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Abstract—The Domain Name System (DNS) is a critical piece
of Internet infrastructure with remarkably complex properties
and uses, and accordingly has been extensively studied. In this
study we contribute to that body of work by organizing and
analyzing records maintained within the DNS as a bipartite
graph. We find that relating names and addresses in this way
uncovers a surprisingly rich structure. In order to characterize
that structure, we introduce a new graph decomposition for DNS
name-to-IP mappings, which we term elemental decomposition.
In particular, we argue that (approximately) decomposing this
graph into bicliques — maximally connected components —
exposes this rich structure. We utilize large-scale censuses
of the DNS to investigate the characteristics of the resulting
decomposition, and illustrate how the exposed structure sheds
new light on a number of questions about how the DNS is used in
practice and suggests several new directions for future research.

Index Terms—Domain Name System, Graph Analysis, Domain
parking, IP address parking.

I. INTRODUCTION

The Domain Name System (DNS) is a critical element of
the Internet’s infrastructure. It serves as the basic translator
of names to addresses, but this simple description belies its
incredible complexity, and characterizing the DNS is accord-
ingly quite challenging. One challenge in characterizing the
DNS is its essentially distributed ownership: a plethora of
agents are empowered to place entries into the DNS, and they
do so for a wide range of reasons. The distributed ownership
and control of the DNS also means that a full accounting of the
contents of DNS (considered as a database) is quite difficult.
Further, the highly dynamic nature of the DNS, and the many
uses to which the DNS is put in practice, mean that a complete
picture of DNS contents at any time is elusive.

Despite these challenges, a number of efforts have been
made to characterize the DNS, in terms of observed traffic,
client and server installations, registration patterns and other
contents (reviewed in the next section). However, relatively
little work has taken a macroscopic view of the contents of
the DNS, considered as a graph relating names to addresses
(the ‘DNS graph’). This is a notable gap in understanding,
since the name-to-address graph can be considered to be at
the core of the information content of the DNS.

Understanding the DNS graph is important for a number of
reasons. First, an understanding of the structure present within
the DNS graph is a foundation for building models ((e.g., syn-
thetic workload generators, domain name generators, etc.)) and
can improve how we think about the design of DNS systems.

Second, the structures present within the DNS graph can shed
light on management practices (both of names and addresses)
and inform our understanding of how the DNS is configured
and used (as we will show below). Finally, considering the
DNS as a graph allows us to use graph structures to infer
relationships between entities. Examples of how relationship
inference can be useful include classifying domain names [1]
and inferring public cloud use [2]. However, despite these
evident benefits, the macroscopic nature of the DNS graph,
the structures it contains, and its statistical properties are still
largely unexplored.

This paper seeks to fill this gap in understanding in two
ways: first, from a characterization standpoint, we describe
properties of the DNS graph in terms of the structures present
and their statistical properties; and second, from an operations
standpoint, we relate those statistical properties to use cases
observed in the DNS. In doing so, we are able to quantify
known use cases as well as identify previously unappreciated
use cases.

To meet these goals, we focus on characterizing a macro-
scopic view of DNS contents, and we propose both concepts
and methods to address this challenge. We work with large-
scale censuses of the DNS provided by Rapid7 [3] focusing
specifically on A records, which map Fully-Qualified Domain
Names (FQDNs, e.g., www.google.com) to IPv4 addresses.
Each census comprises approximately 1.7B records. We note
that A records make up the vast majority of data stored in the
DNS. Each census defines a bipartite graph with billions of
edges.

Starting from this rich collection of datasets, we make four
contributions:

1) We provide the first statistical characterization of the
DNS graph. We show novel statistical properties, includ-
ing the presence of subgraph sizes that are simultane-

ously Zipf in two different parameters.
2) We describe a method for decomposing the DNS graph

into a collection of disjoint subgraphs while retaining
most of the edges in the original graph, and show that
our method scales to graphs with more than a billion
edges. This decomposition of the DNS graph that we
obtain is remarkably concise, and as a result we can get
a valuable statistical characterization of the DNS graph
by focusing on its subgraphs.



3) Using our method, we demonstrate that most of the
information in the DNS graph can be captured by
describing the DNS graph as a collection of bicliques

(fully connected bipartite subgraphs). We refer to this
as an elemental decomposition of the DNS graph. More
specifically, we show that by removing only a small
fraction of the edges in the DNS graph (approximately
5%–12%), what remains is exclusively a set of bicliques.

4) We show that our decomposition of the DNS graph
exposes various use cases for the DNS, and identifies
new, previously undocumented use cases.

Specifically: a key finding that emerges from our analysis is
that the sizes of DNS bicliques are well-modeled as a bivariate
distribution that exhibits Zipf-type scaling properties in both
dimensions simultaneously. While Zipf’s law has been applied
to the DNS in single dimensions in the past, we believe this
two-dimensional Zipfian characterization to be new.

We consider DNS elemental decompositions over a three-
year timespan and show that the broad characteristics of the
DNS graph are relatively stable. At the same time, we show
that elemental decomposition can provide new and valuable
insight on the nature of churn in the DNS. We find that churn
over the course of months and years is most pronounced in
instances of a single FQDN that maps to a single IPv4 address,
which we connect to activities of cloud and service providers.

We next relate the decomposition to various use cases for
the DNS. Within the elemental decomposition of the DNS
graph are many diverse kinds of bicliques, reflecting distinct
ways of using the DNS — for example, when many names
are mapped to a few addresses, or a few names are mapped to
many addresses. In fact, at both ends of this spectrum (‘many
names per address’ versus ‘many addresses per name’) we find
characteristic ‘parking’-type behaviors. We relate the notion of
‘domain parking’ to many-name, single-address components in
the graph that are managed by registrars. We also identify a
new use case that we term ‘address parking,’ which occurs
characteristically within many-address, single-name compo-
nents. We are unaware of prior studies that have described this
phenomenon, which we associate with IP address management
practices in large networks.

II. RELATED WORK

Active measurement of the DNS sends queries (possibly
from different vantage points) using lists of domain names that
are assembled using various techniques (e.g., web crawling).
Active measurement is useful for understanding how DNS
responds to a wide range of queries but is limited by the
coverage of the domain lists. Ongoing active measurement
systems for DNS include OpenINTEL [4], RIPE Atlas [5] and
Rapid7’s Project Sonar [3], which is the source of our data.
Alternatively, passive DNS measurement uses instrumentation
deployed within the network or at servers to gather data
(e.g., [6]). An advantage of passive measurement is that it
provides details on how the DNS infrastructure is being used
in situ, but it is limited by the need to deploy traffic-capture
capabilities in restricted locations. Both active and passive

measurements of the DNS have been used to characterize
its structure and behavior (e.g., [7], [8]). These studies point
to the vast scope of the DNS infrastructure which presents
challenges in characterizing its details; one of the challenges
that we address.

Also relevant to our work are prior studies on how domain
names are registered (e.g., [9]). Many have focused on domain
names used for malicious purposes and abuse (e.g., [10]–[13]).
Other studies have investigated domain parking (e.g., [14])
and typosquatting (e.g., [15]). These studies provide important
background for understanding the characteristics and dynamics
of domain names that we analyze in our work.

Prior investigations of content delivery networks (CDN)
and cloud providers also inform our work, as DNS plays a
central role in determining how users interact with CDN and
cloud services [16]–[18]. Building on these studies, our work
provides insights on aspects of CDN and cloud infrastructure
through analysis of how DNS names are mapped to addresses.

Our work takes a graph-centered view of the DNS. Previous
efforts organizing name-to-IP address mappings as an undi-
rected, bipartite graph have been applied mainly in the security
domain, e.g., to evaluate DNS agility (in terms of changes in
name-to-IP address mappings) [19] and characterize malicious
domains [20], and to study the interactions between DNS
resolvers [21]. While basic characteristics of the name-to-IP
address graph are reported for a limited set of transaction data
in [21], we are not aware of any prior studies that examine
the graph characteristics of a large-scale DNS census, nor any
that propose a model for how to understand structures within
the DNS, as we do in this paper.

Our methods rely on community detection techniques to
break a graph into groups of densely connected nodes [22]–
[24]). We use the Louvain method for community detection
due to its efficiently and accurately when applied to very large
graphs [25]. Finally, our elemental decomposition analysis
falls within the scope of general techniques for graph mining
and decomposition. Specifically, our focus on decomposition
into bicliques is related to the problem of minimum biclique
cover, which generalizes the clique cover problem on bipartite
graphs [26]. Our method resembles the pivot algorithm in
correlation clustering [27], motif-aware graph clustering [28],
and near bliclique extraction [29].

III. DATA

The primary source of data for our study is Rapid7’s
Project Sonar [3]. Rapid7 has been curating a running list
of domains for several years. They collect domains for their
list from several Internet wide scans that they perform on a
weekly basis. They perform reverse DNS lookup on the IPv4
space to collect names of hosts. Also, they perform a TCP
SYN scan across IPv4 on common ports, and then send an
HTTP(S) GET request if a host responds positively to a TCP
SYN port associated with a web server. The responses to the
HTTP(S) GET requests are scraped for domains and these are
added to their list. Additionally, if the server sends a TLS
certificate along with the response to the HTTPS GET scan,



the certificate is also scraped for any domains. These names
are also combined with zone files from various TLDs and
gTLDs to form an extensive list of domain and host names.

Rapid7 uses its list of host names and domains collected
from scanning activities to actively probe the DNS from three
Amazon Web Service (AWS) regions in the US. A DNS ANY
request is sent for each name on the list and the records that are
returned are then processed to transform the DNS responses
into compressed JSON objects. This process is performed
monthly by Rapid7 and the data files are made available
online [3].

While Rapid7 data includes a variety of DNS record types,
our focus is on A records, which provide FQDN-to-IPv4
address mappings. This choice recognizes that v4 remains the
dominant version of IP in the Internet today. We evaluate a
selection of monthly A record data sets to provide longitudinal
context for our findings and to assess churn in these mappings.
Considerations regarding the R7 Data. As mentioned pre-
viously, Rapid7 performs their DNS scan from three different
AWS regions in the US. As identified in prior work (e.g. [17]),
CDNs and similar services may cause domains to be resolved
to different IPs based upon the location of the DNS resolver
due to geographical load balancing. As a result, the resolution
of domains by Rapid7 will be skewed towards US-based hosts.

To assess the impact of Rapid7’s US-only vantage points,
we measured variations in name resolution across a set of
vantage points having greater geographic diversity. We chose
three locations in the US (N. Virginia, N. California, Oregon)
and three outside the US (Singapore, Sydney, London). Choos-
ing a set of 5,456,693 FQDNs at random from the Rapid7
data, we resolved each FQDN at each site. We find that 87%
(4,729,473) of FQDNs have a consistent mapping across all
six vantage points. Further, the number of additional mappings
found among the non-US vantage points is 7.1% (388,506).
Thus we estimate that data missing due to Rapid7’s US-
based vantage points is at a level that we believe does not
significantly impact our high-level results.

IV. METHODS

A. Connected Component Extraction

The first step of our analysis is to process a Rapid7 A
Record DNS dataset to construct a set of bipartite graph edges
and compute connected components (bipartite subgraphs). We
first read the raw Rapid7 compressed JSON records, removing
and counting any invalid record types (non-A record), invalid
(non-globally routable) IPv4 addresses, and any FQDNs that
do not conform to DNS RFCs 1034, 1035 and 3696 [30]–
[32]. We then externally sort the records and assign a compact
identifier to each unique FQDN. Following that, we separate
singleton records from non-singletons; a singleton is defined
as a FQDN that maps to one IP address, which itself maps to
only that FQDN. Connected components are then computed
on the non-singleton records, the result of which is a new
file containing a name ID, an IP address, and a connected
component ID.

The result of the above data processing is a set of connected
bipartite subgraphs. Each of these subgraphs can be classified
into one of 4 categories:

1:1 A single FQDN and a single IPv4 address (single-

tons).
1:M A single FQDN and more than one IPv4 address.

Note that the number of edges is necessarily M .
N:1 More than one FQDN and a single IPv4 address.

Again, the number of edges in a N:1 subgraph is
necessarily N .

N:M More than one FQDN and more than one IPv4
address. While the previous three elements are
already fully connected bicliques, at this stage
the N:M elements may or may not be maximally
connected.

Code to perform the above steps is written largely in Go,1
with some components in bash (to coordinate use of UNIX
sort, etc.) and Ruby (to coordinate parallel merging of files).

B. Community Detection via Louvain Modularity

Of the four categories of subgraphs extracted in the previous
section, the first three are already bicliques. The N:M non-
bicliques, i.e., N:M components which are not fully connected,
are typically quite large and difficult to comprehend without
further decomposition. For example, in the data sets we
consider, the largest of these N:M non-bicliques has hundreds
of millions of FQDNs and edges, and hundreds of thousands
of IPv4 addresses. The key to unlocking the structure in
these large N:M components is the observation that, by only
deleting a small fraction of edges, each N:M component can
be decomposed into a collection of bicliques.

To obtain this decomposition, we seek to identify the
densely-connected subgraphs within each N:M component.
This is a hard problem in general, and particularly so at
the scale we are working. However, we find that we can
obtain good results using a recursive edge-deletion process,
in which densely connected subgraphs are identified by the
Louvain modularity community detection [25]. Specifically,
modularity is a measure of the density of connections in a
subgraph (community). Our strategy is iterative, alternating
between detected dense subgraphs and pruning the bridge

edges connecting those subgraphs. As we show below, our
process only removes a small fraction of edges (5–12%), but
exposes the constituent bicliques. Each exposed biclique is a
fully connected instance of one of the four subgraph types;
we refer to these as elemental motifs. Moreover, we find that
the method converges very quickly and only requires 4 to 6
iterations of Louvain detection and edge pruning to converge
on the data sets discussed in the results. We observe that over
90% of the nodes from N:M non-bicliques are decomposed
into elemental motifs in the first iteration of our method.This
process allows us to analyze, approximately, the nature of

1We use the golang.org/x/net/publicsuffix package for computing suffix and
suffix+1 from an FQDN as needed for some processing. We also repurpose
some source code from the https://golang.org/src/net/dnsclient.go package to
identify invalid FQDNs according to RFCs 1035 and 3696.



the non-biclique components and the operational practices
represented in them by using the behaviors inferred from their
elemental motifs (constituent bicliques).

V. RESULTS

Our results take three forms: (a) characteristics of the DNS
bipartite graph and its connected components; (b) character-
istics of the elemental decomposition of the DNS graph; and
(c) analyses of the connected components within each class
of the decomposition, including the operational relevance and
implications of each class.

A. Rapid7 Dataset Characteristics

As described in § IV-A, the first step in processing Rapid7 A
record data removes invalid FQDN’s and IP addresses. These
are most likely caused by aspects of Rapid7’s data harvesting
process that may indiscriminately include invalid information.
Invalid names refer to FQDNs that contain invalid characters
according to RFC 1034 [30]. Invalid IPs refers to IP addresses
that are either malformed or that are not globally routable.
On manual inspection, we found that many of the invalid IPs
were actually FQDNs incorrectly stored as IPs in the Rapid7
record. Also, even though we explicitly use the Rapid7 data
sets advertised as containing DNS A records, there are indeed
non-A records present in the data. After removal of invalid
records, there were about 1.7B records in the 2020 months we
considered, with about 1.6B valid records in the 2019 month
we considered, and about 1.3B valid records in 2018.

B. Summary Characteristics of Connected Components

Figure 1 shows summary characteristics of connected com-
ponents for all 5 data sets considered. In the figure, we show
log-log complementary CDFs of the number of unique FQDNs
(left), the number of unique IPv4 addresses (center) and the
number of edges (right) per connected component. We observe
that each of these characteristics is heavy-tailed, as evidenced
by the linear profile over a range of scales [33]. We also
observe a great deal of consistency in connected component
characteristics over these five data sets.

In Table I we show the numbers of different types of
connected components. We see that the vast majority of
connected components are fully-connected bicliques and that
a large fraction of these are 1:1 (single-name, single-address)
components. We also see that there are more than 100x N:1
(multi-name) components than 1:M (multi-address) compo-
nents. Moreover, the table shows that of the N:M components,
most (⇡ 95%) are not fully connected.

To present a distributional view of the connected compo-
nents, we use the representation shown in Figure 2. This is
one of the primary representations we use to characterize the
DNS A record graph in terms of its structures, here and below.
It is a two-dimensional histogram, in which position (x, y)
represents the components having x addresses and y names.
The size of the marker at each point encodes the count of how
many components are present of that size. Note that there is
a log scale on the x and y axes, and also on marker sizes.

Like Table I, this figure depicts the DNS graph components
prior to decomposition. In this plot (and in plots below),
bicliques are shown in blue, while non-bicliques are shown in
red. Hence all 1:1 (singletons) are at the origin, 1:M bicliques
(multiple IP addresses connected to a single FQDN) lie along
the x axis at log(y) = 0, and that N:1 bicliques (a single IP
address connected to multiple FQDNs) lie along the y axis at
log(x) = 0. We see that while there are many fully-connected
N:M components, there are also a large number of not-fully-
connected (non-biclique) N:M components.

Of the non-biclique (red) points in Figure 2 we see some in-
teresting features. First, there are a high number of components
along the line x=y indicating that a common operational use
of the DNS is to have roughly similar numbers of names and
addresses that map to one another. We also observe a vertical
line around x=256 indicating that a common operational
configuration is to map multiple names to a subset of addresses
within an IPv4 /24 prefix. We also observe some clustering
around other powers of 2, e.g., 16, indicating a more general
operational pattern of assigning a collection of names to a
subset of addresses within a well-defined IPv4 prefix. Finally,
as previously noted, there are many large non-bicliques —
some with hundreds to thousands of IPv4 addresses and
with thousands to millions of FQDNs. The largest (in the
upper-right corner) has 270,553,077 FQDNs, 235,437 IPv4
addresses, and 344,707,222 edges.
C. Characterization of the Elemental Decomposition

Although Table I shows that there are relatively few non-
biclique N:M connected components, Figure 2 indicates that
these components can be extremely large. To gain insight
and to better understand the operational practices that lead to
components like these, we use our elemental decomposition
methods as described in Section IV-B.

Table II provides a high level view of how edges are pruned
when decomposing the DNS A record graph into smaller
communities (i.e., mostly bicliques). The table shows the
fraction of edges that are in bicliques before decomposition,
the fraction of edges cut during decomposition, and the total
fraction of edges that are associated with a biclique after
decomposition. The table shows that the decomposition is
accomplished by removing a relatively small number of edges
from the original bipartite graph, leaving most of the original
graph intact. We see in the table that the graph can be
decomposed by removing 5–12% of its edges. These results
show that for most edges in the original graph (88–95%), the
edge can be associated with a set of names and addresses in
which each name is connected to each address.

Table III shows the number of edges and bicliques in our
data after elemental decomposition over a three year period
and for the three months we consider in 2020. It shows that
in some cases the high level statistics of the decomposition
are relatively stable over both long and shorter time periods
(e.g., singletons and 1:M), while in other cases changes are
more substantial (e.g., increases in both edges and bicliques
for N:1s and a fairly large decrease in edges for N:Ms between
’19 and ’20).



Figure 1. Log-log complementary CDFs of the number of names (left), IP addresses (center), and edges (right) per connected component.

Table I
NUMBER OF CONNECTED COMPONENT MOTIF TYPES FOR CONNECTED COMPONENTS COMPUTED FROM EACH RAPID7 DNS A RECORD DATASETS.

Dataset 1:1 1:M N:1 N:M bicliques N:M non-bicliques

2018-10 772,549,944 371,845 39,630,092 68,666 617,368
2019-10 795,116,436 336,966 52,602,684 72,066 764,626
2020-09 762,495,293 348,915 63,140,326 56,893 822,018
2020-10 735,682,036 350,263 68,794,603 56,966 833,439
2020-11 727,606,285 347,255 63,459,342 56,223 823,058
2021-04 705,458,448 405,504 64,033,969 55,769 861,164

Figure 2. Connected Component Distribution Oct. 2020 (Pre-Decomposition)

Table II
EDGES REMOVED BY DECOMPOSITION

Year % Clique % Edges % Clique
Component Cut Edges

Edges

2018 79.93% 4.59% 95.41%
2019 71.06% 6.34% 93.66%
2020 66.64% 11.91% 88.09%

The statistics in Table III do not expose the extreme
heterogeneity of sizes found among the elemental motifs. To
illustrate that, in Figure 3 we show histogram characterizations
of the complete decompositions of the 2018, 2019, and 2020
data sets. Each of the plots in this figure represents a high-level
characterization of the entire DNS A record graph. Each plot

can be seen as characterizing the data in terms of a distribution
of elemental motif sizes. This is a bivariate distribution in N
and M . The figure confirms the Zipfian laws that apply to
names and addresses individually, and further suggests that
those laws extend to the N and M parameters of all the
elemental motifs.

We provide further evidence that the distribution of elemen-
tal motif sizes is a bivariate Zipf (or power-law) distribution in
Figure 4. This figure shows value-conditional ‘slices’ through
the Figure 3 histogram for the 2020 dataset. Each straight line
on log-log scale shows that for a particular value of M (resp.
N ) the density conditioned on that value is Zipfian (power-
law). There are some notable deviations from overall power-
law behavior: the distributions tend to deviate when N = 1 or
M = 1, suggesting that N:1 and 1:M motifs are special cases;
and there is a significant ‘bump’ around 200:1 to 400:1 (left
hand plot) which suggests that mapping a set of around 200-
400 names to a single address is another special case. However
we conclude that our results suggest that the collection of
A records in the DNS can be thought of — approximately

— as a collection of N:M bicliques in which the N and M
values form a two-dimensional Zipf distribution. This Zipfian
structure has implications for DNS operations and workload
generation, which we plan to investigate in future work.

Figure 5 shows summary characteristics of connected and
decomposed components, similar to the plot shown in Figure 1
for connected components prior to decomposition. In the
figure, we show log-log complementary CDFs of the number
of unique FQDNs (left), the number of unique IPv4 addresses
(center) and the number of edges (right) per connected compo-
nent. We observe in these plots that even after decomposing



Table III
SUMMARY OF ELEMENTAL DECOMPOSITION OVER 3 YEAR PERIOD.

Month,Year Type Singletons N:1 1:M N:M Bridge

October 2018 Edge 773,370,621 506,204,126 1,346,050 13,166,357 62,323,786
October 2018 Bicliques 773,370,621 40,463,017 412,749 70,772 N/A
October 2019 Edge 795,975,739 760,988,260 1,120,212 19,396,861 106,782,775
October 2019 Bicliques 795,975,739 53,800,420 368,146 74,231 N/A
September 2020 Edge 763,432,351 805,149,052 1,109,375 2,120,227 197,810,698
September 2020 Bicliques 763,432,351 64,528,682 381,296 59,733 N/A
October 2020 Edge 736,633,229 829,071,322 1,114,219 2,395,808 212,225,000
October 2020 Bicliques 736,633,229 70,197,556 382,890 59,619 N/A
November 2020 Edge 728,539,217 802,998,590 1,103,697 2,144,884 212,982,170
November 2020 Bicliques 728,539,217 64,844,076 379,653 59,151 N/A
April 2021 Edge 705,458,448 803,848,303 1,163,107 2,119,340 199,631,058
April 2021 Bicliques 705,458,448 64,033,969 405,504 58,379 N/A

Figure 3. Fully decomposed motifs for 2018 (left), 2019 (center), and 2020 (right) data sets.

Figure 4. 2020 Decomposition: Bivariate Zipf distribution of M : N motifs for fixed values of M and N . Listed k values are estimated power-law exponents
from shown fitted lines.

non-biclique components into elemental motifs we continue
to see heavy-tailed characteristics as evidenced by the linear
profile over a range of scales. We again observe a great deal
of consistency over the three years considered. These results
imply that the communities resulting from decomposition have
similar features as the aggregate collection of components
from the original graph.

D. Dynamics of the Elemental Decomposition

Each of our results so far gives a picture of the A records
in the DNS at a single point in time. In order to understand

the state of the DNS more thoroughly, we now characterize its
dynamic evolution from the perspective of elemental motifs.
We study changes occurring between the three months of
September, October, and November 2020. Note that, as dis-
cussed in Section III, while the Rapid7 measurement process
is not fully known, the set of FQDNs queried generally grows
from month to month. So the dynamics we observe could be
biased by the measurement process, but we expect this bias
to be small and that the results should be primarily driven by
actual changes in the DNS.

We characterize the evolution of the DNS by accounting for



Figure 5. Log-log complementary CDFs of the number of names (left), IP addresses (center), and edges (right) per community from decomposition.

edges (A records), looking at how edges move between motif
types. To make the accounting complete, we need to include
two additional categories of edges: those that appear/disappear
in any given snapshot, and bridge nodes (those that are pruned
by our methods, and so do not participate in elemental motifs).

We present the results of this analysis in the form of a
Sankey plot of monthly dynamics in Figure 6. The figure
illustrates a number of insights into the dynamics of DNS A
record mappings. First, we note there are about as many edges
in N:1 components as in 1:1 components. Hence, the use of
DNS mappings to map multiple names to a single host is quite
common. This is in contrast to the relatively small number of
edges in 1:M components. This disparity can be understood in
light of the fact that names (FQDNs) are an unlimited resource
while addresses are drawn from a finite set.

With respect to dynamics of A records, we observe that
there is a high rate of change overall. However change is
not equally distributed across motif categories. The highest
amount of change, both appearance and disappearance, takes
place among singletons; the second most dynamic category are
the bridge edges. On a monthly basis, edges in N:1 compo-
nents are overall much more stable than those in singletons,
suggesting a different role for N:1s compared to singletons
(which we elaborate below). For instance, with the monthly
dynamics we note that about 1/3 of the edges that disappear
in October re-appear in November (i.e., are churning). Again,
these are almost exclusively singleton edges. Finally, we
note that month-to-month movement of edges between the
bridge category and motifs is relatively rare, suggesting our
decomposition is fairly stable over time.

E. Analysis of Elemental Motifs

We now turn to examining characteristics of the elemental
motifs (bicliques) and the role that they play in the DNS.

1) Singletons: Elemental motifs that map a single name to
a single address (1:1) comprise a very large fraction of all
elemental motifs, as discussed above and shown in Table I.
The set of singletons includes all hosts for which a single
name has been assigned for management and access, e.g., for
remote login, web hosting, infrastructural purposes, etc. As
seen in Table III, nearly half of all A records in our data fall
into this category.

On closer examination and somewhat surprisingly, it ap-
pears that singleton mappings are used primarily for network

infrastructure management. For example, the suffixes that
appear most often among the set of singletons correspond to
Amazon AWS, Comcast, SBC, Verizon, and Roadrunner (in
that order). Inspection of examples of the FQDNs contained
in singleton mappings from these providers shows that most
names map to infrastructure interfaces and customer premises
devices. This is evident because in most cases the location
or role of the device or interface is encoded in some way in
the FQDN [34]. The largest single use of singleton mappings
by providers concerns what appear to be customer premises
equipment for broadband access.

These observations add nuance to an understanding of the
modern role of the DNS. While the traditionally stated role of
the DNS is to assign names to network resources [30], [31],
e.g., assigning names to addresses, it appears that currently,
one of the most common uses of those DNS mappings is in
infrastructure management.

2) N:1 Elemental Motifs and Domain Parking: Next, we
consider elemental motifs consisting of more than one name
mapped to a single address (N:1). As shown in Table III,
starting in 2020, this set of motifs contains more A records
than the singletons; however, as also shown in Table III, there
are less than 1/10 as many N:1 bicliques as singletons.

Table IV shows the top 5 Autonomous Systems and asso-
ciated organizations for N:1 bicliques. The table is dominated
by access networks and cloud providers. Beyond the top
5 are many additional canonical web- and virtual machine-
hosting organizations within the top 50, e.g., Digital Ocean,
Linode, Amazon, Google, etc. The N:1 motif is the most
commonly occurring operational arrangement within the DNS,
as it provides the commonly-used name aliasing capability of
DNS. Moreover, as we now discuss, it is used for domain

parking, where we observe occurrences of millions of names
mapped to a single address.

When examining the largest N:1 communities we find ev-
idence that our elemental decomposition exposes a collection
of parked domains. A parked domain is defined as a name that
is registered in the DNS but not hosting an actively maintained
web site. In the meantime it is typically used to generate
advertising revenue via a parking service [14]. To identify
whether an N:1 component represents a set of parked domains,
we compare the number of FQDNs in a biclique with the
number of unique suffix+1s. The intuition for this approach is



Figure 6. Monthly Dynamics by Elemental Motif. Each red box in the figure corresponds to a single census comprising about 1.8B edges (A records).

Table IV
TOP 5 MOST FREQUENTLY OCCURRING ASES FOR N:1 MOTIFS, OCTOBER

2020.

ASN Org Motif Count

20115 CHARTER-20115, US 8,847,365
3462 HINET Data Comm. Group, TW 8,807,258
5089 NTL, GB 6,120,802
6805 TDDE-ASN1, DE 4,858,137

16509 AMAZON-02, US 1,855,579

that we expect a set of domains parked on a single IP address
to exhibit a wide variety of suffix+1s. This is in contrast to
N:1 bicliques that may be used to provide several aliases for
the same host (and which may also be used in the context
of IP Anycast), which we argue are more likely to exhibit
some commonality in suffix+1. Indeed, we see many N:1
bicliques that follow this pattern. As an example, the largest
N:1 component contained 25,492,695 unique FQDNs mapped
to 34.102.136.180 which is an IP address owned by Google.
The FQDNs represent 25,489,294 unique suffix+1s (99.98%
of the total). The fact that nearly all FQDNs are also unique
suffix+1s suggests that these names represent a large number
of disparate organizational entities. By manual inspection of a
sample of these domains, we confirmed that they are parked
domains managed by GoDaddy.

To support our domain parking hypothesis, we adapt a
technique identified by Gowda et al. [35]. The intuition with
this approach is that web pages for parked domains often
exhibit a canonical structure, e.g., an “under construction”
banner or indication that the domain is for sale, etc. Our
approach focuses on the DOM hierarchy and extracting a
descriptor from it based on computing hashes of any style,
script, or link tags within a page, along with a hash of
the DOM structure itself. We consider two pages to have the
same underlying structure if they have identical descriptors.

Considering the same large N:1 component, we performed
HTTP GET requests to a random selection of its FQDNs until
the ratio of unique descriptors found to the total number of
samples is less than 0.01. In total, 3,989 FQDNs were sampled,
2,439 of which were discarded mainly due to expired domains

(a small number were network timeouts). Of the remaining
1,550 FQDNs that were successfully accessed and analyzed,
1,450 had the same descriptor. These domains used the same
parked domain template from GoDaddy. While these results
are limited, we view them as providing strong support that this
large N:1 biclique is involved in domain parking.

3) 1:M Elemental Motifs and Address Parking: Next, we
consider elemental motifs consisting of one name mapped to
multiple IPv4 addresses (1:M). Our first observation is that in
the vast majority of cases, the addresses in a 1:M bicliques are
all owned by the same organization. Using WHOIS Regional
Internet Registry (RIR) data from team-cymru.com, we exam-
ined the AS ownership of the prefixes in 1:M bicliques. We
find that 99.8% of 1:M bicliques contain addresses that all lie
within the same AS.

Next, in Table V we show the top 5 most frequently
occurring suffix+1’s for the one FQDN occurring in 1:M
components. For these components, in which a single name
is mapped to more than one IPv4 address, the naming pat-
terns used provide hints as to how different organizations
may use their allocated address space and manage hosts
in their networks. For cloudflare.net, for example,
the names follow a pattern of including a customer host-
name with cdn.cloudflare.net suffix, such as www.
tieto.cz.cdn.cloudflare.net or www.levi.jp.
cdn.cloudflare.net. Since Cloudflare is known to use
IP Anycast to perform load balancing [36], it is unsurprising
that we observe a reasonably large number of 1:M elemental
components with a suffix+1 of cloudflare.net . As an-
other example, we observe more than 6,000 components with
outlook.com suffix+1’s, suggesting that 1:M arrangements
are commonly used for load-balancing mail relay servers.

For other suffixes, the 1:M pattern appears to be used in
order to treat multiple addresses as a single unit for infrastruc-
ture management purposes. For example, with urlatt.net,
many of the names refer to aggregation devices for net-
work access, e.g., 200.chicago-09rh15-16rt.il.
dial-access.att.net. We hypothesize that in many of
these infrastructural-related 1:M motifs, the IP addresses are
assigned to M interfaces of a single device, e.g., a router, and



Table V
TOP 5 MOST FREQUENTLY OCCURRING SUFFIX+1S FOR 1:M MOTIFS,

OCTOBER 2020.

Suffix+1 Motif Count

awsglobalaccelerator.com 22,811
alcatel.com 7,053
cloudflare.net 6,838
outlook.com 6,818
att.net 6,693

Table VI
TOP 5 CLASSIFICATIONS OF 1:M COMPONENTS USING ENEMIESLIST.

Classification Count Addresses

static (infrastructure) 8202 84398
dynamic (e.g., DHCP-assigned) 2534 19992

legitimate mail source 1771 16644
unassigned 30 5067
NAT/proxy 267 2506

the single name is used to refer to the device as a whole.
We observe similar patterns and naming conventions for other
providers, e.g., Telstra; these findings are consistent with prior
work [34], but provide some additional insight due to the
observed relationship between these names and IPv4 addresses
through the DNS.

Address Parking. Analogous to the notion of a parked do-
main, we observe 1:M components in which the name suggests
that the associated IP addresses are not in use and not currently
assigned. For example, we observe FQDNs with words like
“reserved”, e.g., reserved.102net.gantep.edu.tr or
“unused”, e.g., unused.vmb-rostov.ru. We refer to the
practice of associating one or more IP addresses with a name
that indicates that those addresses are not in use as Address

Parking; we are unaware of other research that has previously
described this phenomenon. We hypothesize that Address
Parking is a manifestation of a particular style or method of
IP address management (IPAM). IPAM systems are prevalent
in large organizations and typically work hand-in-hand with
management and configuration of a DNS zone database to
maintain consistency between addresses and how/whether they
are in use, as well as names with which they are associated.

To gain some insight into components with apparent parked
IP addresses as well as other 1:M components, we used
the Enemieslist domain classification service, which classi-
fies FQDNs for policy-related purposes [37] such as spam
filtering. We focus on 1:M components with 4 or more IP
addresses associated with a single name. Table VI shows
the top 5 classifications by number of addresses. We found
that most components have names that are associated with
infrastructural-type roles such as routers, mail servers, DHCP
pools, NAT devices, cloud computing servers, etc. The “unas-
signed” category, with over 5,000 addresses in 30 components,
refers to parked addresses which are currently unused.

4) N:M Elemental Motifs: Finally, the N:M elemental com-
ponents exist as collections of name aliases mapped to a pool

of IP addresses. As with other elemental motifs, due to these
components being fully-connected bicliques the names and
addresses are functionally equivalent. These components are
most often associated with cloud infrastructure providers like
Cloudflare and Amazon Web Services which typically provide
a set of aliased FQDNs to their customers for accessing a
service that is load-balanced across a set of IP addresses.
While this finding should not be surprising — it is common op-
erational practice — the scale of some components we observe
(millions of names, thousands of IP addresses; cf. Figure 3)
has not been previously reported. For example, we observe
one component with 24M FQDNs mapped over 3 Cloudflare-
owned addresses, and another component with 88 FQDNs and
5790 IP addresses, where the suffix+1 is amazonaws.com.

VI. CONCLUSION

In this paper we have presented a first look at the graph
defined by the IPv4 mappings of the DNS, macroscopically
and in total. Although some prior studies have looked at small
samples of the DNS contents as a graph, to the best of our
knowledge ours is the first large-scale study that attempts to
examine a large portion of the DNS contents (A records)
as a graph. We showed that a useful way to decompose,
and therefore think about the DNS graph is as a collection
of bicliques, connected by a relatively small subset of non-
biclique edges. This suggests that bicliques are an important
organizing principle for the DNS. We identify four different
types of bicliques found in the DNS graph that we define
as elemental. We present high-level depictions in the form
of statistical characterizations of the DNS A record graph
using this elemental decomposition. We show that beyond Zipf
laws for names and addresses, we can think of the A record
name-to-IP mappings as a collection of bicliques whose sizes
are drawn from a two-dimensional Zipf-type distribution. And
finally, we examine details of the elemental motifs including
their churn over time and illustrate diferences in elemental
motif function within the DNS ecosystem.

Our work suggests a number of directions for future study.
First, we plan to expand our graph-based analysis of DNS con-
tents to include other record types, e.g., AAAA and CNAME
records, and higher levels of domain name aggregation. Next,
we plan to investigate how elemental motifs can reveal ma-
licious activity and inform security monitoring. Finally, we
will consider how operational practices related to DNS record
management (including IPAMs) can be improved using the
elemental motif perspective.
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