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Abstract—A paper by Zhang et al. in 2001, “On the Constancy
of Internet Path Properties” [1] examined the constancy of end-
to-end packet loss, latency, and throughput using a modest set
of hosts deployed in the Internet. In the time since that work,
the Internet has changed dramatically, including the flattening
of the autonomous system hierarchy and increased deployment
of IPv6, among other developments. In this paper, we investigate
the constancy of end-to-end Internet latency, revisiting findings of
the earlier study. We use latency measurements from RIPE Atlas,
choosing a set of 124 anchors with broad geographic distribution
and drawn from 112 distinct autonomous systems. The earlier
work of Zhang et al. relies on changepoint detection methods to
identify mathematically constant time periods. We reimplement
the two methods described in that earlier work and use them on
the RIPE Atlas latency measurements. We also use a recently-
published method (HMM-HDP) that has direct support in a RIPE
Atlas API.

Comparing the three changepoint detection methods, we find
that the two methods used in the earlier work may miss many
changepoints caused by common level-shift events. Overall, we
find that the recently proposed HMM-HDP method performs
substantially better. Moreover, we find that delay spikes—as
defined by the earlier work—are an order of magnitude less
prevalent than 20 years ago. We also find that maximum change-
free regions (CFRs) along paths that we observe in today’s
Internet are substantially longer than what was observed in
2001, regardless of the changepoint detection method used. In
particular, the 50th percentile maximum CFR was on the order
of 30 minutes in the earlier study, but our analysis reveals it
to be on the order of 3 days or longer. Moreover, we find that
CFR durations appear to have steadily increased over the past
5 years.

Index Terms—Network latency, network delay, change-point
detection

I. INTRODUCTION

Latency is a critical factor in Internet application perfor-
mance and user quality of experience. On the web, increases
in latency are associated with user abandonment and lower
ad conversions [2], [3], and a number of services exist to
monitor and diagnose latency [4], [5]. More broadly, there
has been a great deal of research over the past decades on
measuring and predicting Internet latency, studying its effects,
and investigating mitigations, e.g., [1], [6]–[25].

Understanding the stability or constancy of latency over
time is also of critical importance, since transport protocol
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performance typically depends on estimates of round-trip time
(RTT) and throughput can suffer in the face of dramatic shifts
or variation in RTT [26]–[29]. A study by Zhang et al. ≈ 20
years ago established characteristics of latency in terms of its
mathematical constancy, operational constancy, and predictive
constancy [1] using measurements collected from Paxson’s
NPD hosts [30]. In the time since that study, the Internet
has changed in dramatic ways with the rise of IXPs and
the flattening of the autonomous system hierarchy [31]–[37],
massive increases in the number of home users connected
through high-speed broadband [38]–[41], continued growth in
bandwidth both in the core and at the edge [42], [43], and
continued evolution in application popularity. In 2000, the web
was still in its infancy and was the most popular application;
today, streaming video constitutes well over 50% of all Internet
traffic [41], [44]–[46].

In this paper, we evaluate the constancy of Internet la-
tency. We specifically focus on the notions of mathematical,
operational, and predictive constancy as described in the
earlier influential work of Zhang et al. [1]1. There are many
differences in the Internet between that time and now, and
our methods and the data we use are also rather different.
In particular, we use latency measurements from the RIPE
Atlas project [47], using anchor mesh measurements from 124
anchors distributed across 88 countries, 6 continents, and 112
autonomous systems. Each of the anchors we use is dual-stack,
allowing us to evaluate constancy in both the IPv4 and IPv6
Internet; [1] only considers IPv4 since IPv6 was only lightly
deployed at the time. Moreover, the work of Zhang et al.
relied on two changepoint detection methods for segmenting
time into periods of mathematical constancy, CPBootstrap and
CPRankOrder. We reimplement those methods, and compare
their efficacy with a recently proposed Hidden Markov Model-
based approach (HMM-HDP), which is directly supported
through a RIPE Atlas API [48]. In our comparison of the
three changepoint detection methods, we find that each of
the two methods used in the earlier work miss a number of
changepoints caused by level-shift events. We also find that,
to a lesser extent, they identify spurious changepoints in the
midst of stable round-trip time measurements. Overall, we
find that the recently proposed HMM-HDP method performs

1Zhang et al. considered constancy of packet loss, latency, and throughput;
we restrict our study to characteristics of latency.978-3-903176-40-9 ©2021 IFIP



substantially better.
In our detailed evaluation of the “steadiness” or constancy

of Internet latency, we find significant differences between
what is observed in today’s Internet compared with the earlier
findings. Specifically, in our analysis of the raw latency
measurements, we find that delay spikes are an order of
magnitude less prevalent than 20 years ago. In particular,
latency measurements that are 10x the median latency or
higher occur roughly every 1 in 10,000 measurements in the
RIPE Atlas data we use, but occurred roughly every 1 in 1,000
in 2001. We examine the results of changepoint analysis on
the raw latency time series and find that maximum change-
free regions (CFRs) are substantially longer than what was
observed in 2001, regardless of the changepoint detection
method used. For example, whereas the authors of the earlier
study found that “delay appears well-described as steady on
time scales of 10–30 minutes”, we find that delay can be
characterized as steady on time scales of 15 minutes to several
hours. Further, whereas the 50th percentile maximum CFR
was about 30 minutes in 2001, we observe it to be on the
order of 3 days today. We also find that CFR durations appear
to have steadily increased over the past 5 years, and that delay
constancy on intra-continental paths varies substantially, with
European and North American paths being the most stable for
both IPv4 and IPv6. Because of differences in the underlying
data sources used in the previous study and ours, one must be
cautious in drawing too fine a comparison between our results
and past findings. Nonetheless, our results and comparisons
with the Zhang et al. study strongly suggest that Internet
latency characteristics have changed dramatically over the past
20 years.

II. RELATED WORK

Measuring and understanding characteristics of latency on
Internet paths has been an object of study since the begin-
nings of the Internet [6], [10], [49] and its predecessor the
ARPAnet [50]. These studies (e.g., [49] in particular) observed
level-shifts and other non-steady behavior over the course
of a day. The measurement studies by Paxson in the late
1990s established a baseline for much of what was known
about end-to-end delay in the early years of the commercial
Internet [8], [30]. Since that time many works have sought
to characterize delays in the Internet, e.g., [15], [51]–[54].
Today, several ongoing projects collect and publish delay
measurements across the Internet [47], [55], [56].

Many works have investigated active (probe-based) methods
for measuring delay to improve over the ubiquitous ping tool
which uses ICMP echo request/reply. For example, Baccelli et
al. examined methods for unbiased probing [57], [58], Gum-
madi et al. developed a method for measuring delay between
arbitrary DNS servers [9], and Pelsser et al. investigated the
effect of load balancing on standard ICMP echo request/reply
(ping) delay measurements [17]. Besides measurement of
delay, a number of works have investigated measurement of
jitter or delay variation, which is important in streaming
application protocols, e.g., [13], [23], [59]. Yet other works

have used delay measurements (or relative delays between two
or more packets) to infer Internet link capacities [60], available
bandwidth [61], and network congestion [62]–[64].

The first work to look explicitly at the constancy of Internet
delay along end-to-end paths was that of Zhang et al. [1],
[65]. This work, of course, is the main inspiration for our
study. The work by Zhang et al. developed methods for
identifying time points (changepoints), between which Inter-
net path performance properties can be considered constant.
Recently, Mouchet et al. developed a new technique for
identifying changepoints in a time series of Internet delay
measurements [48], complementing a larger body of work on
changepoint detection in time series (e.g., see [66], [67]). In
our work, we use the three changepoint detection techniques
from each of these works [1], [48]. Although other works have
examined the question of how end-to-end latency has changed
in the Internet over time (e.g., [54]), we are not aware of
studies more recent than [1] that have looked at the constancy
of Internet latency.

III. DATA AND METHODS

In this section we describe the data used in our study and
the methods used for analysis.

A. Data

We obtained the latency measurements for this study from
RIPE Atlas [47]. In particular, we use built-in anchor mesh
ping measurements, which are performed periodically (every
4 minutes) among the full mesh of Atlas anchors [68]. Anchors
are well-provisioned hosts located at academic institutions,
IXPs, datacenters and the like. The primary reasons we used
measurements from these hosts as opposed to the broader
set of Atlas probes are that latency measurements have been
observed to be more accurate [69] because of the more capable
hardware on which anchors are deployed, and also that we
desired a dual-stack set of hosts that has been observed to be
stable and highly available within RIPE Atlas.

We selected 124 dual-stack anchors with broad geographic
coverage—6 continents and 88 countries are represented2.
Figure 1 shows a map of where anchors we used are located
(using the fuzzed coordinates provided through RIPE Atlas
APIs). The selected set of anchors also has good distribution
across host networks: 112 distinct autonomous systems are
represented. Anchors are well-connected to the Internet, and
we recognize that—besides low coverage of the overall num-
ber of ASes and world geography—another limitation of our
study is that latency characteristics observed through anchor
mesh measurements may not be representative of what may
be experienced by “ordinary” end hosts. We plan to expand
our study in the future to consider additional endpoints to
improve AS and geographic coverage. We note, however, that
in the study by Zhang et al., the authors used hosts within
the NIMI platform [70], which were strongly biased toward

2The full list of anchors used in our study is available at https://www.cs.
colgate.edu/∼jsommers/data/probes fqdns tma21.csv.
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deployments in the United States, and which were also well-
connected (about half were deployed in academic institutions
and the remainder at research organizations). Two data sets
are described in [1] which were derived using 31 hosts or 49
hosts. Given the greater number of anchors we use, the number
of distinct paths considered in our study is also much larger.

As with the earlier study, latency measurements in RIPE
Atlas are round-trip time measurements, not one-way delays.
Beyond that similarity, there are many differences between
what was done earlier and how RIPE Atlas latency mea-
surements are collected. In Zhang et al., Poisson-modulated
probing was used, with rates of 10 Hz or 20 Hz depending
on which data set, and measurement between a pair of hosts
was done continuously for one hour at a time. One data set
used by those authors was collected in Winter 1999–2000
and the other collected about a year later. On RIPE Atlas,
each latency measurement consists of three ICMP pings, with
4 minutes (240 seconds) separating each measurement. The
data on which we focus for much of our study was collected
in the two week period of January 1–January 15, 2020. We
also consider data collected in January 1–15 from 2016–2021
for longitudinal analysis. Note that there are 15,120 individual
RTT measurements between a given anchor pair (three probes,
every four minutes, over two weeks) and that with 124
anchors, there are 7,626 distinct pairs3. We chose a two-
week period to roughly match the quantity of measurements
collected from [1]. We used both raw data available from
RIPE Atlas as well as the results from running HMM-HDP
analysis [48] on the same time period for each anchor pair
considered in our study. In our results, we highlight differences
in findings between the earlier study and ours, but because of
the differences in context and data used in [1] and our work
any direct comparisons are done with caution.

Fig. 1. Map of anchors in RIPE Atlas used in our study.

B. Methods

Identifying changes between regions of steady or constant
behavior was of critical importance in the methods employed
by Zhang et al. [1]. In our work, we use three changepoint
detection methods to analyze latency measurements for each
distinct anchor pair. We re-implemented CPBootstrap and
CPRankOrder, as described and used in [1]. We also used

3We used only one set of measurement data between a given anchor pair
since the measurements are round-trip and our analysis yields the same results
for each direction.

the HMM-HDP method described in Mouchet et al. [48]
as available through a RIPE Atlas API. Figure 2 shows
example timeseries plots with each of these three analyses for
a path between an anchor in Barcelona, Spain and another in
Frankfurt, Germany. One week of the trace is shown (7 Jan.–
14 Jan. 2020). Vertical dashed lines in each time series indicate
where a given changepoint detection algorithm has determined
that a change has occurred. We observe for CPBootstrap

(top) and CPRankOrder (middle) that while some detected
changepoints align with level-shifts in latency, others appear to
be quite spurious. We expect level-shifts (change in the mean
RTT) to represent one type of changepoint that any useful
method should detect; another type of changepoint may be a
change in RTT variance. We see that some clear level shifts are
simply missed by these methods. We observe that the HMM-
HDP method (bottom plot) identifies each level shift, while
also identifying some (but many fewer) short-lived elevated
latencies as changepoints.

We manually examined approximately 1,000 such plots,
comparing the performance of the three changepoint detection
methods. Identification of ground truth is challenging since
there is no perfect automated way to detect level-shifts or
similar changepoints. As Mouchet et al. [48] point out, it is
quite natural for a human to be able to identify “obvious”
changepoints, and in our qualitative manual comparison of
these methods we relied on visual detection of level-shifts
as our notion of ground truth. While this process certainly
can admit human errors, it was overwhelmingly clear in our
detailed manual study that the CPBootstrap and CPRankOrder

identified many more erroneous changepoints than did the
HMM-HDP method. We also evaluated other off-the-shelf
changepoint detection algorithms. Although we do not show
results from those analyses, we found that performance varied;
some were worse than the two methods used in Zhang et
al., i.e., some “obvious” changepoints were missed, others
spurious, and some were somewhat better. It is also important
to note that Zhang et al. explicitly point out biases in the
changepoint detection methods employed in their work. Based
on our analyses, we generally focus on results obtained using
the HMM-HDP method in the rest of the paper.

IV. RESULTS

In this section, we present the results of our study. Where
possible, we discuss our results in light of those found by
Zhang et al. [1].

A. Delay Spikes

We first investigate the presence of delay spikes, as was
also done in prior work. As with Zhang et al. we computed
the median RTT for each trace (each distinct anchor pair),
then normalized each RTT measurement by the median. We
show in Figure 3 a complementary distribution plot (notice
that the y axis is log-scale) of these normalized RTTs. As
with [1], we show a vertical reference line for a ratio of 10:1
(i.e., a given RTT is 10 times higher than the median). We
also show a horizontal reference line at a probability of 10−4.



Fig. 2. Timeseries plots of latency from 7 Jan.–14 Jan. 2020 between Barcelona, Spain and Frankfurt, Germany (IPv4). Vertical dashed lines on each plot
indicate the location at which a given changepoint detection algorithm determines that a change has occurred. The top plot: CPBootstrap; middle plot:
CPRankOrder ; bottom plot: HMM-HDP [48].

Fig. 3. Complementary distribution of the ratio of RTT samples to the median
of their traces for IPv4 and IPv6; cf. Figure 8 in [1].

Interestingly, our horizontal reference is an order of magnitude
lower than that shown in [1], indicating that such delay spikes
are much less prevalent in the RIPE Atlas traces we use
than what was observed in the earlier study. We also observe
that there are somewhat fewer high RTT outliers in the IPv6
measurements than IPv4. Although our results show fewer
RTT spikes than in [65], they are nonetheless consistent with
observations by Padmanabhan et al. [25] and their observations
of rare, extremely elevated, delay measurements.

B. Constancy of RTT Distribution

In this section we analyze the results of applying change-
point detection algorithms to RIPE Atlas latency measure-
ments between each distinct pair of anchors. The authors in
the earlier study applied their changepoint detection methods
to the body of the RTT distribution for each trace they used,
examining the constancy of the RTT median as well as the
constancy of the inter-quartile range (IQR). In our analysis, we

looked at applying two of the changepoint detection methods
we consider (CPBootstrap and CPRankOrder) in a similar
manner, as well as using the raw trace data. Due to the
low prevalence of spikes, we did not observe any significant
difference in results whether spikes were filtered out or not.
The authors of [1] note that the same was true in their analysis
of operational constancy. Also, as noted above, since the
HMM-HDP method [48] we use is available through a RIPE
Atlas API we cannot force it to operate on, say, the IQR of a
trace. As a consequence, the results we present in this section
are derived from the applying the three changepoint methods
on the raw/unfiltered trace data.

1) Distribution of Change-free Region Durations: In this
section we examine the distribution of durations of change-free
regions (CFRs), or time segment durations between detected
changepoints, as a way to assess constancy of the distribution
of RTTs along a path. We also investigate the distribution
of the maximum CFR for the paths considered (in our case,
for each distinct anchor pair), which was a focal point of the
analysis done by Zhang et al.

In Figure 4, we show the distribution of CFR durations for
each of the three changepoint methods, and for both IPv4 and
IPv6; note that a comparable plot with the full distribution of
CFR durations is not shown in [1] since they focused on the
maximum CFR distribution. Notice that the x-axis is log-scale
and that the units are seconds. There are several vertical dashed
lines with different time durations shown for reference. We
immediately see that the CFR durations computed using the
HMM-HDP method are significantly shorter than those com-
puted with CPBootstrap and CPRankOrder: the 50th percentile
CFR duration is about 5.5 hours longer using the methods
from [1]. We also observe in Figure 4 that CFRs are slightly



Fig. 4. CDFs of change-free durations for the three change-point detection
methods we consider, and for IPv4 and IPv6 (first two weeks of January
2020). Note that the x-axis is log-scale number of seconds.

lower (e.g., there is a lower degree of constancy) in IPv4 vs.
IPv6, but that there is a somewhat greater difference with
the other two changepoint detection methods. Considering
Figure 2 and our investigation of these changepoint detection
methods, we expect that the true duration of constant regions
between level shifts in RTT is close to the curves shown
for the HMM-HDP method in Figure 4. In particular, in our
detailed manual inspection of results from the two methods
used in [1], we observed many instances of missed level
shifts which, ideally, should be identified as changepoints,
and which likely cause a skew in the distributions to the
right. Overall, from Figure 4 we infer that delay-sensitive
flows that persist longer than 15 minutes (≈ 25th percentile
CFR duration for the HMM-HDP method) such as streaming
video are likely to experience non-constant behavior such as
level-shifts. Shorter-lived flows, however, are highly unlikely
to experience such behavior. While the distribution of CFR
durations does not say anything about the magnitude of the
RTT change between one change-free region and another (the
notion of operational constancy, discussed below, addresses
this issue), it does indicate something important about the
constancy of RTTs along a path.

In Figure 5 we focus on the distribution of the maximum
CFR durations across the anchor pairs considered in our
study, similar to [1]. Note that the x-axis unit is hours and
that the maximum x-axis value represents the full two-week
time period we consider. A much different picture emerges
from this plot, specifically that Internet paths today exhibit
a great deal of mathematical constancy compared with what
was observed 20 years ago. In Figure 9 of [1], the authors
show that the 50th percentile maximum CFR duration is about
30 minutes or less, but our analysis indicates that the 50th

percentile maximum CFR duration is on the order of three or
more days, depending on the changepoint detection method
used. Recall that [1] did their changepoint analysis on the
median and IQR of the latency distribution, which would likely
result in a more stable view of latency even with the higher
probe rate used in that work. We also observe an inflection
point at 24h, particularly for changepoints computed using
the HMM-HDP method, which may be due to daily traffic
engineering adjustments, or possibly diurnal load fluctuations

Fig. 5. CDF of the maximum duration of change-free region across anchor
pairs considered (first two weeks of January 2020). Notice that the x-axis is
in hours. cf. Fig. 9 in [1].

Fig. 6. CDFs of maximum duration of change-free region across anchor pairs
considered, for the HMM-HDP method (first two weeks of January 2020). We
show CDFs for lossy traces (≥ 1% loss) and all traces. cf. Fig. 9 in [1].

and congestion. Interestingly, we see that maximum CFR
durations are slightly smaller with IPv6 than with IPv4 when
using the HMM-HDP changepoint detection method.

In Figure 6, we show the distribution of maximum CFR
durations for the HMM-HDP method and separately show
curves for lossy anchor pairs for IPv4 and IPv6. We consider
an anchor pair to be lossy if the raw trace shows there to
be 1% packet loss or greater. The plot clearly shows that the
lossy anchor pairs exhibit shorter maximum CFR durations.
For IPv6, the difference between the lossy traces and the
aggregate is quite stark, strongly suggesting that these anchor
pairs are likely what causes the 50th percentile maximum CFR
duration to be shorter with IPv6 than IPv4 for the HMM-HDP
method. It is also clear from this plot that, as with the earlier
study, paths with moderate packet loss exhibit a much lower
degree of steady behavior.

2) Intra- and Inter-continental Characteristics: In Figure 7
we show distributions of maximum CFR durations for the
HMM-HDP method, separating anchor pairs residing within
the same continent (intra-continental pairs) from those that
cross a continental boundary (inter-continental pairs). The
figure shows separate plots for IPv4 (top) and IPv6 (bottom),
and individual curves are labeled with continent codes for the
intra-continental pairs. Note the log scale on the x-axis. We see
in the plot a fairly wide range of maximum CFRs for different
continents. For IPv4 we see that Africa, Europe, and North
America have the longest 50th percentile maximum CFRs,



Fig. 7. CDFs of maximum duration of change-free region, separating anchor
pairs by intra-continental (both anchors on the same continent) and inter-
continental (anchors reside on two different continents). Top plot shows results
for IPv4 and bottom plot shows results for IPv6. Note that the x-axis is on
log scale.

while Asia, Oceania, and South America have the shortest
(note that inter-continental maximum CFRs are in the middle
of those groupings). For IPv6, however, no “natural groupings”
emerge. Anchor pairs in Europe and North America still have
the longest maximum CFRs in IPv6, and we also see that those
maximum CFR durations are longer relative to IPv4. Note,
however, that RTTs within some continents (e.g., Europe)
are on average naturally shorter than others (e.g., Africa),
so caution should be used in comparing intra-continental
maximum CFRs. Interestingly, we observe that a number of
anchor pairs in Oceania have a maximum CFR duration of
24h (notice the vertical segment aligned with 24h, which is
quite significant in the IPv6 data). We plan to investigate these
observed 24h behaviors in future work.

3) Longitudinal characteristics: Lastly, in Figure 8 we
show distributions of maximum CFR durations for the HMM-
HDP method for the first two weeks of January in the years
2016–2021. We note that we use a consistent set of anchors
to construct each of these curves and that there were fewer
total anchors in 2016. We performed our anchor selection such
that we used as many long-lived anchors as possible, thus
even in our 2016 analysis we use 58 anchors (already a larger
number of hosts than used in [1]). We observe in the plots a
general increase in maximum CFR duration over these years
for both IPv4 and IPv6. For IPv4, we observe a reduction in
maximum CFR between 2020 and 2021 which may be due
to increased traffic volumes and delay during the COVID-
19 pandemic [71], [72], but otherwise a general increase in
maximum CFR. In future work, we plan to periodically update
this plot in order to gauge the mathematical constancy of

Fig. 8. CDFs of maximum duration of change-free region for years 2016–
2021 (first two weeks of January). Top plot shows results for IPv4 and bottom
plot shows results for IPv6.

latency over time.

C. Operational Constancy

Latencies can be considered operationally constant if they
remain within bounds that could be considered operationally
equivalent. In the Zhang et al. study, the authors evaluated
whether latencies remained within RTT categories of 0–
100ms, 100–200ms, etc. They found that maximum CFRs for
half the traces were under 10 minutes, and that 80% of traces
had maximum CFRs under 20 minutes. In our analysis, we
found that more than 95% of traces had maximum CFRs of 24
hours or longer. Even if we used a finer division of RTT ranges
(e.g., 50 millisecond divisions) our results do not significantly
change. Thus, we conclude that in today’s Internet, although
there can be considerable delay variation over short time scales
as has been studied in prior work (e.g., see [25], [38]), packet
delay can be considered operationally steady on timescales of
more than a day.

D. Predictive Constancy

The third aspect of constancy we examine is predictive
constancy. We used two families of predictors: a simple
moving average with window sizes 2, 4, 8, 16, and 32,
and an exponentially weighted moving average with α= 0.5,
0.25, 0.125, and 0.01 (such that the moving average is yt =
(1 − α)yt−1 + αxt, where xt is the most recent sample and
y0 = x0). We computed prediction error, as in [1], as:

PredictionError = E

[∣∣∣∣log(predictedactual

)∣∣∣∣]
and generated CDFs to show the range of how well a given
estimator performs.



Although we do not show detailed results due to space
constraints, we found, as did Zhang et al., that delay is highly
predictable. Specifically, we found that the 95th percentile pre-
diction error for all predictors used is less than 0.1, indicating
high correspondence between the predicted and actual delay.
Comparing with the earlier study, we observe that delay in the
Internet today is at least as predictable as it was 20 years ago.

V. SUMMARY AND CONCLUSIONS

In this paper we re-examine the constancy of end-to-end
latency on Internet paths, which was first investigated by
Zhang et al. [1] in 2001. We use anchor mesh latency measure-
ments collected by the RIPE Atlas project and reimplement
changepoint algorithms used the earlier study; we also use the
recently proposed HMM-HDP time segmentation method for
changepoint analysis [48]. We analyze latency spikes as well
as distributional characteristics of time change-free regions.
We perform specific analyses similar to Zhang et al. and
compare findings of that work with what we observe in 2020,
as well as longitudinally from 2016–2021. We find that delay
spikes are an order of magnitude less prevalent than in the
earlier study, and that Internet delays can be characterized as
constant on timescales of 15 minutes to several hours, which
is much longer than observed 20 years ago. We also find that
maximum CFR durations are significantly longer than what
was observed 20 years ago; the authors of [1] observed a 50th

percentile maximum CFR of about 30 minutes, but we observe
it to be 3 days or longer. Moreover, we find that maximum
CFR durations have steadily increased since 2016.

At the time of the study by Zhang et al., the initial hype of
the World-Wide Web was nearly passed. Although the Internet
had existed for quite some time, only about 50% of adults in
the United States were using the Internet in 2000, as compared
with 90% or more today [40]. Moreover, very few people had
home broadband Internet in 2000 in the United States, whereas
roughly 75% of homes in the U.S. have broadband Internet
today [40]. These specific observations change somewhat for
different parts of the world, but it is also clear that over the
past 20 years the Internet has become normalized as critical
infrastructure. It should not, therefore, be surprising that the
stability and constancy of Internet performance has improved
over that time. Indeed, our results show that mathematical
and operational constancy of Internet latency has improved
a great deal in 20 years. In our future work, we plan to
expand the set of RIPE Atlas anchors and probes used, and to
consider additional public datasets in order to develop a more
complete longitudinal picture of Internet latency. We hope
that our work encourages other researchers to revisit seminal
measurement studies as we collectively seek to understand
Internet performance and its evolution over time.
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