
ELECTRONIC COMMERCE PERFORMANCE STUDY

Bob Kinicki, David Finkel, Mikhail Mikhailov, Joel Sommers
Department of Computer Science
Worcester Polytechnic Institute

Worcester, MA 01609 USA

Sharon Cunningham, Yuriy Elkin, Ranga Gopalan, Mark Quinlivan
Stratus Computer, Inc.
55 Fairbanks Boulevard

Marlboro, MA 01752 USA

KEYWORDS

Electronic Commerce, Performance, Security

ABSTRACT

This paper presents the results of a project designed
to explore and evaluate the process of conducting
electronic commerce between Web browser clients
on the Internet and business servers located on a
corporate intranet. The project discusses the
development of an electronic commerce system
which runs a financial investment transaction
application. A key consideration in the
development of the system is the security
measures needed to assure the success of the
electronic commerce.

The report presents and analyzes the results from a
series of performance tests designed to understand
the tradeoffs between security and performance in
an electronic commerce application. The results
show that the SSL handshake is expensive and that
the effect of other security measures are dependent
on the specific architecture of the business
application.

INTRODUCTION

The emergence of the World Wide Web as a
significant medium for the exchange of information
in the business community has occurred very
rapidly. The next phase of this Internet revolution
currently moving forward is the use of Web
technology to conduct electronic commerce (EC).
However, complete acceptance and adoption of
business transactions over the Internet has been
slowed by concerns in the private sector over issues
of security, availability and performance of
electronic transactions traveling over the Internet
and into enterprise networks.

The speed at which the WWW has become part of
the commercial world is actually one of the
problems in studying whether corporations and
individuals can utilize the tools available on the

Internet to effectively and efficiently conduct
business. Many of the tools and toolkits available
for building and maintaining corporate Web pages
have been developed at breakneck speed, and these
products tend to be fragile because they were not
specifically designed to interoperate with a variety
of Web applications. Moreover, many of these
tools do not address the security and scalability
issues which have emerged as significant barriers
for Internet electronic commerce.

Another factor in evaluating the viability of
electronic commerce is the breadth of expertise
needed to interconnect the new software, computer
hardware and networking components which have
become standard pieces of the Internet interface. In
the fall of 1996, Stratus Computer, Inc. joined
with researchers from the WPI Computer Science
Department to form an Electronic Commerce
Research Consortium to conduct research on
electronic commerce. The goal of the EC project
was to design and build a prototype electronic
commerce system to serve as a testbed to study the
issues of security, performance, functionality and
availability. The objective was to select and
develop a small electronic commerce application
which included clients accessing a Web server from
a remote Web browser to perform a business
transaction which accessed both an application
database held inside a corporate network and
conducted a funds transfer via a credit card
company.

This paper discusses the design and
implementation of a prototype financial investment
transactions application running over an electronic
commerce system. A generic model of electronic
commerce is introduced in the next section. The
following section describes the three configurations
of the EC research system with varying levels of
security developed at Stratus Computer. The
remaining sections discuss testing methodology,
the results of the performance tests, and
conclusions and future research.

GENERIC ELECTRONIC COMMERCE
SYSTEM

System Architecture

When the Electronic Commerce Project began, part
of the objective was to explore emerging Internet
technologies. The plan was to choose a specific
EC application which required the research group to
select and evaluate currently available software
tools for building Web pages. The EC system
envisioned was divided into a front-end and a back-
end. The front-end consisted of a Web server
accessed by Internet clients through a Web browser.
The back-end included an application server
receiving transaction requests generated at the Web
server and communicating with the appropriate
corporate databases to carry out a transaction. The
application server issues requests to a database
server for specific database information and
subsequently interacts with an electronic credit card
processing system to handle the funds transfer
component of the transaction.

After wrestling with several implementation issues,
the generic EC model was modified to the simpler
configuration shown in Figure 1. The electronic
commerce activity is now divided into those
activities conducted on the Internet and those
communications carried out on a corporate intranet.
The Web server becomes the interface between the
Internet and the intranet by sending transaction
requests to an application server on the enterprise
network. The funds transfer interaction with a
credit card checking system was dropped from the
project because implementing this piece would
require a tedious and time-intensive conversion
from one network protocol to another network
protocol.

Initially the Internet/intranet interface included a
firewall mechanism. Due to time constraints, the
firewall implementation was pushed back to the
next version of the EC system. The baseline
version of the EC system includes no security
mechanisms. All messages between the Web
browser and the Web server and on the corporate
intranet are passed over the networks in the clear.
HTTP is the protocol between the browser and the
server, and TCP/IP is the protocol running over the
corporate intranet. Security features were
incrementally added to two other versions of the
EC system which are discussed in the next section.

Selection of a Business Application

The next major decision was selecting whether to
develop an application which included business-to-
business transactions or rather to focus on
business-to-consumer transactions. Once it was
concluded that a business-to-consumer model was
better suited to our investigative goals, a financial
investment service was selected as the application
to build on the EC system because it provided a
reasonable variety of transaction types and because

a prototype Web-based service could be built
quickly if the investment functions were supported
only for a restricted set of markets. Users gain
access to their portfolios by typing a user name and
password at the initial Web page, and once they are
authenticated an additional Web page presents
choices for customer actions.

IMPLEMENTATION OF AN ELECTRONIC
COMMERCE SYSTEM

Starting with the EC research model given in
Figure 1, the Electronic Commerce Research
Consortium began the development an EC test
system with Stratus Computer components within
the Stratus corporate network. The initial
development stage included a deliberate attempt to
utilize and compare “off-the-shelf” Web page
development products to access an electronic
commerce database. The lack of flexibility in these
products forced the research team to resort to using
C and Perl programming for a large part of the
development.

Basic Configuration

Instead of having multiple clients initiating Web
server requests from separate PCs, the test system
included a client driver process running on a single
Pentium PC running Windows NT. The driver
process executes a specified number of concurrent
threads sending HTTP requests to the Web server.
Each thread represents a browser client and adds
one unit of offered load to an EC system
experiment. The driver includes no display
mechanism. Data responses received by the driver
from the Web server are counted but not displayed
before being discarded. After a brief comparison
between a Netscape and a Microsoft Web server
showed little performance difference, the Microsoft
Internet Information Server (IIS) version 1.0 was
selected as the Web server because it was
compatible with currently available versions of
Stratus system software.

Web
Browser

Web
Server

Application
Server

DB
Server

Internet Intranet

Figure 1: Generic Electronic Commerce System

Client Driver

Pentium PC
WinNT

Web Server
MS IIS

Stratus Radio
WinNT

Application Server,
Database Server,

Oracle

HP-UX Polo

10 Mbps 100 Mbps
10/100 Mbps

Switch

100 Mbps

Figure 2: Stratus Electronic Commerce Research System

Application
Server

(C)

Database
Server

(C, Pro C)

Transient
Connections

Persistent
Connections

Web
Server

CGI
Stub
(C)

Oracle

… …

Figure 3: Server Connections for EC System

The PC hosting the client driver was connected to
an Ethernet LAN within Stratus and the path
between the driver and server included a 10/100
Mbps Ethernet switch. Figure 2 presents the
details of the experimental electronic commerce
system built. The Web server runs on a Stratus
Radio computer system running Windows NT. The
Web server uses CGI stubs written in C (see Figure
3) to send transaction requests over the Stratus
network to an application server running HPUX on
a Stratus Polo computer system. The application
server interacts with a database server residing on
the same Polo machine. The database server

converts the application requests into specific
requests to an Oracle database on the Polo machine.

Figure 3 gives the connection details between the
three servers. The CGI Stub in the Web server
communicates with the application server via
transient connections which are disconnected when
the application server responds to the Web server
request. The connections between the application
server and the database server and the

Web
Browser

Web
Server

Application
Server

DB
Server

SSL

Figure 4: EC System with SSL

Web
Browser

Web
Server

Application
Server

DB
Server

SSL

encrypted

channel

encrypted

channel

Figure 5: EC System with SSL and Back End Encryption

connections between the database server and the
Oracle database were implemented as persistent
connections to avoid significant performance
degradation when accessing the database.

Configuration with Security between the
Browser and the Web Server

The basic configuration provides no security
protection for clients conducting electronic
commerce via an Internet browser. Figure 4 shows
the Secure Socket Layer (SSL) protocol [1] added
to the base configuration to provide encrypted
communications between the browser and the
server. Since SSL negotiates the use of different
ciphers when establishing a connection, the RC4
cipher in exportable (40 bit) mode was used for all
SSL connections.

The SSLEay [2] implementation of SSL and the
RSA BSAFE [3] encryption library for the RC4
cipher were used to build this configuration. To
establish a secure channel, a TCP connection is
opened to port 443 (a well-known port) on the
Web server and then the SSL handshake protocol is
executed to set the session parameters which
include the cipher algorithm and the secret key used
for the session. No client authentication process is
implemented because the user is authenticated by
the login/password sequence upon initial access to
the financial services system.

The SSL protocol has a standard mechanism for
resuming sessions with an SSL server which is
designed to simplify the handshake process.
However, Stratus computer systems feature failover
mechanisms for improved availability. Thus the
Stratus Electronic Commerce Research System
includes an SSL handshake for each HTTP request
and SSL version 2.0 was used in implementing the
EC system.

System with SSL and Back End Encryption

The SSL configuration includes mechanisms to
deal with security attacks carried out on the open
Internet, but security techniques are also needed at
the Internet/intranet interface and within the intranet
itself. Firewalls are the currently accepted
mechanism for dealing with security protection at
the Internet/intranet interface. As previously
mentioned, the firewall implementation has been
designated for the next phase of this research study.
This section discusses the security measures
implemented to protect the electronic commerce
data traveling over the corporate intranet.

The SSL and Back End Encryption configuration
shown in Figure 5 includes encryption of all data
transferred between the CGI program on the Web
server and the application server and between the
application server and the database server using the
IDEA cipher [4]. IDEA is a symmetric cipher
where a private key used to encrypt is also used to
decrypt messages. This implies the private key
must be securely stored at both servers.

The IDEA cipher is used instead of SSL between
the CGI program and the application server
because the connections between these two
processes are transient. If SSL were used, each
client transaction would require two SSL
handshakes.

Table 1

 Transaction Types

Identifier Transaction Description
1 Web server only Simple HTTP GET request to gauge performance of non-

CGI operations.
2 Customer validation If user name and password match in database, return main

option page (look at account information, display open
orders, display transaction history, etc.)

3 Open orders display Display a table of the customer’s open orders
4 Transaction history display Display a table of the customer’s completed orders.
5 Load order entry page Get HTML form for customer to create an order. Loading

this page involves getting the full list of securities from
the database (250 symbols and names). This transaction
returns the most data, so it is the most network and
encryption intense.

6 Create order Use information entered in the form generated from
transaction 5 and create the customer order.

7 Transaction mix Mix consists of 8 atomic transactions: customer
validation, load order entry page, create order, display
transaction history, customer validation, load order entry
page, create order, display open orders.

PERFORMANCE TEST METHODOLOGY

This section discusses the details of the
performance tests and includes the specific set of
transaction types implemented for testing.

Test Configuration Issues

The Stratus Electronic Commerce Research
Consortium conducted a series of experiments on
the three configurations described above. The tests
are controlled through the client driver program
running on the PC. Throughput and round-trip
response times are measured by time-stamping
activities at the PC. The response time includes
the time to open a TCP socket to the Web server,
make the HTTP request, receive the HTTP reply,
and close the socket. Reported response times are
averaged over all concurrent threads.

The driver program has a command line interface
for specifying the number of concurrent client
threads to spawn for a given test. At driver startup,
each spawned thread loads a text file for a specified
transaction type. The text files contain the
sequence of HTTP requests to make to the server
for a given transaction type. If HTTP POST
queries are requested an additional file containing
POST form data is loaded. Each test run consists
of each of the clients looping through the set of
HTTP requests for a 30 second warm-up period (no
statistics collected) followed by a 1 minute test
with performance monitoring.

In the driver implementation the standard TCP
close sequence caused severe degradation to the
transaction execution rate. This problem was
bypassed by having the driver use the shutdown

system call instead of the close system call.
Another problem encountered when running
experiments was the behavior of the Microsoft IIS
1.0 server when it was forced to handle a high
number of CGI requests. After a sustained period
with many CGI connections, the behavior of the
server system became erratic. Our test times were
restricted because of this problem, but rebooting
the system between runs helped to avoid this
problem.

Financial Investment Service Transactions

After reviewing expected customer actions within
the framework of a financial services application,
the research group created seven transaction mixes
to characterize the behavior of electronic commerce
clients (see Table 1). The types were chosen to
isolate some of the expected performance effects
due to specific transactions. For example, a type
1 transaction does not access the Oracle database
and consequently has a shorter response time than
t h e o t h e r t r a n s a c t i o n types.

Transaction Rates

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Offered Load

T
ra

n
s

a
c

ti
o

n
s

 p
e

r
S

e
c

o
n

d

No Security

SSL

Transaction Rates for Transaction 1

Figure 6a

Round-Trip Times

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

Offered Load

R
es

p
o

n
se

 T
im

e
(m

s)

No Security

SSL

Response Times for Transaction 1

Figure 6b

PERFORMANCE RESULTS

This section presents the results from a series of
tests run on the three configurations discussed
above. The tests were devised to examine the
performance of the electronic commerce system by
increasingly incorporating security components into
the system. By varying the transaction mixes, the
experiments provide insight into the relative cost of
security mechanisms for a variety of client
activities.

Retrieving Static Web Pages

The first set of tests conducted isolate the effects of
adding SSL between the Web browser and the Web
server. This is done by running a test where the
clients repeatedly issue transaction 1 requests (see
Table 1). These simple HTTP GET requests
require the server to access only static Web pages.
The server issues no CGI operations and the back-
end of the system is not involved in the
transaction.

Figure 6 shows the results from two series of tests
run using only transaction 1 requests where the
number of concurrent clients (offered load) at the

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10

Offered Load

T
ra

n
s

a
c

ti
o

n
s

 p
e

r
S

e
c

o
n

d

No Security
SSL
SSL and Back Encryption

Transaction Rates for Transaction 2

Figure 7a

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10

Offered Load

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

)

No Security
SSL
SSL and Back Encryption

Response Times for Transaction 2
Figure 7b

driver is varied from 1 to 10. The specific
transaction is a request for the Web server root
document /index.html .

The No Security curve corresponds to tests run on
the basic configuration while the SSL curve
represents tests run on the SSL configuration
represented in Figure 4.

Figure 6a shows dramatically the performance cost
associated with adding SSL. With only one client

the difference in transactions per second (tps) is 50.
With no security measures, the tps rises linearly to
100 tps at 3 clients and stays at that level for loads
of 100 clients (not shown in figure). With SSL
the transaction rates quickly levels off at 17 tps.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Offered Load

T
ra

n
s

a
c

ti
o

n
s

 p
e

r
S

e
c

o
n

d

No Security

SSL

SSL and Back
Encryption

Transaction Rates for Transaction 5

Figure 8a

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10
Offered Load

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

)

No Security
SSL
SSL and Back Encryption

Response Times for Transaction 5

Figure 8b

The response time results in Figure 6b are
consistent. SSL yields slower response times even
for a single customer, and at a load of 10 the SSL
response time is 5 times slower than the system
without SSL. A further refinement of the
measurements show that the SSL handshake is
responsible for about 75% of the total response
time in Figure 6b.

Encrypted CGI Requests

The next set of tests study the effects of adding
encryption to the messages between the three
servers (Web, application and database). Note all
transaction mixes except type 1 issue HTTP POST
requests. This means that for transactions 2
through 7 the CGI program at the Web server is

invoked and the application and database server are
involved.

Figure 7 presents the results for all three
configurations when the clients are issuing only
type 2 transactions, customer validations. The
increased security of encrypted messages has little
effect on the transaction rates and response times
shown in Figure 7. Comparing the insecure type
1 transaction (static Web page fetching) rates in
Figure 6a with the insecure type 2 transaction
(dynamically-generated Web pages) rates in Figure
7a, one sees a drop from 100 tps to 6tps at a load
of 5 concurrent clients. These results imply that
the cost associated with accessing the backend of
the process (the application and database server) is
significantly higher then the overhead attributed to
secure communications.

The back-end performance cost reported for
dynamically-generated Web pages can partially be
attributed to using CGI instead of using native
server API at the Web server. The overhead of
using native API to generate Web pages and issue
requests to the application server is much less than
CGI overhead. However, a CGI implementation is
portable not only across Web servers but also
across operating systems and hardware platforms.

Figure 8 presents results from a set of tests where
only transaction type 5 requests are issued. Type 5
transactions send much more data then type 2
transactions. Since the largest component of SSL is
the handshake, Figure 8 shows that the relative
impact of the SSL overhead is reduced when more
data is sent per transaction.

CONCLUSIONS AND FUTURE RESEARCH

The Stratus Electronic Commerce Research
Consortium implemented a prototype financial
services application on an EC research system
within the Stratus corporate network. Three distinct
configurations (Figures 2, 4 and 5) were employed
to study the impact of secure sockets and message
encryption on end-to-end electronic transactions.
The results from a series of experiments show that
an SSL handshake severely reduces the transaction
processing rate.

The cost of encrypting messages is small relative to
the cost of using CGI stubs and the high overhead
inherent in an Oracle database access. The impact
of the SSL handshake is shown to be reduced when
the volume of data transmitted per transaction is
high.

The use of several different transaction types for the
financial services system produce significant
performance differences. This suggests that the
design and performance of an electronic commerce
system will depend on the nature of the business
transactions.

The next phase of this research will include
building a firewall between the client driver and the
Web server. The Stratus EC Research Consortium
hopes to expand the financial services applications
to include live data and interface the system to a
credit card processing system through an internal
product which would allow the transactions to go
over protocols other than TCP/IP. The EC
research system was designed such that multiple
servers could be implemented at the Web server,
the application server or the database server.
Multiple server tests are needed to bring the
transaction rate for the secure configurations up to
an acceptable level.

REFERENCES

1. http://home.netscape.com/eng/ssl3/index.html

2. http://www.psy.uq.edu.au:8080/~ftp/Crypto
3. http://ftp.rsa.com/rsaref/
4. Schneier, Bruce, Applied Cryptography, 2nd
Ed., Wiley, New York, 1996.

