
Efficient and Realistic Generation of IP Addresses

Joel Sommers
Colgate University

jsommers@colgate.edu

John Raffensperger
Colgate University

jraffensperger@students.colgate.edu

ABSTRACT

Network simulation and emulation environments play a crucial role
in evaluating proposed protocols, applications, and networked sys-
tems. In such settings, the ability to scalably and efficiently gener-
ate traffic that has characteristics similar to those measured in the
live Internet is of great importance. A key aspect of generating real-
istic traffic is to assign source and destination IP addresses to traffic
flows such that the statistical structure of the addresses is similar to
what would be seen in a live Internet setting.

In this paper, we propose and evaluate an algorithm and data
structure for efficient and realistic generation of IP addresses. We
describe our new method and compare it with existing and prior
work, while also showing that our technique is far more efficient
— both in terms of memory consumed and computation time re-
quired. We also show that the statistical structure of the generated
addresses is similar to what would be measured in the live Internet.
Our results show that it is possible to efficiently generate addresses
over the entire IPv4 address space, and that it is feasible to generate
addresses from a /64 IPv6 subnet.

Categories and Subject Descriptors

C.2.5 [Local and Wide-Area Networks]: Internet (e.g., TCP/IP);
C.4 [Performance of Systems]: Modeling Techniques; I.6.7 [Simulation

Support Systems]

General Terms

Algorithms, Design, Experimentation

Keywords

Network traffic generation, IP addresses, Tries, Network simula-
tion, Network emulation

1. INTRODUCTION

The Internet has seen massive expansion over the past decades.
Because of its decentralized and dynamic nature, gaining an un-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2011 March 21–25, Barcelona, Spain.
Copyright 2011 ICST, ISBN .

derstanding of the Internet’s behavior and properties has posed se-
rious challenges to the research community. As a result, network
simulation and emulation environments [1–3, 9, 11, 13] have been
relied upon for yielding insights into different aspects of the Inter-
net. Simulation and emulation settings are of critical importance
because they are controllable, experiments can be made repeatable,
and virtually any characteristic of interest can be measured.

A key requirement of any simulation or emulation environment
is that it be realistic. Specifically how that realism is embodied in
a given testbed or simulation experiment generally depends on the
research question at hand, but a common need is to create network
traffic conditions that are representative of what would be observed
in the live Internet. Tools for generating Internet-like traffic can
generally be classified as either model-based [12, 17] or replay-

based [8, 15]. In model-based systems, a structural or behavioral
model forms the basis of traffic generation, and the model is often
parameterized with measurements that have been collected from a
live environment. In contrast, in a replay-based system a packet
trace collected in a live environment is re-emitted (perhaps with
some minimal modification of source and destination IP addresses)
in the test environment. In either case, the goal is to create traffic
conditions that are in some way comparable to those that would be
experienced in the wild.

An important aspect of realism with respect to traffic genera-
tion tools is for the source and destination addresses observed in
flows to reflect the distributional characteristics of flows observed
in the live Internet. For example, one might want the series of IPv4
destination addresses seen at a given router in a simulator to be
similar in distribution to those that might be observed in the Inter-
net. Realistic generation of addresses is important for assessing IP
forwarding (longest prefix match) performance, for creating a rep-
resentative mix of origin-destination flows in a simulated or emu-
lated network, and in security applications such as anomaly detec-
tion in which source and destination addresses of flows are critical
to the algorithm’s performance. Two key challenges for generat-
ing realistic addresses are that (1) a new address must be generated
quickly, since, in the context of a simulation or emulation environ-
ment, traffic generation should not be slowed down due to selection
of a source or destination address, and (2) the generation technique
must be frugal in its use of memory, since there may be multiple,
separate address spaces that are used by different traffic generation
instances in the simulator.

One possible approach to generating IP addresses might be to
simply choose an address at random from a network prefix. We do
not consider this approach further in this paper, since it would result
in a series of addresses that do not reflect the complex multifractal
characteristics observed in live Internet traces [10].

Two other basic approaches have been used in prior work to ad-



dress the problem of generating representative network addresses
in a simulation or emulation setting. The first is exemplified by
the Harpoon traffic generator [12], which can be configured with
a list of IP prefixes for source and/or destination addresses. The
tool selects a prefix at random from the configured set, then se-
lects at random a given address from the prefix. To generate ad-
dresses that conform to a given distribution (i.e., to ensure realism),
it is incumbent on the experimenter to construct the prefix list such
that random selection of any address in the list will yield the de-
sired characteristics. The Swing traffic generator takes a similar
approach [17].

Another approach has been to create a complete structure that
models the address space from which addresses are to be generated.
Building on the earlier work of Kohler et al. [10], Barford et al. [5]
developed such an approach using a multiplicative, multiscale inno-

vations model. Their approach considers a density function defined
on the interval [0,1], and directly maps this to a given IP address
prefix. A unit mass is assigned to the entire interval, then the prefix
is recursively subdivided and the mass is correspondingly reallo-
cated in the resulting subintervals. How the mass is subdivided is
based on a parametric distribution function that is fitted to data col-
lected in a live setting. Once the interval is subdivided and mass
is reallocated to the granularity desired (e.g., dividing a prefix into
a series of IP addresses that make up the prefix), addresses can be
selected at random, weighted by the mass that has been allocated.

Unfortunately, although the first (Harpoon-like) approach is com-
putationally fast, it is clearly inefficient in space (the list of prefixes
may potentially be quite long), and configuration can be a serious
burden on the experimenter. The second approach (i.e., Barford et

al.) is also problematic, since the entire structure from which to
generate addresses must be pregenerated. Thus, it is inefficient in
computational time, and if the address space is reasonably large, it
is also inefficient in memory usage.

The contribution of this paper is an algorithm for generating a
realistic distribution of IP addresses that is efficient in both mem-
ory and computation time required. Building on the work of [5]
to generate addresses that exhibit the multifractal characteristics
observed in live Internet traces, we design and evaluate a new trie-
based algorithm for generating addresses. We focus in particular on
generating IPv4 source and destination addresses, though we also
comment on generating IPv6 addresses. Our approach is designed
to be highly efficient and to impose minimal cost on a large sim-
ulation or emulation setting in which many addresses need to be
generated.

To examine the performance of our new trie-based approach, we
describe a series of experiments in which we generated addresses
for different sized prefixes, up to the entire IPv4 address space.
We show that our method preserves the multifractal characteristic
that has been observed in live Internet traces [10]. Our results also
show that our approach scales well to large address spaces, and
that addresses are generated quickly and with parsimonious use of
memory. For example, generating 1 million new random addresses
from the full IPv4 address space takes less than 2 microseconds on
average per address, while consuming an average of about 50 MB.
Moreover, our results suggest that generating addresses from much
larger address spaces, such as an IPv6 /64 prefix, is feasible.

The remainder of this paper is organized as follows. In Section 2
we discuss work related to ours. Following that, in Section 3 we
describe the design and implementation of our trie-based approach
to address generation. In Section 4 we describe the results of ex-
periments designed to examine the performance and behavior of
our approach. Finally, in Section 5 we summarize our work and
discuss future directions.

2. RELATED WORK

Most closely related to this paper are the works by Kohler et

al. [10] and Barford et al. [5]. In [10], the authors establish that
the structure of observed IPv4 addresses is multifractal. Using a
Cantor dust model, they show how the observed address structure
could be generated. The authors hypothesize that the reason for
the observed multifractality has to do with the nature of address
allocation. In that work, the authors do not discuss generating new

addresses based on the observed characteristics.
In Barford et al. [5], the authors build on the insights of Kohler

et al. and develop a model for generating addresses that have the
same multifractal characteristics as those seen in a live environ-
ment. Their approach is based on a multiplicative, multiscale inno-
vations model, which we describe in the next section. While this
technique can effectively generate random IP addresses that have
the desired distributional characteristics, it is costly both in terms
of memory and computation time. We discuss this issue below.

Generating realistic IP addresses is important both in emula-
tion environments in which commodity workstations and routers
are used, as well as in simulation settings. In emulation environ-
ments such as Emulab [1] and WAIL [3], traffic generation tools
such as Harpoon [12], Swing [17], and others [4, 8, 14] have been
employed. The source and destination IP addresses assigned to
generated flows depend on the design of the traffic generator. In
the simplest case, addresses from a collected packet trace are di-
rectly reemitted, e.g., in tcpreplay [15]. In other cases, basic dis-
tributional characteristics of addresses can be reproduced, given a
suitable configuration, as in Harpoon [12]. None of these tools are
able to generate addresses with realistic distributional characteris-
tics from a large address space and with low computational and
memory overhead.

Similarly, network simulators typically have various traffic gen-
eration capabilities, e.g., the PackMIME and t-mix generators in
ns-2 [6,18], that are able to create flows with characteristics similar
to those that would be measured in a live environment. Although
there are rather sophisticated capabilities in various network sim-
ulators [2, 7, 9, 11, 13], we are not aware of any simulation traffic
generator that is able to efficiently generate realistic network ad-
dresses.

3. ADDRESS GENERATOR DESIGN

In this section we describe our method for efficiently generating
IP addresses. We first describe in more detail the method of Barford
et al. [5] on which our work is based. We then describe our new
technique and discuss its properties.

3.1 Detailed Background

As discussed above, the work in [5] proposes a random cascade
model for generating a random IP address distribution with multi-
fractal characteristics similar to those found in measured data (cf.

[10]). The idea in [5] is to consider a density function with unit
mass assigned to the interval [0,1], and to map this interval to a
prefix from which to generate addresses. The interval is recursively
subdivided in two, and the mass is divided among the two smaller
intervals. The address prefix length determines the number of times
this subdivision takes place. Once the prefix has been divided into
the series of IP addresses that comprise the prefix, addresses can be
selected at random, weighted by the mass that has been allocated
to each address.

Figure 1 depicts this process: at the top level, we have mass 1.
This mass is subdivided into two intervals. Each interval at the
second level is then subdivided into two more intervals, and so on.
In this example, addresses are generated from a /29 IPv4 prefix (i.e.,



3 bits are generated and appended onto the 29 bit prefix). Thus, the
recursive subdivision takes place 3 times. At the lowest level, the
mass in each of the 8 bins represents the probability of generating
that address.

In Barford et al., the mass redistribution function is based on the
Beta distribution. The Beta distribution takes two parameters β and
β �; in [5], a single value β = β � is used. This parameter can be fit-
ted to measured data from the live Internet. Once the estimate of β
is obtained, it can be used to generate new addresses. The authors
show that for different aggregations of live traces, the fitted value
of β leads to generating addresses that have sparse, bursty (multi-
fractal) characteristics similar to those measured in live traces.

In this paper, we do not attempt to improve on the fundamental
ideas of this approach. Our focus is rather on how it is carried

out. Specifically, the authors in [5] describe modeling the address
space and generating addresses in the context of the Haar wavelet
decomposition. While the Haar wavelet computation can be done
quickly, it requires creating a structure that represents the entire

address space (i.e., the bottom row in Figure 1). This approach is
wasteful for two reasons. First, because of the sparsity observed
in IP address distributions measured in live traces, there may be
significant memory wasted by creating a structure that considers
addresses that will potentially never be generated. Moreover, the
up-front cost of computing the entire structure may be significant
for larger addresses spaces. For example, if one wanted to generate
addresses from the entire IPv4 address space, a structure on the
order of 232 elements would need to be created prior to any address
generation. If each element consumes 4 bytes, the memory required
would be 16 GB: clearly too much.

1.0

0.710.29

0.600.110.250.04

0.270.330.040.070.020.230.010.03

Figure 1: Depiction of the method in Barford et al [5] for gen-

erating addresses for a /29 IPv4 prefix (3-bit host address).

3.2 A Trie-based Approach

There are two key ideas with our approach. First, we exploit the
sparsity observed in measured IP address distributions in order to
reduce the memory footprint of address generation. Second, we
construct the in-memory structure required to generation address
dynamically, as new addresses are needed. This approach amor-
tizes the computational cost of address generation over time, while
still imposing low overhead to generate a single address.

At the heart of our method for generating addresses is the well-
known trie data structure. In particular, we use a unibit trie. Tries
provide an efficient way to store and retrieve a set of k-bit strings. A
unibit trie is simply a tree in which each node contains two pointers:
a 0-pointer and a 1-pointer [16]. Variations on the trie are used in
standard algorithms to implement longest prefix match lookup for
IP routing. We augment each node to contain not only pointers to
the next bit, but also to include a link transition probability. As in

[5], this probability is drawn from the Beta distribution.
The process of generating addresses starts with an empty trie.

For each new address to generate we produce one bit at a time,
starting with the most significant bit. To produce the first bit of the
first address, we must first create a root node. We draw a value
p from the Beta distribution with parameter β and add this to the
node. This probability p represents the likelihood of generating a
0 as the first bit; 1− p is the likelihood of generating a 1 as the
first bit (thus, we only store one additional value in a node beyond
the 0- and 1-pointers). We then draw a uniformly distributed ran-
dom number p

� from the interval [0,1]. If p
� < p, we generate a

0, otherwise we generate a 1. We then create a new node which
is linked to the root. If we generated a 0 at the root, we link this
new node to the 0-pointer, otherwise we link it to the 1-pointer. We
repeat this process by drawing a new value p from the Beta distri-
bution (adding it to the most recently created node), followed by
another uniformly distributed value p

�. We again test p
� < p to de-

cide whether to generate a 0 or 1, then create a new node and link it
to the pointer corresponding to the bit generated. We continue this
process for the remaining bits in the host address.

An example of this process is depicted in Figure 2. In this exam-
ple we generate a 4-bit host address for a 28-bit IPv4 prefix. The
figure depicts how the trie evolves as three addresses are gener-
ated in succession. The subgraph on the left shows the state of the
trie after generating one address (0100), the subgraph in the mid-
dle depicts the trie after generating a second address (0110), and
the right subgraph is the state of the trie after generating a third
address (1011). Note that when a new address is generated, a par-
ticular node may already have been constructed. In that case, we
simply draw a new uniformly-distributed random number to deter-
mine which bit to generate (and which link to follow). Note also
that no explicit link needs to be made from the leaf nodes since they
contain enough information (namely, p) to generate the last bit of
an address. As a result, the same structure as in Figure 2 can be
used to generate the addresses 010*, 011*, and 101*.

Lastly, note that the function of the transition probabilities (Beta-
distributed random numbers) at each level of the trie is equivalent
in effect to the redistribution of mass from one level to another in
[5]. Thus, given an appropriate parameter β , we should expect
to generate addresses that exhibit the sparse, bursty distributional
characteristics observed in live Internet traces. In the results of our
experiments, below, we show that our new method indeed preserves
these important characteristics.

There are a number of optimizations that can be made for single-
bit tries [16]. One common technique used when implementing a
single-bit trie to represent prefixes or addresses is to use some kind
of compression to conserve memory. In addition to a simple unibit
trie, we also implemented a compressed version that coalesced a
series of nodes that each had a single branch. Our compressed trie
functions somewhat differently from a standard level-compressed
trie primarily because the structure is not used for IP longest-prefix
match lookups. Rather, since we must retain a transition probability
at each node, a compressed node must be able to store an array of
such probabilities. Moreover, as new addresses are generated, each
probability (even in compressed nodes) must be consulted. Thus,
any expected potential savings of this approach would be in mem-
ory usage rather than computation. We compared a compressed trie
implementation to a basic unibit trie and found that, in general, the
additional complexity of the compressed trie is not offset with any
significant reduction in memory consumption. While IP longest
prefix match lookup workloads can take effective advantage of var-
ious forms of trie compression, the probabilistic construction of the
trie in our address generation method does not lead to very many



0 1
p 1-p

0 1
p 1-p

0 1
p 1-p

0 1
p 1-p

0 1
p 1-p

0 1
p 1-p

0 1
p 1-p

0 1
p 1-p

0 1
p 1-p

0 1
p 1-p

0 1
p 1-p

0 1
p 1-p

0 1
p 1-p

0 1
p 1-p

0 1
p 1-p

0 1
p 1-p

0 1
p 1-p

root root root

Figure 2: A depiction of how the in-memory trie is constructed as the addresses 0100, 0110, and 1011 are generated. Note that only

the pointers to the next bit and the value p must be stored in a node. 1− p is shown in each node for conceptual completeness. Note

also that the actual values p are drawn from the Beta distribution, thus are different for each node.

opportunities to compress a path. As a result, we do not consider
trie compression further in this paper.

4. EVALUATION

In this section we evaluate our trie-based method for generating
IP addresses. The primary motivation behind these experiments is
to evaluate the suitability of our proposed method for generating
addresses for a network simulation or emulation environment. In
such a setting it is important to generate addresses very quickly and
with low memory overhead. We also compare our technique with
the prior work of [5] but do not explicitly compare against other
techniques. We note that all other methods described previously in
this paper would either require significant memory resources (e.g.,
using the technique in [5], as we show below) or difficult manual
configuration (using the technique in Harpoon [12]), making them
problematic for our target settings.

4.1 Experiment Setup

The experiments described in this section were performed using
a C implementation of our trie-based address generation method.
We used a commodity workstation running a 64-bit build of FreeBSD
8.0. The machine was equipped with 4 GB of RAM and a quad-
core Intel Xeon E3120 processor running at 3.16 GHz. During the
experiments there were no non-OS-related user processes running,
and the server was not running any X Window services.

4.2 Realism

First, we examine how well our trie-based method can generate
a bursty, sparse distribution of IP addresses similar to those in a live
setting. We do this by examining a plot of the multifractal spectrum
of a set of generated addresses. For this experiment we set β = 0.61
(a value that Barford et al. found to fit their data), and generated 1
million addresses from a /16 prefix. Figure 3 was generated based
on the histogram method of Kohler et al. [10] (we refer the reader
to that work for a description of the method). As with both [5]
and [10], sampling effects tend to dominate the analysis at finer
scales. Over medium scales, however, the figure shows a range of
values for different scaling exponents, consistent with multifractal
behavior. Highly similar results are shown in [5], which should
not be surprising given that our trie-based approach is functionally
equivalent to their method.

We also examined the rank-frequency plots and histograms of

0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Scaling Exponent

Figure 3: The multifractal spectrum of a set of generated ad-

dresses. Plot generated using the histogram method of [10].

generated addresses. While we do not show those results in this
paper, they exhibit similar qualitative features as addresses from
measured traces shown in [5, 12].

4.3 Performance

We now turn to examining the performance of our trie-based
method. The baseline parameters we used in experiments described
below are to generate 1 million addresses from a /8 prefix, with
β = 0.61. In the results discussed below, we vary the number of
addresses generated, the prefix length, and the value β to examine
the performance of our address generation method. For each data
point in the plots below, we computed the average over 10 runs.

4.3.1 Varying the number of addresses generated

We first examine the runtime and memory consumption of our
method while varying the number of addresses generated. Since
the trie is dynamically constructed, generating additional addresses



results in a larger memory footprint. In particular, as the number of
addresses generated increases, the number of chances for the trie to
expand (i.e., for new nodes to be created) increases. As an upper
limit, there could be 2k−1 × b bytes consumed by the trie, where
k is the prefix length and b is the number of bytes consumed per
node. We never came close to this maximum in testing, even when
generating 10 million addresses.

Figure 4 shows results of generating up to 10 million addresses
while fixing the prefix length at /8 and setting β to 0.61. The figures
show runtime (seconds) and memory consumed by the trie. Error
bars indicate one standard deviation above and below the mean.
Note that the average time to generate an address actually decreases

as we generate more addresses. The reason for this is that after a
large number of addresses have been generated, fewer nodes must
be created in the trie, which speeds address generation. We also see
that memory consumption rises modestly over the range of number
of addresses generated, peaking at around 18 MB for 10 million
addresses.

4.3.2 Varying the prefix length

Next, we examine the effect of varying the prefix length. Fig-
ure 5 shows the run time and memory consumption of our trie-
based method while generating 1 million addresses and varying the
prefix length from 0 to 30. Generating addresses with a 0-length
prefix results in generating entire 32-bit IPv4 addresses, while gen-
erating addresses with a 30-bit prefix can only result in four dis-
tinct addresses. We see from the figure that for prefixes of (around)
length 16 and longer, the memory consumes by our trie-based al-
gorithm is minimal. We also see that the average time required
to generate decreases as we generate fewer bits, which should be
expected.

As prefix length shrinks from 16 bits (i.e., as more bits are gener-
ated), the time required to generate an address increases modestly,
up to an average of just under 2 microseconds. The memory con-
sumption also increases, though somewhat more significantly as the
prefix shrinks from 16 bits to the full IPv4 address space. At worst,
our trie-based method consumed about 50 MB to generate 1 million
addresses from the full IPv4 address space. We note that this is sig-
nificantly smaller than a method that would require some amount
of storage for every unique address (i.e., 232 storage locations).

4.3.3 Varying β
Finally, we turn to examining the effect of different values of

β on the performance of our trie-based method. The parameter β
affects the structural characteristics of addresses generated, includ-
ing the sparsity of addresses generated. As noted in [5], one of the
reasons for using the Beta distribution is that it is a two-parameter
distribution, thus provides significant modeling flexibility.

Indeed, the choice of β has a great impact on the structure of the
trie and is the determining factor in distributional characteristics
of the addresses that are generated. Specifically, as β → ∞, the
branching probabilities, p, approach 1/2. As a result, it becomes
more and more likely for the entire trie to be built because each
branch at each node has an equal chance to be taken. Conversely,
as β → 0, the result is a bimodal distribution in which p is either
0 or 1. As a result, the trie will be extremely sparse because the
probability that one branch will be taken goes to zero, meaning that
the other branch is almost always taken. This results in very little
new construction of paths as addresses are generated.

Figure 6 shows the results of experiments in which the value of
β was varied between 0.1 and 5. A /8 prefix is used for these ex-
periments (24 address bits generated). We see that for very small
values, the memory footprint of the trie is quite small (as expected,

the tree is quite sparse). As β increases, both runtime and the mem-
ory footprint increase quite significantly. With a large β value like
5, the memory footprint is just over 50 MB, still suggesting some
sparsity in the tree (consider that a complete tree would contain 224

nodes, which would be approximately 256 MB, assuming a node
that consumes 16 bytes). We note that in prior work [5], it is sug-
gested that values of β fitted from live traces will likely be less
than 1, which would result in rather sparse tries. Thus, we expect
the performance of our method to be very good when generating a
realistic set of addresses for a simulation or emulation setting.

4.4 Comparison with Prior Work

We wrote another C program to generate addresses using the
prior method of [5], also setting β to 0.61. Using and initializing
a structure to do address generation with this prior method can be
expensive both in CPU time and memory, depending on the prefix
length.

Table 1 shows the memory required and initialization time for a
range of prefix lengths using the address generation method of [5].
First, we see that for a /16 prefix, relatively little memory is needed
(1 MB). For a /8 prefix, however, 256 MB are required to hold
the data structure. (Each of the 224 elements in the structure re-
quired 16 bytes in our implementation; some optimization may be
possible, but at minimum 4 bytes would be necessary per element,
i.e., the size of a single-precision floating point number.) We did
not have sufficient RAM in our test machine to handle shorter pre-
fixes, thus rendering it impossible to generate addresses from the
full IPv4 address space (64 GB would be needed!). Note that with
our proposed technique, we only required about 80 MB to generate
addresses from the full IPv4 address space and less than 10 MB to
generate addresses from a /8 prefix (cf. Figure 5).

With respect to time required to generate addresses, we see in
Table 1 that little time is required to create the necessary data struc-
ture for prefixes longer than /8. For a /8 prefix, about 7 seconds
are required to create the data structure, which must be done before

any addresses are actually generated. Once the structure is created,
addresses can be generated quickly and with essentially fixed CPU
cost. Thus, as more addresses are generated, the average cost per
address goes down. (Clearly, the worst case with the approach of
[5] is that the structure must be created to generate a single ad-
dress.) When we generated 10 million addresses from a /8 prefix,
the average time to generate one address was reduced to about 2
microseconds, which is similar to the performance of our proposed
technique. The benefit of our proposed method, however, is that
there is no up-front cost of creating an entire data structure. Thus,
the CPU time required to generate any address is quite small (cf.

Figure 4).

Table 1: Memory requirements and initialization time for gen-

erating addresses using the method of [5].

Prefix Length Memory Required Initialization

(kB) Time (sec)

16 1024 0.029
12 16384 0.455
8 262144 7.285
4 4194304 (not feasible) —
0 67108864 (not feasible) —

4.5 Discussion

Our results above show that our trie-based method for network
address generation is a good fit for network simulation and emula-
tion environments. In particular, our approach produces addresses



● ● ● ● ● ● ● ●

●

●

●

●

●

●

1e+01 1e+03 1e+05 1e+07

0
50

00
10

00
0

15
00

0
20

00
0

Addresses generated

M
em

or
y 

co
ns

um
ed

 (k
B)

●

●

●

●

●

●

●
●

●
●

● ● ● ●

1e+01 1e+03 1e+05 1e+07

2e
−0

6
4e
−0

6
6e
−0

6
8e
−0

6

Addresses generated

Av
er

ag
e 

tim
e 

to
 g

en
er

at
e 

on
e 

ad
dr

es
s 

(s
ec

)

Figure 4: Memory consumption (left) and run time (right) of the trie-based address generation for a range of number of addresses

generated. The prefix length is fixed at /8 and β is fixed at 0.61 for this set of experiments. Error bars show one standard deviation

above and below the mean. (Note that the x axis is on log scale.)

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ●

0 5 10 15 20 25 30

0
10

00
0

30
00

0
50

00
0

Prefix length (bits)

M
em

or
y 

co
ns

um
ed

 (k
B)

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

0 5 10 15 20 25 30

0.
0e

+0
0

1.
0e
−0

6
2.

0e
−0

6

Prefix length (bits)

Av
er

ag
e 

tim
e 

to
 g

en
er

at
e 

on
e 

ad
dr

es
s 

(s
ec

)

Figure 5: Performance data on memory consumption (top) and runtime (bottom) when varying the prefix length. The value of β
is fixed at 0.61 and 1 million addresses are generated for each prefix. Error bars show one standard deviation above and below the

mean.

very quickly and with low memory overhead, and the resulting ad-
dresses exhibit the important multifractal qualities found in real
traces. While our experiments have been done in the context of
generating IPv4 addresses, the specific results in Section 4.3.2 sug-
gest that our approach may scale to larger addresses, e.g., IPv6 /64
prefixes, assuming sufficient sparsity in address space allocation,
which we expect to be the case. However, it is yet unclear whether
our technique can scale effectively to generate full 128-bit IPv6 ad-
dresses. Perhaps more importantly, it is presently unknown whether
distributional characteristics of IPv6 addresses are similar to IPv4
addresses. We intend to investigate these issues in future work.

5. SUMMARY AND CONCLUSIONS

In this paper we propose and evaluate a new method of generat-
ing IPv4 addresses for traffic generators in network simulation and
emulation environments. At the core of our technique is a unibit
trie structure that is dynamically constructed as requests are made
for new addresses to generate. We evaluate the performance of our
address generator and show that our method results in a set of ad-
dresses that have similar sparse, bursty (multifractal) distributional
characteristics as addresses observed in live settings. Our results
show that our technique is well-suited for fast, low-overhead gen-

eration of realistic addresses for traffic generation in network sim-
ulators and emulators.

In future work, our goals are to investigate further the structure of
IPv6 addresses and to evaluate how well our method scales to that
address space. We also intend to release the C-based implementa-
tion of our address generation method to the research community
so that our technique can be incorporated into new and existing
simulation and emulation tools.

Acknowledgments

This work was supported in part by NSF grant CNS-1054985 and
Colgate University. Any opinions, findings, or conclusions in this
material are those of the authors and do not necessarily reflect the
views of the NSF or Colgate University.

6. REFERENCES

[1] Emulab. http://www.emulab.net, 2011.
[2] The ns-3 network simulator. http://www.nsnam.org,

2011.
[3] The Wisconsin Advanced Internet Laboratory.

http://www.wail.wisc.edu, 2011.

http://www.emulab.net
http://www.nsnam.org
http://www.wail.wisc.edu


●●
●
●
●
●
●●

●
●
●●

●
●●

●
●
●●

●●●
●
●●

●
●●

●●●●
●●●●

●●
●●●●

●●
●●●

●●

0 1 2 3 4 5

0
10

00
0

30
00

0
50

00
0

Beta distribution parameter

M
em

or
y 

co
ns

um
ed

 (k
B)

●
●
●
●

●●

●
●

●
●●●

●
●●

●
●
●●

●
●●●

●
●●●●

●●●●

●
●●●

●●●●●●
●●●●●

●●

0 1 2 3 4 5

6.
0e
−0

7
1.

0e
−0

6
1.

4e
−0

6
1.

8e
−0

6

Beta distribution parameter

Av
er

ag
e 

tim
e 

to
 g

en
er

at
e 

on
e 

ad
dr

es
s 

(s
ec

)

Figure 6: Performance data on memory consumption (top) and runtime (bottom) when varying the β parameter. 1 million addresses

are generated from a /8 prefix for each value of β . Error bars show one standard deviation above and below the mean.

[4] P. Barford and M. Crovella. Generating Representative Web
Workloads for Network and Server Performance Evaluation.
In Proceedings of ACM SIGMETRICS, Madison, WI, June
1998.

[5] P. Barford, R. Nowak, R. Willett, and V. Yegneswaran.
Toward a Model for Sources of Internet Background
Radiation. In Proceedings of the Passive and Active

Measurement Conference (PAM ’06), March 2006.
[6] J. Cao, W. Clevelan, Y. Gao, K. Jeffay, F. Smith, and

M. Weigle. Stochastic Models for Generating Synthetic
HTTP Source Traffic. In Proceedings of IEEE INFOCOM

’04, Hong Kong, March 2004.
[7] X. Chang. Network simulations with OPNET. In

Proceedings of the Winter Simulation Conference, volume 1,
pages 307–316, 1999.

[8] Y. Cheng, U. Holzle, N. Cardwell, S. Savage, and G. Voelker.
Monkey See, Monkey Do: A Tool for TCP Tracing and
Replaying. In Proceedings of USENIX Technical Conference,
Boston, MA, June 2004.

[9] J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogielski. Towards
Realistic Million-node Internet Simulations. In International

Conference on Parallel and Distributed Processing

Techniques and Applications, 1999.
[10] E. Kohler, J. Li, V. Paxson, and S. Shenker. Observed

Structure of Addresses in IP Traffic. IEEE/ACM

Transactions on Networking, 14(6):1207–1218, 2006.
[11] S. McCanne, S. Floyd, K. Fall, K. Varadhan, et al. Network

Simulator ns-2, 1997.
[12] J. Sommers and P. Barford. Self-Configuring Network

Traffic Generation. In Proceedings of ACM Internet

Measurement Conference, Taormina, Italy, October 2004.
[13] J. Sommers, R. Bowden, B. Eriksson, P. Barford,

M. Roughan, and N. Duffield. Efficient Network-wide Flow
Record Generation. In Proceedings of IEEE INFOCOM ’11,
Shanghai, China, April 2011.

[14] A. Tirumala, J. Ferguson, J. Dugan, F. Qin, and K. Gibbs.
Iperf. http://dast.nlanr.net/Projects/Iperf,
2011.

[15] A. Turner. Tcpreplay.
http://tcpreplay.synfin.net, 2011.

[16] G. Varghese. Network Algorithmics: An Interdisciplinary

Approach to Designing Fast Networked Devices.

Elsevier/Morgan Kaufmann, 2005.
[17] K. Vishwanath and A. Vahdat. Realistic and Responsive

Network Traffic Generation. In Proceedings of ACM

SIGCOMM ’06, Pisa, Italy, September 2006.
[18] M.C. Weigle, P. Adurthi, F. Hernández-Campos, K. Jeffay,

and F.D. Smith. Tmix: A Tool for Generating Realistic
Application Workloads in ns-2. ACM SIGCOMM Computer

Communication Review (CCR), 36(3):67–76, July 2006.

http://dast.nlanr.net/Projects/Iperf
http://tcpreplay.synfin.net

	Introduction
	Related Work
	Address Generator Design
	Detailed Background
	A Trie-based Approach

	Evaluation
	Experiment Setup
	Realism
	Performance
	Varying the number of addresses generated
	Varying the prefix length
	Varying 

	Comparison with Prior Work
	Discussion

	Summary and Conclusions
	References

