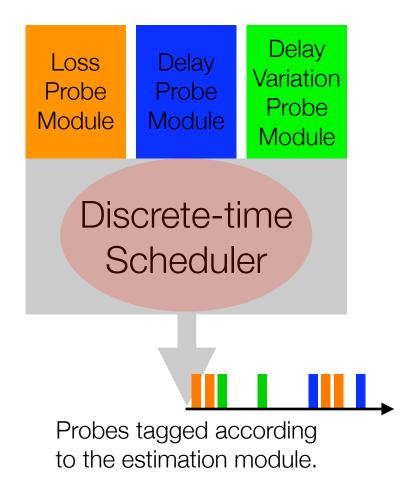
- •Overhead of simultaneous active measurement of multiple metrics is problematic.
- •In-network characteristics are difficult to accurately measure with packet probes.
- •Coordination and overhead of network-wide measurements.
- •Data management.
 - •Collection, processing, storing and archiving, coping with measurement errors, filtering outliers, ...

Approach

- •Multi-objective probing: simultaneous measurement of multiple performance objectives.
 - Reduce overhead, simplify the measurement process.
- •New and more accurate/robust active methodologies for measuring delay, loss, and delay variation
 - A new methodology for estimating mean end-to-end delay.
 - Based on Simpson's method for numerical integration.
 - A new methodology for estimating quantiles of the delay distribution.
 - No assumptions made about nature of the underlying distribution.


Approach (2)

- A new methodology for inferring an upper bound on the distribution of delay for an *unmeasured* path, given measurements for other, related paths in the network.
 - Extends algebraic approaches of prior work to *distributions*.
- A new heuristic for measurement of packet loss rate based on the badabing probe process [SBDR05].
 - Badabing originally designed to measure aspects of congestion episodes, not loss rate.
- A new methodology for more robust measurement of delay variation (jitter) on an end-to-end path.
 - A qualitative assessment of congestion, analogous to RTP.


Multi-objective probing

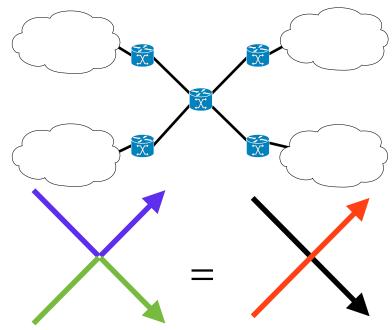
- •Assume estimation algorithms operate in discrete time.
 - Probes may be scheduled to be sent at same time slot.
 - Tag probes according to the estimator module to which they apply.

Implementation

- Discrete-time scheduler core.
 - Modular probe algorithms register with scheduler.
 - Module contains all logic to implement specific measurement algorithm.
 - Modules receive callbacks from scheduler, send probes through scheduler.

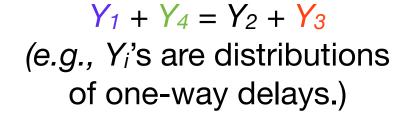
Methodology: Mean Delay

- •Model delay as a continuous function *f(t)*.
- •Simpson's method for numerical integration is a natural approach for estimating the mean of *f(t)*.
 - •*a, b* are the endpoints, and *c* is the midpoint of interval $I_{j.}$ $\frac{1}{6}(f(a_j) + f(b_j) + 4f(c_j)) + e_j$
- •At time slot *i*, choose value *k* from geometric distribution with parameter *p*.
 - •Send probes at time slot *i*, i+(k+1), i+2(k+1).
 - Apply Simpson's method to measured probe delays.


Methodology: Delay Quantiles

- •Estimate quantiles using delay samples from probes.
- •Let { x_i : 1,...,n} be n samples drawn from distribution F.
 - Let Q_p denote the p^{th} quantile, the solution to $F(Q_p) = p$.
- • $x_k \le x$ is the event that at least k samples are less than or equal to x; $\Pr[x_k \le Q_p] = G(n, p, k)$.
- •Want: level $X^+(n,p,\epsilon)$ such that Q_p is guaranteed to exceed it with some small probability ϵ .
 - Use $K^+(n,p,\epsilon)$, the 1- ϵ^{th} quantile of the binomial $B_{n,p}$ distribution.
 - Similar formulation for the lower bound $K^{-}(n,p,\epsilon)$.
 - Bounds can be calculated exactly using binomial distribution.

Methodology: Distribution Inference


- Consider scalar additive metrics (*e.g.*, delay, log transmission probability)
- Given a subset of performance measures across intersecting paths, is it possible to infer the whole set of measures?
 - Chen *et al*. (SIGCOMM 2004) and Chua *et al*. (INFOCOM 2005) examined problem for *scalar* measures.
- What about inferring a distribution of performance measures from a subset?

 $y_1 + y_4 = y_2 + y_3$ (e.g., y_i 's are measured mean delays.)

Methodology: Distribution Inference

•R is the set of routes forming routing matrix A.

- •There is a minimal set of paths $S \subsetneq R$ s.t. every row of A can be expressed as a linear combination of S.
 - Partition S in S- and S+ based on sign of coefficient in the linear combination: $Y_1 = Y_2 + Y_3 Y_4$; $S_1^+ = \{2,3\}$; $S_1^- = \{4\}$
 - Can formulate the convolution problem in terms of these partitions.
 - The distributions are discretized prior to convolution.
 - Our results provide a lower bound on the quantiles (upper bound on CDF).

Methodology: Loss Rate

- •Start with badabing loss probe stream for measuring *frequency* and *duration* characteristics of loss episodes.
 - Probe pairs, sent according to a geometric distribution.
 - Each probe consists of three packets, sent back-to-back.
 - Heuristic: loss rate measured by badabing during a loss episode is related to what a typical TCP flow might measure.

$$\hat{L} = \hat{F}\hat{l}$$

Methodology: Delay Variation

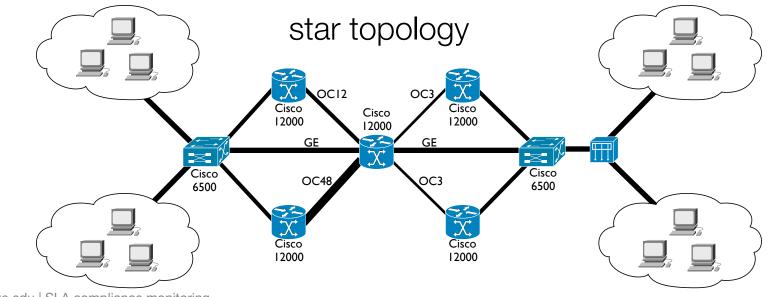
- •Consider a stream of probes of length *k*.
 - *s*_{*i*,*j*} denotes difference in send time between probes *i*,*j*
 - •*r_{i,j}* denotes difference in receive time between probes *i,j*
- •Construct a matrix *M* where element *i*,*j* contains the ratio *s*_{*i*,*j*}/*r*_{*i*,*j*}:
 - • $s_{i,j}/r_{i,j} = 1$ if spacing does not change.
 - • $s_{i,j}/r_{i,j}$ > 1 if spacing increases.
 - • $s_{i,j}/r_{i,j}$ < 1 if spacing decreases.
 - • $s_{i,j}/r_{i,j} = 0$ if either probe is lost.

Methodology: Delay Variation

•Compute eigenvalues of matrix *M*.

- Results in vector e of eigenvalues, sorted large to small.
- If all ratios are 1, largest eigenvalue is k (stream length).
 - Denote this "expected" vector of eigenvalues as e'.
- Subtract e' from e, taking the L_1 norm of the resulting vector.

$$\sum_{i=1}^{n} |e_i - e'_i|.$$


•Result is called DV matrix metric.

• A qualitative assessment of the amount of distortion from what we expect.

Experiments

- •Created tool called SLAm (SLA monitor).
- •Evaluated in controlled laboratory environment.
 - Two topologies: dumbbell and star.
- •Compare SLAm with RFC standard probe streams at same bitrate.

Results: Bandwidth Savings

- •Three probe algorithms operating simultaneously.
 - •5 millisecond discrete time interval.
 - Loss probe: $p_{loss} = 0.3$, 600 byte packets.
 - Delay probe: $p_{delay} = 0.048$, 100 byte packets.
 - Delay variation periodic probe: 30 millisecond interval, 48 byte packets.
- •Savings is parameter dependent, and can be big.

Loss	Delay	Delay Variation	Sum	SLAm	Savings
489 Kb/s	20 Kb/s	60 Kb/s	569 Kb/s	470 Kb/s	99 Kb/s (17%)

Results: Delay

- •Results for SLAm are closer to true value than standard Poisson-based stream (RFC 2679).
 - Fast convergence to true mean delay (in paper).

Results for self-similar background traffic generated using Harpoon.	mean delay	SLAm		RFC 2679	
	comparison	true	estimate	true	estimate
	dumbbell (60%)	0.006	0.006	0.007	0.009
	dumbbell (75%)	0.014	0.014	0.006	0.013
	star: route 1	0.007	0.006	0.007	0.005
	star: route 2	0.009	0.008	0.009	0.006
	star: route 3	0.005	0.005	0.005	0.004
	star: route 4	0.007	0.006	0.007	0.004

Results: Delay Quantiles

- •Calculated quantiles with 90% confidence interval.
- Intervals generally include true quantile, with few exceptions.
 - For all traffic scenarios used, in both dumbbell and star topologies. 0.5 0.1 0.8 ω o. Results for CBR in star 0.6 0.6 topology (left) and longcđf lived TCP in dumbbell 0.4 0.4 topology (right). 0.2 0.2 true delay true delay

SLAm estimate, with 90% c.i.

0.08

0.10

0.0

0.030

0.035

0.0

0.00

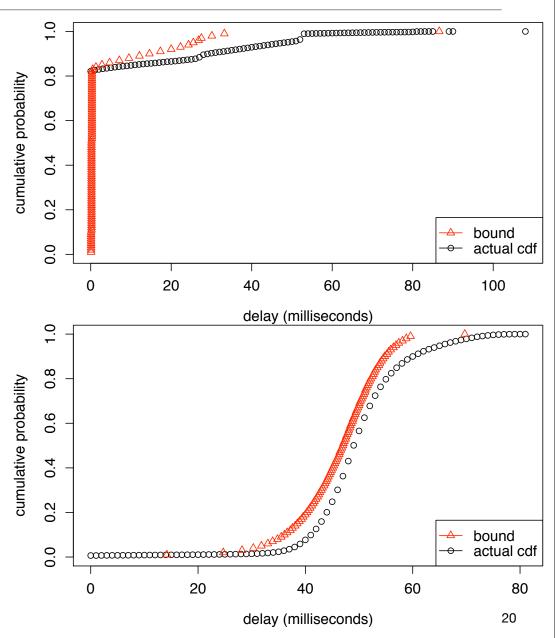
0.02

0.04

0.06

0.040

SLAm estimate, with 90% c.i.


0.045

0.05(

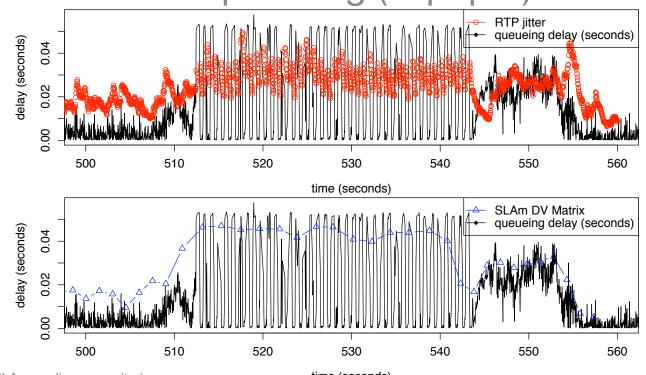
Results: Delay Distribution Inference

- Inferred distributions are close to the true ones.
 - Discretization of 100 microseconds for convolution.
- Results shown for UDP CBR traffic scenario (top) and self-similar traffic scenario (bottom).

Results: Loss Rate

•Loss rate estimates are much more accurate than standard Poisson-based stream.

• Fast convergence to true loss rate (in paper).


Results for self-similar background traffic generated using Harpoon.	loss rate	SLAm		RFC 2680	
	comparison	true	estimate	true	estimate
	dumbbell (60%)	8000.0	0.0007	0.0017	0
	dumbbell (75%)	0.0049	0.0050	0.0055	0
	star: route 1	0.0170	0.0205	0.0289	0.0058
	star: route 2	8000.0	0.0006	0.0069	0.0000
	star route 3	0.0192	0.0178	0.0219	0.0036
	star: route 4	0.0005	0.0006	0.0002	0.0000

Results: Delay Variation

•SLAm DV matrix metric is more robust than RTP.

- More accurately tracks congested and turbulent conditions.
- •Also robust in two-hop setting (in paper).

Summary

- •A set of new methodologies for accurate, lightweight SLA compliance monitoring.
 - Multi-objective probing: reduces overhead.
 - Delay: accurate estimates of mean and quantiles; inferred distributions are close to true distributions.
 - Loss rate: accurate heuristic based on badabing probes.
 - Delay variation: robust qualitative estimate of congestion.
- •Methodologies implemented in a tool called SLAm.
 - Laboratory tests with one- and two-hop topologies.
 - Source code will be released soon.

The end

•Ongoing and future work:

- Probe stream coordination in the network-wide setting based on knowledge of topology.
- How to optimize for accuracy given a daily (or hourly, etc.) probe budget?
- SLA compliance monitoring does not require perfect accuracy; what appropriate tradeoffs be made between "good enough" accuracy and overhead?