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Abstract—Measurement and estimation of packet loss charac-
teristics are challenging due to the relatively rare occurrence and
typically short duration of packet loss episodes. While active probe
tools are commonly used to measure packet loss on end-to-end
paths, there has been little analysis of the accuracy of these tools
or their impact on the network. The objective of our study is to
understand how to measure packet loss episodes accurately with
end-to-end probes. We begin by testing the capability of standard
Poisson-modulated end-to-end measurements of loss in a con-
trolled laboratory environment using IP routers and commodity
end hosts. Our tests show that loss characteristics reported from
such Poisson-modulated probe tools can be quite inaccurate over
a range of traffic conditions. Motivated by these observations, we
introduce a new algorithm for packet loss measurement that is
designed to overcome the deficiencies in standard Poisson-based
tools. Specifically, our method entails probe experiments that
follow a geometric distribution to 1) enable an explicit trade-off
between accuracy and impact on the network, and 2) enable more
accurate measurements than standard Poisson probing at the
same rate. We evaluate the capabilities of our methodology exper-
imentally by developing and implementing a prototype tool, called
BADABING. The experiments demonstrate the trade-offs between
impact on the network and measurement accuracy. We show that
BADABING reports loss characteristics far more accurately than
traditional loss measurement tools.

Index Terms—Active measurement, BADABING, network conges-
tion, network probes, packet loss.

I. INTRODUCTION

MEASURING and analyzing network traffic dynamics be-
tween end hosts has provided the foundation for the de-

velopment of many different network protocols and systems.
Of particular importance is understanding packet loss behavior
since loss can have a significant impact on the performance of
both TCP- and UDP-based applications. Despite efforts of net-
work engineers and operators to limit loss, it will probably never
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be eliminated due to the intrinsic dynamics and scaling proper-
ties of traffic in packet switched network [1]. Network operators
have the ability to passively monitor nodes within their network
for packet loss on routers using SNMP. End-to-end active mea-
surements using probes provide an equally valuable perspective
since they indicate the conditions that application traffic is ex-
periencing on those paths.

The most commonly used tools for probing end-to-end paths
to measure packet loss resemble the ubiquitous PING utility.
PING-like tools send probe packets (e.g., ICMP echo packets)
to a target host at fixed intervals. Loss is inferred by the sender
if the response packets expected from the target host are not re-
ceived within a specified time period. Generally speaking, an
active measurement approach is problematic because of the dis-
crete sampling nature of the probe process. Thus, the accuracy
of the resulting measurements depends both on the character-
istics and interpretation of the sampling process as well as the
characteristics of the underlying loss process.

Despite their widespread use, there is almost no mention in
the literature of how to tune and calibrate [2] active measure-
ments of packet loss to improve accuracy or how to best interpret
the resulting measurements. One approach is suggested by the
well-known PASTA principle [3] which, in a networking con-
text, tells us that Poisson-modulated probes will provide unbi-
ased time average measurements of a router queue’s state. This
idea has been suggested as a foundation for active measurement
of end-to-end delay and loss [4]. However, the asymptotic nature
of PASTA means that when it is applied in practice, the higher
moments of measurements must be considered to determine the
validity of the reported results. A closely related issue is the fact
that loss is typically a rare event in the Internet [5]. This reality
implies either that measurements must be taken over a long time
period, or that average rates of Poisson-modulated probes may
have to be quite high in order to report accurate estimates in a
timely fashion. However, increasing the mean probe rate may
lead to the situation that the probes themselves skew the results.
Thus, there are trade-offs in packet loss measurements between
probe rate, measurement accuracy, impact on the path and time-
liness of results.

The goal of our study is to understand how to accurately mea-
sure loss characteristics on end-to-end paths with probes. We
are interested in two specific characteristics of packet loss: loss
episode frequency, and loss episode duration [5]. Our study con-
sists of three parts: (i) empirical evaluation of the currently pre-
vailing approach, (ii) development of estimation techniques that
are based on novel experimental design, novel probing tech-
niques, and simple validation tests, and (iii) empirical evalua-
tion of this new methodology.
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We begin by testing standard Poisson-modulated probing in
a controlled and carefully instrumented laboratory environment
consisting of commodity workstations separated by a series of
IP routers. Background traffic is sent between end hosts at dif-
ferent levels of intensity to generate loss episodes thereby en-
abling repeatable tests over a range of conditions. We consider
this setting to be ideal for testing loss measurement tools since it
combines the advantages of traditional simulation environments
with those of tests in the wide area. Namely, much like simu-
lation, it provides for a high level of control and an ability to
compare results with “ground truth.” Furthermore, much like
tests in the wide area, it provides an ability to consider loss pro-
cesses in actual router buffers and queues, and the behavior of
implementations of the tools on commodity end hosts. Our tests
reveal two important deficiencies with simple Poisson probing.
First, individual probes often incorrectly report the absence of a
loss episode (i.e., they are successfully transferred when a loss
episode is underway). Second, they are not well suited to mea-
sure loss episode duration over limited measurement periods.

Our observations about the weaknesses in standard Poisson
probing motivate the second part of our study: the development
of a new approach for end-to-end loss measurement that in-
cludes four key elements. First, we design a probe process that
is geometrically distributed and that assesses the likelihood of
loss experienced by other flows that use the same path, rather
than merely reporting its own packet losses. The probe process
assumes FIFO queues along the path with a drop-tail policy.
Second, we design a new experimental framework with esti-
mation techniques that directly estimate the mean duration of
the loss episodes without estimating the duration of any indi-
vidual loss episode. Our estimators are proved to be consistent,
under mild assumptions of the probing process. Third, we pro-
vide simple validation tests (that require no additional experi-
mentation or data collection) for some of the statistical assump-
tions that underly our analysis. Finally, we discuss the variance
characteristics of our estimators and show that while frequency
estimate variance depends only on the total the number of probes
emitted, loss duration variance depends on the frequency esti-
mate as well as the number of probes sent.

The third part of our study involves the empirical evaluation
of our new loss measurement methodology. To this end, we de-
veloped a one-way active measurement tool called BADABING.
BADABING sends fixed-size probes at specified intervals from
one measurement host to a collaborating target host. The target
system collects the probe packets and reports the loss char-
acteristics after a specified period of time. We also compare
BADABING with a standard tool for loss measurement that emits
probe packets at Poisson intervals. The results show that our
tool reports loss episode estimates much more accurately for the
same number of probes. We also show that BADABING estimates
converge to the underlying loss episode frequency and duration
characteristics.

The most important implication of these results is that there
is now a methodology and tool available for wide-area studies
of packet loss characteristics that enables researchers to under-
stand and specify the trade-offs between accuracy and impact.
Furthermore, the tool is self-calibrating [2] in the sense that it
can report when estimates are poor. Practical applications could

include its use for path selection in peer-to-peer overlay net-
works and as a tool for network operators to monitor specific
segments of their infrastructures.

II. RELATED WORK

There have been many studies of packet loss behavior in the
Internet. Bolot [6] and Paxson [7] evaluated end-to-end probe
measurements and reported characteristics of packet loss over
a selection of paths in the wide area. Yajnik et al. evaluated
packet loss correlations on longer time scales and developed
Markov models for temporal dependence structures [8]. Zhang
et al. characterized several aspects of packet loss behavior [5].
In particular, that work reported measures of constancy of loss
episode rate, loss episode duration, loss free period duration and
overall loss rates. Papagiannaki et al. [9] used a sophisticated
passive monitoring infrastructure inside Sprint’s IP backbone
to gather packet traces and analyze characteristics of delay and
congestion. Finally, Sommers and Barford pointed out some of
the limitations in standard end-to-end Poisson probing tools by
comparing the loss rates measured by such tools to loss rates
measured by passive means in a fully instrumented wide area
infrastructure [10].

The foundation for the notion that Poisson Arrivals See Time
Averages (PASTA) was developed by Brumelle [11], and later
formalized by Wolff [3]. Adaptation of those queuing theory
ideas into a network probe context to measure loss and delay
characteristic began with Bolot’s study [6] and was extended
by Paxson [7]. In recent work, Baccelli et al. analyze the use-
fulness of PASTA in the networking context [12]. Of particular
relevance to our work is Paxson’s recommendation and use of
Poisson-modulated active probe streams to reduce bias in delay
and loss measurements. Several studies include the use of loss
measurements to estimate network properties such as bottleneck
buffer size and cross traffic intensity [13], [14]. The Internet Per-
formance Measurement and Analysis efforts [15], [16] resulted
in a series of RFCs that specify how packet loss measurements
should be conducted. However, those RFCs are devoid of de-
tails on how to tune probe processes and how to interpret the
resulting measurements. We are also guided by Paxson’s recent
work [2] in which he advocates rigorous calibration of network
measurement tools.

ZING is a tool for measuring end-to-end packet loss in one
direction between two participating end hosts [17], [18]. ZING

sends UDP packets at Poisson-modulated intervals with fixed
mean rate. Savage developed the STING [19] tool to measure
loss rates in both forward and reverse directions from a single
host. STING uses a clever scheme for manipulating a TCP stream
to measure loss. Allman et al. demonstrated how to estimate
TCP loss rates from passive packet traces of TCP transfers
taken close to the sender [20]. A related study examined passive
packet traces taken in the middle of the network [21]. Network
tomography based on using both multicast and unicast probes
has also been demonstrated to be effective for inferring loss
rates on internal links on end-to-end paths [22], [23].

III. DEFINITIONS OF LOSS CHARACTERISTICS

There are many factors that can contribute to packet loss in the
Internet. We describe some of these issues in detail as a founda-
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Fig. 1. Simple system model and example of loss characteristics under consid-
eration. (a) Simple system model. � flows on input links with aggregate band-
width � compete for a single output link on router � with bandwidth �
where � � � . The output link has � s of buffer capacity. (b) Example of
the evolution of the length of a queue over time. The queue length grows when
aggregate demand exceeds the capacity of the output link. Loss episodes begin
(points � and �) when the maximum buffer size � is exceeded. Loss episodes
end (points � and 	) when aggregate demand falls below the capacity of the
output link and the queue drains to zero.

tion for understanding our active measurement objectives. The
environment that we consider is modeled as a set of flows that
pass through a router and compete for a single output link
with bandwidth as depicted in Fig. 1(a). The aggregate
input bandwidth must be greater than the shared output
link in order for loss to take place. The mean round trip
time for the flows is s. Router is configured with bytes
of packet buffers to accommodate traffic bursts, with typi-
cally sized on the order of [24], [25]. We assume that
the queue operates in a FIFO manner, that the traffic includes
a mixture of short- and long-lived TCP flows as is common in
today’s Internet, and that the value of will fluctuate over time.

Fig. 1(b) is an illustration of how the occupancy of the buffer
in router might evolve. When the aggregate sending rate of
the flows exceeds the capacity of the shared output link, the
output buffer begins to fill. This effect is seen as a positive slope
in the queue length graph. The rate of increase of the queue
length depends both on the number and on sending rate of
each source. A loss episode begins when the aggregate sending
rate has exceeded for a period of time sufficient to load
bytes into the output buffer of router (e.g., at times and
in Fig. 1(b)). A loss episode ends when the aggregate sending
rate drops below and the buffer begins a consistent drain
down to zero (e.g., at times and in Fig. 1(b)). This typically
happens when TCP sources sense a packet loss and halve their
sending rate, or simply when the number of competing flows
drops to a sufficient level. In the former case, the duration of a
loss episode is related to , depending whether loss is sensed
by a timeout or fast retransmit signal. We define loss episode
duration as the difference between start and end times (i.e.,
and ). While this definition and model for loss episodes is
somewhat simplistic and dependent on well behaved TCP flows,
it is important for any measurement method to be robust to flows
that do not react to congestion in a TCP-friendly fashion.

This definition of loss episodes can be considered a
“router-centric” view since it says nothing about when any one
end-to-end flow (including a probe stream) actually loses a
packet or senses a lost packet. This contrasts with most of the
prior work discussed in Section II which consider only losses
of individual or groups of probe packets. In other words, in our
methodology, a loss episode begins when the probability of
some packet loss becomes positive. During the episode, there
might be transient periods during which packet loss ceases
to occur, followed by resumption of some packet loss. The
episode ends when the probability of packet loss stays at 0 for a
sufficient period of time (longer than a typical RTT). Thus, we
offer two definitions for packet loss rate:

• Router-centric loss rate. With the number of dropped
packets on a given output link on router during a given
period of time, and the number of all successfully trans-
mitted packets through the same link over the same period
of time, we define the router-centric loss rate as .

• End-to-end loss rate. We define end-to-end loss rate in ex-
actly the same manner as router-centric loss-rate, with the
caveat that we only count packets that belong to a specific
flow of interest.

It is important to distinguish between these two notions of
loss rate since packets are transmitted at the maximum rate
during loss episodes. The result is that during a period where the
router-centric loss rate is non-zero, there may be flows that do
not lose any packets and therefore have end-to-end loss rates
of zero. This observation is central to our study and bears di-
rectly on the design and implementation of active measurement
methods for packet loss.

As a consequence, an important consideration of our probe
process described below is that it must deal with instances where
individual probes do not accurately report loss. We therefore dis-
tinguish between the true loss episode state and the probe-mea-
sured or observed state. The former refers to the router-cen-
tric or end-to-end congestion state, given intimate knowledge of
buffer occupancy, queueing delays, and packet drops, e.g., infor-
mation implicit in the queue length graph in Fig. 1(b). Ideally,
the probe-measured state reflects the true state of the network.
That is, a given probe should accurately report the following:

if a loss episode is not encountered
if a loss episode is encountered.

(1)

Satisfying this requirement is problematic because, as
noted above, many packets are successfully transmitted during
loss episodes. We address this issue in our probe process in
Section VI and heuristically in Section VII.

Finally, we define a probe to consist of one or more very
closely spaced (i.e., back-to-back) packets. As we will see in
Section VII, the reason for using multi-packet probes is that not
all packets passing through a congested link are subject to loss;
constructing probes of multiple packets enables a more accurate
determination to be made.

IV. LABORATORY TESTBED

The laboratory testbed used in our experiments is shown
in Fig. 2. It consisted of commodity end hosts connected to
a dumbbell-like topology comprised of Cisco GSR 12000
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Fig. 2. Laboratory testbed. Cross traffic scenarios consisted of constant bit-rate
traffic, long-lived TCP flows, and web-like bursty traffic. Cross traffic flowed
across one of two routers at hop B, while probe traffic flowed through the other.
Optical splitters connected Endace DAG 3.5 and 3.8 passive packet capture
cards to the testbed between hops B and C, and hops C and D. Probe traffic
flowed from left to right and the loss episodes occurred at hop C.

routers. Both probe and background traffic were generated and
received by the end hosts. Traffic flowed from the sending hosts
on separate paths via Gigabit Ethernet to separate Cisco GSRs
(hop B in the figure) where it transitioned to OC12 (622 Mb/s)
links. This configuration was created in order to accommodate
our measurement system, described below. Probe and back-
ground traffic was then multiplexed onto a single OC3 (155
Mb/s) link (hop C in the figure) which formed the bottleneck
where loss episodes took place. We used a hardware-based
propagation delay emulator on the OC3 link to add 50 ms delay
in each direction for all experiments, and configured the bottle-
neck queue to hold approximately 100 ms of packets. Packets
exited the OC3 link via another Cisco GSR 12000 (hop D in
the figure) and passed to receiving hosts via Gigabit Ethernet.

The probe and traffic generator hosts consisted of identically
configured workstations running Linux 2.4. The workstations
had 2 GHz Intel Pentium 4 processors with 2 GB of RAM and
Intel Pro/1000 network cards. They were also dual-homed, so
that all management traffic was on a separate network than de-
picted in Fig. 2.

One of the most important aspects of our testbed was the mea-
surement system we used to establish the true loss episode state
(“ground truth”) for our experiments. Optical splitters were at-
tached to both the ingress and egress links at hop C and Endace
DAG 3.5 and 3.8 passive monitoring cards were used to cap-
ture traces of packets entering and leaving the bottleneck node.
DAG cards have been used extensively in many other studies
to capture high fidelity packet traces in live environments (e.g.,
they are deployed in Sprint’s backbone [26] and in the NLANR
infrastructure [27]). By comparing packet header information,
we were able to identify exactly which packets were lost at the
congested output queue during experiments. Furthermore, the
fact that the measurements of packets entering and leaving hop
C were time-synchronized on the order of a single microsecond
enabled us to easily infer the queue length and how the queue
was affected by probe traffic during all tests.

We consider this environment ideally suited to understanding
and calibrating end-to-end loss measurement tools. Laboratory
environments do not have the weaknesses typically associated
with ns-type simulation (e.g., abstractions of measurement
tools, protocols and systems) [28], nor do they have the weak-
nesses of wide area in situ experiments (e.g., lack of control,

TABLE I
RESULTS FROM ZING EXPERIMENTS WITH INFINITE TCP SOURCES

repeatability, and complete, high fidelity end-to-end instrumen-
tation). We address the important issue of testing the tool under
“representative” traffic conditions by using a combination of
the Harpoon IP traffic generator [29] and Iperf [30] to evaluate
the tool over a range of cross traffic and loss conditions.

V. EVALUATION OF SIMPLE POISSON PROBING

FOR PACKET LOSS

We begin by using our laboratory testbed to evaluate the capa-
bilities of simple Poisson-modulated loss probe measurements
using the ZING tool [17], [18]. ZING measures packet delay and
loss in one direction on an end-to-end path. The ZING sender
emits UDP probe packets at Poisson-modulated intervals with
timestamps and unique sequence numbers and the receiver logs
the probe packet arrivals. Users specify the mean probe rate ,
the probe packet size, and the number of packets in a “flight.”

To evaluate simple Poisson probing, we configured ZING

using the same parameters as in [5]. Namely, we ran two tests,
one with ms (10 Hz) and 256 byte payloads and
another with ms (20 Hz) and 64 byte payloads. To
determine the duration of our experiments below, we selected
a period of time that should limit the variance of the loss rate
estimator where for loss rate and number
of probes .

We conducted three separate experiments in our evaluation
of simple Poisson probing. In each test we measured both the
frequency and duration of packet loss episodes. Again, we used
the definition in [5] for loss episode: “a series of consecutive
packets (possibly only of length one) that were lost.”

The first experiment used 40 infinite TCP sources with re-
ceive windows set to 256 full size (1500 bytes) packets. Fig. 3(a)
shows the time series of the queue occupancy for a portion of
the experiment; the expected synchronization behavior of TCP
sources in congestion avoidance is clear. The experiment was
run for a period of 15 min which should have enabled ZING

to measure loss rate with standard deviation within 10% of the
mean [10].

Results from the experiment with infinite TCP sources are
shown in Table I. The table shows that ZING performs poorly
in measuring both loss frequency and duration in this scenario.
For both probe rates, there were no instances of consecutive lost
packets, which explains the inability to estimate loss episode
duration.

In the second set of experiments, we used Iperf to create a
series of (approximately) constant duration (about 68 ms) loss
episodes that were spaced randomly at exponential intervals
with mean of 10 s over a 15 minute period. The time series of the
queue length for a portion of the test period is shown in Fig. 3(b).

Results from the experiment with randomly spaced, constant
duration loss episodes are shown in Table II. The table shows
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Fig. 3. Queue length time series plots for three different background traffic
scenarios. (a) Queue length time series for a portion of the experiment with 40
infinite TCP sources. (b) Queue length time series for a portion of the experi-
ment with randomly spaced, constant duration loss episodes. (c) Queue length
time series for a portion of the experiment with Harpoon web-like traffic. Time
segments in gray indicate loss episodes.

that ZING measures loss frequencies and durations that are closer
to the true values.

In the final set of experiments, we used Harpoon to create
a series of loss episodes that approximate loss resulting from
web-like traffic. Harpoon was configured to briefly increase its
load in order to induce packet loss, on average, every 20 s. The
variability of traffic produced by Harpoon complicates delin-
eation of loss episodes. To establish baseline loss episodes to
compare against, we found trace segments where the first and
last events were packet losses, and queuing delays of all packets
between those losses were above 90 ms (within 10 ms of the
maximum). We ran this test for 15 min and a portion of the time
series for the queue length is shown in Fig. 3(c).

Results from the experiment with Harpoon web-like traffic
are shown in Table III. For measuring loss frequency, neither
probe rate results in a close match to the true frequency. For loss
episode duration, the results are also poor. For the 10 Hz probe
rate, there were no consecutive losses measured, and for the

TABLE II
RESULTS FROM ZING EXPERIMENTS WITH RANDOMLY SPACED, CONSTANT

DURATION LOSS EPISODES

TABLE III
RESULTS FROM ZING EXPERIMENTS WITH HARPOON WEB-LIKE TRAFFIC

20 Hz probe rate, there were only two instances of consecutive
losses, each of exactly two lost packets.

VI. PROBE PROCESS MODEL

The results from our experiments described in the previous
section show that simple Poisson probing is generally poor for
measuring loss episode frequency and loss episode duration.
These results, along with deeper investigation of the reasons
for particular deficiencies in loss episode duration measurement,
form the foundation for a new measurement process.

A. General Setup

Our methodology involves dispatching a sequence of probes,
each consisting of one or more very closely spaced packets. The
aim of a probe is to obtain a snapshot of the state of the network
at the instant of probing. As such, the record for each probe indi-
cates whether or not it encountered a loss episode, as evidenced
by either the loss or sufficient delay of any of the packets within
a probe (c.f. Section VII).

The probes themselves are organized into what we term basic
experiments, each of which comprises a number of probes sent
in rapid succession. The aim of the basic experiment is to de-
termine the dynamics of transitions between the congested and
uncongested state of the network, i.e., beginnings and endings
of loss episodes. Below we show how this enables us to estimate
the duration of loss episodes.

A full experiment comprises a sequence of basic experiments
generated according to some rule. The sequence may be termi-
nated after some specified number of basic experiments, or after
a given duration, or in an open-ended adaptive fashion, e.g., until
estimates of desired accuracy for a loss characteristic have been
obtained, or until such accuracy is determined impossible.

We formulate the probe process as a discrete-time process.
This decision is not a fundamental limitation: since we are con-
cerned with measuring loss episode dynamics, we need only en-
sure that the interval between the discrete time slots is smaller
than the time scales of the loss episodes.

There are three steps in the explanation of our loss measure-
ment method (i.e., the experimental design and the subsequent
estimation). First, we present the basic algorithm version. This
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model is designed to provide estimators of the frequency of time
slots in which loss episodes is present, and the duration of loss
episodes. The frequency estimator is unbiased, and under rela-
tively weak statistical assumptions, both estimators are consis-
tent in the sense they converge to their respective true values as
the number of measurements grows.

Second, we describe the improved algorithm version of our
design which provides loss episode estimators under weaker as-
sumptions, and requires that we employ a more sophisticated
experimental design. In this version of the model, we insert a
mechanism to estimate, and thereby correct, the possible bias
of the estimators from the basic design.

Third, we describe simple validation techniques that can be
used to assign a level of confidence to loss episode estimates.
This enables open-ended experimentation with a stopping crite-
rion based on estimators reaching a requisite level of confidence.

B. Basic Algorithm

For each time slot we decide whether or not to commence a
basic experiment; this decision is made independently for each
slot with some fixed probability over all slots. In this way,
the sequence of basic experiments follows a geometric distri-
bution with parameter . (In practice, we make the restriction
that we do not start a new basic experiment while one is already
in progress. This implies that, in reality, the random variables
controlling whether or not a probe is sent at time slot are not
entirely independent of each other.) We indicate this series of
decisions through random variables that take the value 1 if
“a basic experiment is started in slot ” and 0 otherwise.

If , we dispatch two probes to measure congestion in
slots and . The random variable records the reports
obtained from the probes as a 2-digit binary number, i.e.,

means “both probes did not observe a loss episode”, while
means “the first probe observed a loss episode while the

second one did not”, and so on. Our methodology is based on the
following fundamental assumptions, which, in view of the probe
and its reporting design (as described in Section VII) are very
likely to be valid ones. These assumptions are required in both
algorithmic versions. The basic algorithm requires a stronger
version of these assumptions, as we detail later.

1) Assumptions: We do not assume that the probes accu-
rately report loss episodes: we allow that a true loss episode
present during a given time slot may not be observed by any
of the probe packets in that slot. However, we do assume a spe-
cific structure of the inaccuracy, as follows.

Let be the true loss episode state in slots and ,
i.e., means that there is no loss episode present at

and that a loss episode is present at . As de-
scribed in Section III, true means the congestion that would
be observed were we to have knowledge of router buffer occu-
pancy, queueing delays and packet drops. Of course, in practice
the value of is unknown. Our specific assumption is that is
correct, i.e., equals , with probability that is independent of

and depends only on the number of 1-digits in . Moreover,
if is incorrect, it must take the value 00. Explicitly,

1) If no loss episode occuring then , too
( no congestion reported), with probability 1.

2) If loss episode begins , or
loss episode ends , then

, for some which is independent of . If
fails to match , then necessarily, .

3) If loss episode is on-going , then
, for some which is independent of

. If fails to match , then necessarily, .
As justification for the above assumptions we first note that

it is highly unlikely that a probe will spuriously measure loss.
That is, assuming well-provisioned measurement hosts, if no
loss episode is present a probe should not register loss. In par-
ticular, for assumptions (1) and (2), if , it follows that
must be 00. For assumption (3), we appeal to the one-way delay
heuristics developed in Section VII: if , then we hold
in hand at least one probe that reported loss; by comparing the
delay characteristics of that probe to the corresponding charac-
teristics in the other probe (assuming that the other one did not
report loss), we are able to deduce whether to assign a value 1
or 0 to the other probe. Thus, the actual networking assumption
is that the delay characteristics over the measured path are sta-
tionary relative to the time discretization we use.

2) Estimation: The basic algorithm assumes that
for consistent duration estimation, and for consis-
tent and unbiased frequency estimation. The estimators are as
follows:

Loss Episode Frequency Estimation. Denote the true fre-
quency of slots during which a loss episode is present by

. We define a random variable whose value is the first
digit of . Our estimate is then

(2)

with the index running over all the basic experiments we
conducted, and is the total number of such experiments.
This estimator is unbiased, , since the expected
value of is just the congestion frequency . Under mild
conditions (i.e., ), the estimator is also con-
sistent. For example, if the durations of the loss episodes
and loss-free episodes are independent with finite mean,
then the proportion of lossy slots during an experiment over

slots converges almost surely, as grows, to the loss
episode frequency , from which the stated property fol-
lows.
Loss Episode Duration Estimation is more sophisticated.
Recall that a loss episode is one consecutive occurrence of

lossy time slots preceded and followed by no loss, i.e.,
its binary representation is written as

Suppose that we have access to the true loss episode state at
all possible time slots in our discretization. We then count
all loss episodes and their durations and find out that for

, there were exactly loss episodes of length
. Then, loss occurred over a total of
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slots, while the total number of loss episodes is

The average duration of a loss episode is then defined as

In order to estimate , we observe that, with the above struc-
ture of loss episodes in hand, there are exactly time slots
for which , and there are also time slots for which

. Also, there are exactly time slots for which

. We therefore define

and

Now, let be the total number of time slots. Then
, hence .

Similarly, , and
. Thus,

Denoting , we get then

Thus,

(3)

In the basic algorithm we assume , the estimator of
is then obtained by substituting the measured values of and
for their means:

(4)

Note that this estimator is not unbiased for finite , due to the
appearance of in the quotient. However, it is consistent under
the same conditions as those stated above for , namely, that
congestion is described by an alternating renewal process with
finite mean lifetimes. Then the ergodic theorem tells us that as
grows, and converge to their expected values (note,
e.g., independent of ) and
hence converges almost surely to .

C. Improved Algorithm

The improved algorithm is based on weaker assumptions than
the basic algorithm: we no longer assume that . In view
of the details provided so far, we will need, for the estimation of
duration, to know the ratio . For that, we modify our
basic experiments as follows.

As before, we decide independently at each time slot whether
to conduct an experiment. With probability 1/2, this is a basic
experiment as before; otherwise we conduct an extended exper-
iment comprising three probes, dispatched in slots , , ,
and redefine to be the corresponding 3-digit number returned
by the probes, e.g., means “loss was observed only
at ”, etc. As before records the true states that our
th experiment attempts to identify. We now make the following

additional assumptions.
1) Additional Assumptions: We assume that the probability

that misses the true state (and hence records a string of 0’s),
does not depend on the length of but only on the number of
1’s in the string. Thus, whenever is any
of {01,10,001,100}, while whenever is
any of {11,011,110} (we address states 010 and 101 below). We
claim that these additional assumptions are realistic, but defer
the discussion until after we describe the reporting mechanism
for loss episodes.

With these additional assumptions in hand, we denote

and

The combined number of states 011,110 in the full time series is
, while the combined number of states of the form 001,100

is also . Thus, we have

hence, with estimating , we employ (3) to obtain

D. Validation

When running an experiment, our assumptions require that
several quantities have the same mean. We can validate the as-
sumptions by checking those means.

In the basic algorithm, the probability of is assumed
to be the same as that of . Thus, we can design a stopping
criterion for on-going experiments based on the ratio between
the number of 01 measurements and the number of 10 measure-
ments. A large discrepancy between these numbers (that is not
bridged by increasing ) is an indication that our assumptions
are invalid. Note that this validation does not check whether

or whether , which are two important assump-
tions in the basic design.

In the improved design, we expect to get similar occurrence
rate for each of , 10, 001, 100. We also expect to get
similar occurrence rate for , 110. We can check those
rates, stop whenever they are close, and invalidate the experi-
ment whenever the mean of the various events do not coincide
eventually. Also, each occurrence of or is
considered a violation of our assumptions. A large number of
such events is another reason to reject the resulted estimations.
Experimental investigation of stopping criteria is future work.



314 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 2, APRIL 2008

E. Modifications

There are various straightforward modifications to the above
design that we do not address in detail at this time. For example,
in the improved algorithm, we have used the triple-probe exper-
iments only for the estimation of the parameter . We could ob-
viously include them also in the actual estimation of duration,
thereby decreasing the total number of probes that are required
in order to achieve the same level of confidence.

Another obvious modification is to use unequal weighing be-
tween basic and extended experiments. In view of the expres-
sion we obtain for there is no clear motivation for doing that:
a miss in estimating is as bad as a corresponding miss
in (unless the average duration is very small). Basic ex-
periments incur less cost in terms of network probing load. On
the other hand, if we use the reports from triple probes for esti-
mating then we may wish to increase their propor-
tion. Note that in our formulation, we cannot use the reported
events for estimating anything, since the failure rate
of the reporting on the state is assumed to be un-
known. (We could estimate it using similar techniques to those
used in estimating the ratio . This, however, will require
utilization of experiments with more than three probes). A topic
for further research is to quantify the trade-offs between probe
load and estimation accuracy involved in using extended exper-
iments of 3 or more probes.

F. Estimator Variance

In this section we determine the variance in estimating the
probe loss rate and the mean loss episode duration that
arises from the sampling action of the probes. It is important
to emphasize that all the variation we consider stems from the
randomness of the probing, rather than any randomness of the
underlying congestion periods under study. Rather, we view the
congestion under study as a single fixed sample path.

1) Assumptions on the Underlying Congestion: One could
relax this point of view and allow that the sample path of the
congestion is drawn according to some underlying probability
distribution. But it turns out that, under very weak assumptions,
our result holds almost surely for each such sample path.

To formalize this, recall that during measurement slots
there are congested slots distributed amongst congestion
intervals. We shall be concerned with the asymptotics of the es-
timators and for large . To this end, we assume that and

have the following behavior for large , namely, for some
positive and :

We also write to denote the limiting average duration
of a congestion episode.

For a wide class of statistical models of congestion, these
properties will be obeyed almost surely with uniform and ,
namely, if and satisfy the strong law of large numbers as

. Examples of models that possess this property include
Markov processes, and alternating renewal processes with finite
mean lifetimes in the congested and uncongested states.

2) Asymptotic Variance of and : We can write the esti-
mators and in a different but equivalent way to those used

above. Let there be slots in total, and for the four state pairs
, 10, 00, 11 let denote the set of slots in which

the true loss episode state was . Let if a basic exper-
iment was commenced in slot . Then is the
number of basic experiments that encountered the true conges-
tion state . Note that since the are fixed sets, the are
mutually independent. In what follows we restrict our attention
to the basic algorithm in the ideal case . Comparing
with Section VI-B we have

We now determine the asymptotic variances and covariance
of and as grows using the -method; see [31]. This
supposes a sequence of vector
valued random variables and a fixed vector
such that converges in distribution as

to a multivariate Gaussian random variable of mean
and covariance matrix . If is

a vector function that is differentiable about ,
then is asymptotically Gaussian, as

, with mean and asymptotic covariance matrix

In the current application we set ,
and

. Since the are independent, the covariance matrix of
is the diagonal matrix with entries

as .
The derivatives of and are

Thus, using the -method we have shown that
is asymptotically Gaussian with mean 0 and covariance

Note that positive correlation between and is expected,
since with higher loss episode frequency, loss episodes will
tender to be longer.

3) Variance Estimation: For finite , we can estimate the
variance of and directly from the data by plugging in esti-
mated values for the parameters and scaling by . Specifically,
we estimate the variances of and , respectively, by
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Thus, simple estimates of the relative standard deviations of
and are thus and respectively, where

is the estimated frequency of congestion periods.
Estimated confidence intervals for and follow in an obvious
manner.

VII. PROBE TOOL IMPLEMENTATION AND EVALUATION

To evaluate the capabilities of our loss probe measurement
process, we built a tool called BADABING1 that implements the
basic algorithm of Section VI. We then conducted a series of
experiments with BADABING in our laboratory testbed with the
same background traffic scenarios described in Section V.

The objective of our lab-based experiments was to vali-
date our modeling method and to evaluate the capability of
BADABING over a range of loss conditions. We report results of
experiments focused in three areas. While our probe process
does not assume that we always receive true indications of
loss from our probes, the accuracy of reported measurements
will improve if probes more reliably indicate loss. With this
in mind, the first set of experiments was designed to under-
stand the ability of an individual probe (consisting of 1 to

tightly-spaced packets) to accurately report an encounter
with a loss episode. The second is to examine the accuracy of
BADABING in reporting loss episode frequency and duration for
a range of probe rates and traffic scenarios. In our final set of
experiments, we compare the capabilities of BADABING with
simple Poisson-modulated probing.

A. Accurate Reporting of Loss Episodes by Probes

We noted in Section III that, ideally, a probe should pro-
vide an accurate indication of the true loss episode state [(1)].
However, this may not be the case. The primary issue is that
during a loss episode, many packets continue to be success-
fully transmitted. Thus, we hypothesized that we might be able
to increase the probability of probes correctly reporting a loss
episode by increasing the number of packets in an individual
probe. We also hypothesized that, assuming FIFO queueing,
using one-way delay information could further improve the ac-
curacy of individual probe measurements.

We investigated the first hypothesis in a series of experi-
ments using the infinite TCP source background traffic and
constant-bit rate traffic described in Section V. For the infinite
TCP traffic, loss event durations were approximately 150 ms.
For the constant-bit rate traffic, loss episodes were approx-
imately 68 ms in duration. We used a modified version of
BADABING to generate probes at fixed intervals of 10 ms so
that some number of probes would encounter all loss episodes.
We experimented with probes consisting of between 1 and
10 packets. Packets in an individual probe were sent back to
back per the capabilities of the measurement hosts (i.e., with
approximately 30 s between packets). Probe packet sizes were
set at 600 bytes.2

1Named in the spirit of past tools used to measure loss including PING, ZING,
and STING. This tool is approximately 800 lines of C++ and is available to the
community for testing and evaluation

2This packet size was chosen to exploit an architectural feature of the Cisco
GSR so that probe packets had as much impact on internal buffer occupancy as
maximum-sized frames. Investigating the impact of packet size on estimation
accuracy is a subject for future work.

Fig. 4. Results from tests of ability of probes consisting of� packets to report
loss when an episode is encountered.

Fig. 4 shows the results of these tests. We see that for the con-
stant-bit rate traffic, longer probes have a clear impact on the
ability to detect loss. While about half of single-packet probes
do not experience loss during a loss episode, probes with just
a couple more packets are much more reliable indicators of the
true loss episode state. For the infinite TCP traffic, there is also
an improvement as the probes get longer, but the improvement
is relatively small. Examination of the details of the queue be-
havior during these tests demonstrates why the 10 packet probes
do not greatly improve loss reporting ability for the infinite
source traffic. As shown in Fig. 5, longer probes begin to have a
serious impact on the queuing dynamics during loss episodes.

This observation, along with our hypothesis regarding
one-way packet delays, led to our development of an alternative
approach for identifying loss events. Our new method considers
both individual packet loss with probes and the one-way packet
delay as follows. For probes in which any packet is lost, we
consider the one-way delay of the most recent successfully
transmitted packet as an estimate of the maximum queue depth

. We then consider a loss episode to be delimited
by probes within s of an indication of a lost packet (i.e., a
missing probe sequence number) and having a one-way delay
greater than . Using the parameters
and , we mark probes as 0 or 1 according to (1) and form
estimates of loss episode frequency and duration using (2) and
(4), respectively. Note that even if packets of a given probe
are not actually lost, the probe may be considered to have
experienced a loss episode due to the and/or thresholds.

This formulation of probe-measured loss assumes that
queuing at intermediate routers is FIFO. Also, we can keep
a number of estimates of , taking the mean when
determining whether a probe is above the
threshold or not. Doing so effectively filters loss at end host
operating system buffers or in network interface card buffers,
since such losses are unlikely to be correlated with end-to-end
network congestion and delays.

We conducted a series of experiments with constant-bit rate
traffic to assess the sensitivity of the loss threshold parameters.
Using a range of values for probe send probability , we ex-
plored a cross product of values for and . For , we selected
0.025, 0.05, 0.10, and 0.20, effectively setting a high-water level
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Fig. 5. Queue length during a portion of a loss episode for different size loss
probes. The top plot shows infinite source TCP traffic with no loss probes. The
middle plot shows infinite source TCP traffic with loss probes of three packets,
and the bottom plots shows loss probes of 10 packets. Each plot is annotated
with TCP packet loss events and probe packet loss events.

of the queue of 2.5, 5, 10, and 20 ms. For , we selected values
of 5, 10, 20, 40, and 80 ms. Fig. 6(a) shows results for loss fre-
quency for a range of , with fixed at 80 ms, and varying
between 0.05, 0.10, and 0.20 (equivalent to 5, 10, and 20 ms).
Fig. 6(b) fixes at 0.10 (10 ms) while letting vary over 20,
40, and 80 ms. We see, as expected, that with larger values of ei-
ther threshold, estimated frequency increases. There are similar
trends for loss duration (not shown). We also see that there is a
trade-off between selecting a higher probe rate and more “per-
missive” thresholds. It appears that the best setting for comes
around the expected time between probes plus one or two stan-
dard deviations. The best appears to depend both on the probe
rate and on the traffic process and level of multiplexing, which
determines how quickly a queue can fill or drain. Considering
such issues, we discuss parameterizing BADABING in general In-
ternet settings in Section VIII.

Fig. 6. Comparison of the sensitivity of loss frequency estimation to a range
of values of � and � . (a) Estimated loss frequency over a range of values for
� while holding � fixed at 80 ms. (b) Estimated loss frequency over a range of
values for � while holding � fixed at 0.1 (equivalent to 10 ms).

B. Measuring Frequency and Duration

The formulation of our new loss probe process in Section VI
calls for the user to specify two parameters, and , where
is the probability of initiating a basic experiment at a given in-
terval. In the next set of experiments, we explore the effective-
ness of BADABING to report loss episode frequency and duration
for a fixed , and using values of 0.1, 0.3, 0.5, 0.7, and 0.9
(implying that probe traffic consumed between 0.2% and 1.7%
of the bottleneck link). With the time discretization set at 5 ms,
we fixed for these experiments at 180 000, yielding an exper-
iment duration of 900 s. We also examine the loss frequency and
duration estimates for a fixed of 0.1 and of 720 000 from
an hour-long experiment.

In these experiments, we used three different background
traffic scenarios. In the first scenario, we used Iperf to generate
random loss episodes at constant duration as described in
Section V. For the second, we modified Iperf to create loss
episodes of three different durations (50, 100, and 150 ms),
with an average of 10 s between loss episodes. In the final traffic
scenario, we used Harpoon to generate self-similar, web-like
workloads as described in Section V. For all traffic scenarios,
BADABING was configured with probe sizes of 3 packets and
with packet sizes fixed at 600 bytes. The three packets of each



SOMMERS et al.: GEOMETRIC APPROACH TO IMPROVING ACTIVE PACKET LOSS MEASUREMENT 317

TABLE IV
BADABING LOSS ESTIMATES FOR CONSTANT BIT RATE TRAFFIC WITH LOSS

EPISODES OF UNIFORM DURATION

TABLE V
BADABING LOSS ESTIMATES FOR CONSTANT BIT RATE TRAFFIC WITH LOSS

EPISODES OF 50, 100, OR 150 ms

probe were sent back-to-back, according to the capabilities of
our end hosts (approximately 30 s between packets). For each
probe rate, we set to the expected time between probes plus
one standard deviation (viz.,
time slots). For , we used 0.2 for probe probability 0.1, 0.1
for probe probabilities of 0.3 and 0.5, and 0.05 for probe
probabilities of 0.7 and 0.9.

For loss episode duration, results from our experiments de-
scribed below confirm the validity of the assumption made in
Section VI-D that the probability is very close to the
probability . That is, we appear to be equally likely to
measure in practice the beginning of a loss episode as we are
to measure the end. We therefore use the mean of the estimates
derived from these two values of .

Table IV shows results for the constant bit rate traffic with
loss episodes of uniform duration. For values of other than
0.1, the loss frequency estimates are close to the true value. For
all values of , the estimated loss episode duration was within
25% of the actual value.

Table V shows results for the constant bit rate traffic with loss
episodes randomly chosen between 50, 100, and 150 ms. The
overall result is very similar to the constant bit rate setup with
loss episodes of uniform duration. Again, for values of other
than 0.1, the loss frequency estimates are close to the true values,
and all estimated loss episode durations were within 25% of the
true value.

Table VI displays results for the setup using Harpoon web-
like traffic to create loss episodes. Since Harpoon is designed to
generate average traffic volumes over relatively long time scales
[29], the actual loss episode characteristics over these experi-
ments vary. For loss frequency, just as with the constant bit rate
traffic scenarios, the estimates are quite close except for the case
of . For loss episode durations, all estimates except for

fall within a range of 25% of the actual value. The es-
timate for falls just outside this range.

In Tables IV and V we see, over the range of values, an in-
creasing trend in loss frequency estimated by BADABING. This

TABLE VI
BADABING LOSS ESTIMATES FOR HARPOON WEB-LIKE TRAFFIC (HARPOON

CONFIGURED AS DESCRIBED IN SECTION V. VARIABILITY IN TRUE FREQUENCY

AND DURATIONS DUE TO INHERENT VARIABILITY IN BACKGROUND TRAFFIC

SOURCE

TABLE VII
COMPARISON OF LOSS ESTIMATES FOR � � ��� AND TWO DIFFERENT VALUES

OF � AND TWO DIFFERENT VALUES FOR THE � THRESHOLD PARAMETER

effect arises primarily from the problem of selecting appropriate
parameters and , and is similar in nature to the trends seen
in Fig. 6(a) and (b). It is also important to note that these trends
are peculiar to the well-behaved CBR traffic sources: such an
increasing trend in loss frequency estimation does not exist for
the significantly more bursty Harpoon web-like traffic, as seen in
Table VI. We also note that no such trend exists for loss episode
duration estimates. Empirically, there are somewhat complex re-
lationships among the choice of , the selection of and , and
estimation accuracy. While we have considered a range of traffic
conditions in a limited, but realistic setting, we have yet to ex-
plore these relationships in more complex multi-hop scenarios,
and over a wider range of cross traffic conditions. We intend to
establish more rigorous criteria for BADABING parameter selec-
tion in our ongoing work.

Finally, Table VII shows results from an experiment designed
to understand the trade-off between an increased value of , and
an increased value of . We chose , and show results
using two different values of , 40 and 80 ms. The background
traffic used in these experiments was the simple constant bit rate
traffic with uniform loss episode durations. We see that there
is only a slight improvement in both frequency and duration
estimates, with most improvement coming from a larger value
of . Empirically understanding the convergence of estimates of
loss characteristics for very low probe rates as grows larger
is a subject for future experiments.

C. Dynamic Characteristics of the Estimators

As we have shown, estimates for a low probe rate do not sig-
nificantly improve even with rather large . A modest increase
in the probe rate , however, substantially improves the accuracy
and convergence time of both frequency and duration estimates.
Fig. 7 shows results from an experiment using Harpoon to gen-
erate self-similar, web-like TCP traffic for the loss episodes. For
this experiment, is set to 0.5. The top plot shows both the dy-
namic characteristics of both true and estimated loss episode fre-
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Fig. 7. Comparison of loss frequency and duration estimates with true values
over 15 min for Harpoon web-like cross traffic and a probe rate � � ���.
BADABING estimates are produced every minute, and error bars at each estimate
indicate the 95% confidence interval. Top plot shows results for loss episode
frequency and bottom plot shows results for loss episode duration.

quency for the entire 15 min-long experiment. BADABING esti-
mates are produced every 60 s for this experiment. The error bars
at each BADABING estimate indicate a 95% confidence interval
for the estimates. We see that even after 1 or 2 min, BADABING

estimates have converged close to the true values. We also see
that BADABING tracks the true frequency reasonably well. The
bottom plot in Fig. 7 compares the true and estimated character-
istics of loss episode duration for the same experiment. Again,
we see that after a short period, BADABING estimates and con-
fidence intervals have converged close to the true mean loss
episode duration. We also see that the dynamic behavior is gen-
erally well followed. Except for the low probe rate of 0.1, results
for other experiments exhibit similar qualities.

D. Comparing Loss Measurement Tools

Our final set of experiments compares BADABING with ZING

using the constant-bit rate and Harpoon web-like traffic sce-
narios. We set the probe rate of ZING to match the link utiliza-
tion of BADABING when and the packet size is 600
bytes, which is about 876 kb/s, or about 0.5% of the capacity
of the OC3 bottleneck. Each experiment was run for 15 min.
Table VIII summarizes results of these experiments, which are
similar to the results of Section V. (Included in this table are
BADABING results from row 2 of Tables IV and VI.) For the
CBR traffic, the loss frequency measured by ZING is somewhat

TABLE VIII
COMPARISON OF RESULTS FOR BADABING AND ZING WITH CONSTANT-BIT

RATE (CBR) AND HARPOON WEB-LIKE TRAFFIC. PROBE RATES MATCHED

TO � � ��� FOR BADABING (876 kb/s) WITH PROBE PACKET SIZES OF

600 bytes. BADABING RESULTS COPIED FROM ROW 2 OF TABLES IV AND

VI. VARIABILITY IN TRUE FREQUENCY AND DURATION FOR HARPOON

TRAFFIC SCENARIOS IS DUE TO INHERENT VARIABILITY IN BACKGROUND

TRAFFIC SOURCE

close to the true value, but loss episode durations are not. For the
web-like traffic, neither the loss frequency nor the loss episode
durations measured by ZING are good matches to the true values.
Comparing the ZING results with BADABING, we see that for the
same traffic conditions and probe rate, BADABING reports loss
frequency and duration estimates that are significantly closer to
the true values.

VIII. USING BADABING IN PRACTICE

There are a number of important practical issues which must
be considered when using BADABING in the wide area:

• The tool requires the user to select values for and . As-
sume for now that the number of loss events is stationary
over time. (Note that we allow the duration of the loss
events to vary in an almost arbitrary way, and to change
over time. One should keep in mind that in our current for-
mulation we estimate the average duration and not the dis-
tribution of the durations.) Let be the mean number of
loss events that occur over a unit period of time. For ex-
ample, if an average of 12 loss events occur every minute,
and our discretization unit is 5 ms, then

(this is, of course, an estimate of the true
the value of ). With the stationarity assumption on ,
we expect the accuracy of our estimators to depend on the
product , but not on the individual values of , or

.3 Indeed, we have seen in Section VI-F2 that a reliable
approximation of the relative standard deviation in our es-
timation of duration is given by

duration

Thus, the individual choice of and allows a trade off
between timeliness of results and impact that the user is
willing to have on the link. Prior empirical studies can
provide initial estimates of . An alternate design is to
take measurements continuously, and to report an estimate
when our validation techniques confirm that the estimation
is robust. This can be particularly useful in situations where

is set at low level. In this case, while the measurement
stream can be expected to have little impact on other traffic,
it may have to run for some time until a reliable estimate
is obtained.

3Note that estimators that average individual estimations of the duration of
each loss episode are not likely to perform that well at low values of �.
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• Our estimation of duration is critically based on correct es-
timation of the ratio (cf. Section VI). We estimate
this ratio by counting the occurrence rate of , as
well as the occurrence rate of . The number
can be estimated as the average of these two rates. The val-
idation is done by measuring the difference between these
two rates. This difference is directly proportional to the ex-
pected standard deviation of the above estimation. Similar
remarks apply to other validation tests we mention in both
estimation algorithms.

• The recent study on packet loss via passive measurement
reported in [9] indicates that loss episodes in backbone
links can be very short-lived (e.g., on the order of several
microseconds). The only condition for our tool to success-
fully detect and estimate such short durations is for our
discretization of time to be finer than the order of duration
we attempt to estimate. Such a requirement may imply that
commodity workstations cannot be used for accurate active
measurement of end-to-end loss characteristics in some cir-
cumstances. A corollary to this is that active measurements
for loss in high bandwidth networks may require high-per-
formance, specialized systems that support small time dis-
cretizations.

• Our classification of whether a probe traversed a congested
path concerns not only whether the probe was lost, but how
long it was delayed. While an appropriate parameter ap-
pears to be dictated primarily by the value of , it is not yet
clear how best to set for an arbitrary path, when charac-
teristics such as the level of statistical multiplexing or the
physical path configuration are unknown. Examination of
the sensitivity of and in more complex environments
is a subject for future work.

• To accurately calculate end-to-end delay for inferring con-
gestion requires time synchronization of end hosts. While
we can trivially eliminate offset, clock skew is still a con-
cern. New on-line synchronization techniques such as re-
ported in [32] or even off line methods such as [33] could
be used effectively to address this issue.

IX. SUMMARY, CONCLUSIONS AND FUTURE WORK

The purpose of our study was to understand how to measure
end-to-end packet loss characteristics accurately with probes
and in a way that enables us to specify the impact on the bottle-
neck queue. We began by evaluating the capabilities of simple
Poisson-modulated probing in a controlled laboratory environ-
ment consisting of commodity end hosts and IP routers. We
consider this testbed ideal for loss measurement tool evaluation
since it enables repeatability, establishment of ground truth, and
a range of traffic conditions under which to subject the tool. Our
initial tests indicate that simple Poisson probing is relatively in-
effective at measuring loss episode frequency or measuring loss
episode duration, especially when subjected to TCP (reactive)
cross traffic.

These experimental results led to our development of a ge-
ometrically distributed probe process that provides more ac-
curate estimation of loss characteristics than simple Poisson
probing. The experimental design is constructed in such a way
that the performance of the accompanying estimators relies on

the total number of probes that are sent, but not on their sending
rate. Moreover, simple techniques that allow users to validate
the measurement output are introduced. We implemented this
method in a new tool, BADABING, which we tested in our labo-
ratory. Our tests demonstrate that BADABING, in most cases, ac-
curately estimates loss frequencies and durations over a range
of cross traffic conditions. For the same overall packet rate, our
results show that BADABING is significantly more accurate than
Poisson probing for measuring loss episode characteristics.

While BADABING enables superior accuracy and a better un-
derstanding of link impact versus timeliness of measurement,
there is still room for improvement. First, we intend to inves-
tigate why does not appear to work well even as
increases. Second, we plan to examine the issue of appropriate
parameterization of BADABING, including packet sizes and the

and parameters, over a range of realistic operational settings
including more complex multihop paths. Finally, we have con-
sidered adding adaptivity to our probe process model in a limited
sense. We are also considering alternative, parametric methods
for inferring loss characteristics from our probe process. An-
other task is to estimate the variability of the estimates of con-
gestion frequency and duration themselves directly from the
measured data, under a minimal set of statistical assumptions
on the congestion process.
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