OFf: Bugspray for Openflow

[Extended Abstract]

Ramakrishnan Durairajan
University of Wisconsin

rkrish@cs.wisc.edu

ABSTRACT

The increasing complexity of software-defined (SDN) applications
requires comprehensive methods and tools for debugging and an-
alyzing program and network behavior. A key challenge in SDN
application development is that programs can interact with network
devices and configurations in unexpected ways, depending on traf-
fic and application mix. In this paper, we describe OFY, a debugging
and test environment for SDN program development. OFf lever-
ages the fs-sdn simulator, which was designed to offer simple-to-
use, accurate, and scalable evaluation of OpenFlow-based SDN ap-
plications. OFf offers a variety of commonly available debugging
features such as stepping, breakpoints, watchpoints, and inspection
and modification of program state. It also offers SDN-specific ca-
pabilities that facilitate network behavior analysis including packet
tracing and replay, visualization features, and alerts that are trig-
gered when, for example, configurations change.

Categories and Subject Descriptors: C.2.3 [Network Operations]:

Network Management; 1.6.3 [Simulation and Modeling]: Applica-
tions

Keywords: Debugging; OpenFlow; Software-Defined Networks

1. INTRODUCTION AND MOTIVATION

Development of complex SDN configurations, like other soft-
ware, requires tools and systems for facilitating debugging and pro-
gram analysis. While standard debugging capabilities such as step-
by-step execution, inspecting and modifying program state, and
tracking changes to variables are often sufficient for ordinary host-
based software, the distributed nature of SDN applications and con-
figurations significantly complicates debugging and testing. More-
over, the fact that a particular SDN configuration meets a design
specification may be inadequate for ensuring that it behaves in a
predictable and stable manner when deployed in a live environ-
ment.

SDN deployments must handle a wide range of operating condi-
tions, including the possibility of unanticipated traffic flows, and in-
teractions with other deployed applications. Such unexpected con-
ditions can lead to a variety of consequences including performance

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

HotSDN’14, August 22, 2014, Chicago, IL, USA.

ACM 978-1-4503-2989-7/14/08.

http://dx.doi.org/10.1145/2620728.2620776.

Joel Sommers
Colgate University

jsommers@colgate.edu

Paul Barford

University of Wisconsin
pb@cs.wisc.edu

degradation, exposure of security vulnerabilities, and application
failures. The potential severity and significance of these behaviors
demands robust testing capabilities that go far beyond standard de-
bugging and testing techniques, and includes the ability to assess
configurations across a spectrum of operating conditions.

In this paper, we describe OFf El, a debugging and test environ-
ment for SDN applications. OFfis designed to support debugging
and testing controller applications by enabling standard debugging
capabilities (e.g., stepping, breakpoints, and watch variables) as
well as a set of advanced capabilities to provide visibility into net-
work behavior. OFf’s SDN-specific capabilities enable comprehen-
sive testing of SDN applications in a representative, controlled and
repeatable fashion through key capabilities including packet trac-
ing, packet replay and visualization features, and alerts. OFf’s
unique capability to simultaneously trace program execution and
network state enables unwanted behavior in the network to be as-
sociated with the control program. OFfis designed to be used via
a simple command line interface and support is enabled by simply
including a library when coding the application.

2. BACKGROUND

In this section we give a brief overview of the fs-sdn tool on
which OFf is built, and describe prior studies that influence and
inform the design and implementation of OFf.

2.1 fs-sdn overview

fs-sdn [1]] is a simulation-based tool that is designed to facili-
tate prototyping and evaluating new SDN applications. It is based
on the fs [2] tool that was designed to efficiently generate realistic
network measurements such as flow records and SNMP-like coun-
ters for use in different types of networking studies. fs, and by
extension fs-sdn, use discrete event simulation techniques to gener-
ate network measurements and simulate network conditions. Un-
like other simulation-based systems, its core abstractions are based
on network flows and as a result it achieves much better perfor-
mance than packet-based simulators. fs-sdn extended the fs engine
by transparently incorporating the POX [3]] OpenFlow controller
framework and API, including switch components that can be con-
trolled and configured through the OpenFlow control protocol.

2.2 Related work

OFf is most closely related to research on tools to expose and
trace program and network state in SDN settings. In particular,
ndb [4] and its successor NetSight [5] offer some similar features
as OFf. A key difference, however, is that OFf offers capabilities
not only to trace network state, but also to trace controller program

ISource code for OFf is openly available to the community and can
be found at: https://github.com/52-41-4d/fs-master


https://github.com/52-41-4d/fs-master

execution state, thus tying together observed network behavior with
the control program that induced that behavior. OFfis also related
to OFRewind [6]], which enables replaying packets collected in an
SDN setting in order to understand the effect of different control
programs on traffic flows. Less directly related to OFf are efforts
to verify that certain invariants hold. In particular, the Anteater
system [[7]], Veriflow [8], and NICE [9] each seek to verify that
certain network properties are never violated.

3. OVERVIEW OF OFf

In this section we provide an overview of OFf, including its ar-
chitecture and features provided.

3.1 OFf Overview

OFfis a comprehensive source-level debugger that allows a de-
veloper to debug SDN applications. OFf does not require any spe-
cial effort from the developer before debugging an application: the
library can simply be included when coding the application like
any other standard library. OFf also does not require any additional
hardware and does not affect the program execution unless the de-
veloper issues a debugging command. Therefore, OFf can be used
only when needed during the application development.

3.2 OFf Architecture

OFf consists of two parts: the OFf Debugging Unit and OFf in-
terfaces that connect to the fs-sdn simulator and the SDN controller
platform. We describe each of these below.

3.2.1 OFf Debugging Unit

The debugging unit is composed of four components. First, a Ul
wrapper provides a text-based interface that dispatches commands
from the developer to one of the three other units and prints any
output to a display.

Second, the Debugger component provides an abstract interface
to a language-level debugger, running it as a child process. In our
prototype, it runs the Python PDB [10] debugger, building onto and
extending its features. It contains separate modules (with enhanced
features) to deal with all specialized OFf commands such as enable
and disable watch points, tracking variables, etc., that are not rec-
ognized by PDB. It also adds many features to the basic PDB com-
mand set by providing the ability to (i) longlist and shortlist source
code during debugging, (ii) pretty print expressions, (iii) hide and
unhide hidden code frames during debugging, (iv) interactive in-
terpreter with all variables in scope, (v) track, watch, or unwatch
variables, (vi) edit source files during debugging, (vii) enable or
disable break points on the fly, and (viii) sticky mode to visualize
code during debugging session.

The third component—Trace Replay—has the ability to repro-
duce network activity that has been captured in a trace and replay it
later. Finally, the Diff Report Generator component helps detect
changes in topology, mutations in rules/actions across switches,
and performance variations from previous runs (or across config-
uration changes) of fs-sdn, then generates a report to help assess
implications of configuration changes.

3.2.2 OFf Interfaces

The OFf Debugging Unit described above can be linked to the
development and debugging environment for applications by adding
one line of code to the controller application in the same way that
any other standard library would be included. The debugging li-
brary can be included in fs-sdn or in a controller module to help
debug either one.

Our current implementation of OFf is targeted towards debug-
ging applications written in Python, specifically for the POX con-
troller. However, OFf (as well as fs-sdn) is not limited to this soft-
ware platform. The debugger component can be amended with a
GDB [[11]] wrapper and support for NOX controller-based applica-
tions can be added. A GDB wrapper would also enable OFf to
support multiple programming languages and hardware platforms,
such as Java-based controllers and applications, as a virtue of multi-
language/multi-platform support provided by GDB.

4. SUMMARY

Ensuring that SDN configurations behave as expected is pred-
icated on careful and comprehensive debugging and testing. In
this work, we describe OFf, an SDN debugging and testing tool
that provides standard debugging capabilities such as stepping and
watch variables, as well as SDN-specific capabilities to assess de-
tails of network interactions and changes over iterations of the same
program. OFf is built on top of fs-sdn, which provides accurate
and scalable simulation of OpenFlow-based SDN configurations.
OFfis openly available to the community and development of ad-
ditional features and capabilities is ongoing. Specifically, we intend
to examine commonly reported SDN-related bugs and misconfigu-
rations to understand better how to best design features in OFf to
facilitate debugging.

Acknowledgments

This work was supported in part by NSF grants CNS-1054985,
CNS-0831427, CNS-0905186, ARL/ARO grant W911NF1110227
and the DHS PREDICT Project. Any opinions, findings, conclu-
sions or other recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the NSF,
ARO or DHS.

S. REFERENCES

[1] M. Gupta, J. Sommers, and P. Barford. Fast, Accurate Simulation for
SDN Prototyping. In Proceedings of ACM HotSDN, 2013.

[2] J. Sommers, R. Bowden, B. Eriksson, P. Barford, M. Roughan, and
N. Duffield. Efficient network-wide flow record generation. In
Proceedings of INFOCOM, 2011.

POX, Python-based OpenFlow Controller.
http://www.noxrepo.org/pox/about-pox/\
[4] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and
N. McKeown. Where is the Debugger for My Software-defined
Network? In Proceedings of ACM HotSDN, 2012.
N. Handigol, B. Heller, V. Jeyakumar, D. Mazieres, and
N. McKeown. I Know What Your Packet Did Last Hop: Using
Packet Histories to Troubleshoot Networks. In Proceedings of the
11th USENIX NSDI, 2014.
[6] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann.
OFRewind: Enabling Record and Replay Troubleshooting for
Networks. In Proceedings of the USENIX ATC, 2011.

H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King. Debugging the Data Plane with Anteater. In Proceedings of the
ACM SIGCOMM Conference, 2011.

A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey.
VeriFlow: Verifying Network-wide Invariants in Real Time. In
Proceedings of the 10th USENIX NSDI, 2013.

[9] M. Canini, D. Venzano, P. Peresini, D. Kosti¢, and J. Rexford. A
NICE Way to Test Openflow Applications. In Proceedings of the 9th
USENIX NSDI, 2012.

[10] Pdb: The Python Debugger.
http://docs.python.org/2.7/library/pdb.html.

[11] GDB: The GNU Project Debugger.
http://www.gnu.org/software/gdb/.

3

—

[5

—_

[7

—

[8

=


http://www.noxrepo.org/pox/about-pox/
http://docs.python.org/2.7/library/pdb.html
http://www.gnu.org/software/gdb/

	Introduction and Motivation
	Background
	fs-sdn overview
	Related work

	Overview of OFf
	OFf Overview
	OFf Architecture
	OFf Debugging Unit
	OFf Interfaces


	Summary
	References

