
A Router Primitive Approach for Building Diverse
Network Services

Joel Sommers
Colgate University

jsommers@colgate.edu

Paul Barford
University of Wisconsin–Madison

pb@cs.wisc.edu

Ben Liblit
University of Wisconsin–Madison

liblit@cs.wisc.edu

Abstract—The vantage points of routers along end-to-end paths
in the Internet have long made them a compelling target for
additional functionality. In this paper, we describe a new method
for router data plane programmability that is simple, general,
flexible and safe and enables complex network services to be
built and deployed. Our method targets network processor (NP)-
and FPGA-based routers, and is based on two central ideas: (1)
primitive functions for routers that are designed for specific target
service domains, and (2) a primitive-aware programming language

that is expressive, easy to use and easy to analyze. To demonstrate
our method, we describe a set of primitive functions in the context
of three diverse domains — network measurement, real-time ap-
plications and traffic engineering. Next, we describe Morpheme,
our primitive-aware programming language, and show how it
can be statically analyzed to safeguard router processor and
memory resources. We demonstrate the efficacy of our method
by implementing the primitive functions in the Click modular
router [1] and a prototype Morpheme compiler. Through a series
of microbenchmark experiments, we substantiate the capabilities
of our prototype implementation.

I. INTRODUCTION

A spectacular array of Internet applications and services
has been developed over the past several decades. These
applications have been enabled in no small measure by the
exponential increase in bandwidths connecting end hosts to the
rest of the Internet. However, functionality within the network
from the user perspective has remained generally limited to
simple packet forwarding. We argue that in order to foster
and facilitate future applications and services, i.e., “the next
big thing,” it is critical to consider new functional capabilities
within the network.

Routers are appealing targets for new functionality since
they dictate how traffic is forwarded between end hosts and
because of their potential view of numerous, diverse traffic
flows [2]. For example, application developers often have to
go to great lengths to ensure quality of service, and network
service providers struggle to adapt to traffic dynamics and
outages in order to satisfy contractual commitments in service
level agreements. Better support for QoS-sensitive applications
and for traffic measurement and management could be more
easily facilitated from within the network. The key question,
however, is how new capabilities can be offered on routers in
a simple, flexible, and safe fashion.

In this paper, we describe a new method for router pro-
grammability that is based on exposing primitive functions

in network processor (NP)- and FPGA-based routers that can
be harnessed by network operators, researchers, and other
interested parties through a purpose-built high-level program-
ming language. We define primitives that cover a broad cross-
section of data plane operations, such as packet inspection and
modification, and packet forwarding and queuing. We examine
potential uses of the primitives through the specific and diverse
domains of network measurement, real-time applications, and
traffic engineering.

As an illustration to further motivate our approach, the
simple example program below uses a set of primitives to
inspect packet header elements (the field primitive) and to
either direct packets to a lower priority queue or along a non-
standard forwarding path (the forward primitive) or to modify
packet header elements. The program would be compiled,
checked, and deployed on a target set of routers by a party
with privileges to do so. (We describe these primitives and the
other language constructs in Sections IV and V.)

; low-priority queue for bittorrent
if field ip proto == tcp:

if field tcp port range 6881 6999:
forward next-hop queue 1 tail

; modify TOS bits for icmp pkts
elif field ip proto == icmp:

field ip tos |= 0x08

; non-default forwarding for dhcp
; to an intermediate host
elif field ip proto == udp:

if field udp dport 68:
forward intermediate-host.example.net

The primary goal of our work is to simplify and facilitate
the development of future Internet applications and services.
We argue that either specialized or generalized programming
capability without regard to the functional requirements of
specific domains makes service and application implementation
very difficult. If support is too general, programs become larger
and more complex, and difficult to debug and maintain. On
the other hand, if it is too specific, then certain applications
may not be well served. We address this tension by identi-
fying specific domains of interest, including gaming, content
delivery, measurement and traffic engineering. We abstract
the functional requirements of these domains into simple and
general primitive operations that can be built into routers and
accessed using a high-level programming language to create978-1-4673-0298-2/12/$31.00 c� 2012 IEEE

complex services and applications in a straightforward fashion.
The key requirements of the primitives are that they be simple,
lightweight, and efficient, thus making them more likely to be
implemented and deployed. In this work, we concentrate on
data plane-oriented primitives.

The primitives we identify are utilized through a new
primitive-aware programming language called Morpheme. Our
objectives in the design and development of Morpheme are
to create a language that is efficient, easy to use, and easy to
analyze. We accomplish this through an implementation that
directly enables use of the primitive functions and that has a
simple set of capabilities beyond the invocation of primitive
functions. Our approach facilitates important static analyses
and efficient compilation for target router platforms.

The fundamental contribution that we make in this paper is
to create a method for exposing capabilities of the underlying
hardware in a general, simple, and flexible way that is easily
accessed by high level programming constructs. We make these
capabilities available in a framework that ensures that resource
constraints can be enforced, which was one of the primary
limitations of prior methods for in-network programmability.

To demonstrate the efficacy of our approach, we define a
set of primitive functions for router data plane operations.
While our primitives broadly cover common router data
plane operations, we focus on three target domains: real-time
applications (e.g., gaming and VoIP), network measurement
applications (e.g., packet loss measurement), and traffic engi-
neering and VPNs. To assess our approach, we implemented a
prototype Morpheme compiler, which generates an intermediate
representation in C++ which can be compiled into executables
that could run on or be adapted for any number of existing NP
or FPGA platforms. We implemented a runtime environment to
support Morpheme programs in the Click modular router [1].

We demonstrate the capabilities of our prototypes through a
set of example programs focused on real-time and measurement
applications and network virtualization. The examples highlight
how router primitives and Morpheme can be used to easily
implement applications that would be complex or impossible to
implement on end hosts. We also describe how static analysis of
Morpheme programs can be used to assess resource consump-
tion. Finally, we run a series of microbenchmark experiments
on Morpheme programs in a controlled laboratory environment.
The results of these experiments demonstrate the correctness
and utility of the primitives and their implementations, and
highlight the strength and potential of our approach.

II. RELATED WORK

Our work is informed by prior research on active networks.
These studies investigated the idea of enabling customized
computation on packets as they flow through network devices
such as switches and routers [3], [4]. A key objective of active
networks was to enable new applications and new capabilities in
existing domains such as network management; our objectives
are similar. A conceptual similarity is the notion of “primitives”
in network devices that can manipulate packets [5], [6].
However, the context for this idea was that “capsule packets”

carrying program fragments would be executed by network
routers to dynamically extend router and network functionality.
Rule-based forwarding [7] also shares some similarities with
this earlier work. In contrast, in our approach packets do not
carry programs, and only built-in primitives can be accessed
by Morpheme programs.

There have been a number of studies on programming
environments for network devices. These studies largely
fall into two categories: software development kit (SDK)-
based approaches [8]–[10], and entirely new programming
languages [11]–[13]. Related to SDK-based access are studies
that focus on program-based access to configuration functions.
Notable among these types of systems is Openflow [14]. While
Openflow capabilities can be used to address important issues
such as traffic management, an external controller system must
be involved for programmatic packet processing. We note that
Morpheme could be used in ways similar to the example given
in Section I to implement any Openflow-like capability.

The notion of including specialized primitive functions in
routers has been an important focus of vendors for many
years. Indeed, router technology has evolved to the point where
vendors are building devices that are programmable [8], [10].
Many of these functions focus on improving the manageability
or performance of these devices as opposed to application
support. However, the programming paradigms for today’s
networked systems include either something very close to the
hardware (e.g., VHDL [9]) or something very general purpose
(e.g., Java [10]). We posit that neither of these hits the mark
in terms of providing a natural way to implement network
applications and services.

Lastly, we note that this work extends an earlier workshop
paper [15] in which we proposed a set of primitives for Internet
measurement. We expand and generalize that work by defining
a broader set of primitives, defining and implementing the
Morpheme language and compiler, a run-time environment in
Click, and conducting a set of experiments with these tools to
demonstrate the feasibility of our approach.

Table I provides a summary comparison between Morpheme
and current programmable and configurable systems. Mor-
pheme is targeted toward deploying network applications and
services (i.e., programs, not bits of configuration) on routers
that can be easily written and for which resource usage can
be statically analyzed. Furthermore, Morpheme is designed
to support multiple simultaneous users, and its primitives are
designed in the context of specific networking applications.

III. MORPHEME OVERVIEW AND FRAMEWORK

In this section we discuss ways in which Morpheme could
be used, and describe four components of the Morpheme
framework for enabling programmable functionality on routers.

A. Overview
New router-based capabilities enabled by Morpheme are

potentially useful to multiple constituents. A game application
developer could exploit Morpheme capabilities to improve the
gaming experience by reducing delay for critical state-carrying

TABLE I
COMPARISON OF CURRENT PROGRAMMABLE AND CONFIGURABLE NETWORKING TECHNOLOGIES.

Morpheme Openflow [14] NetFPGA [9] Click [1] JUNOS
SDK [8]

Cisco
SDK [10]

Programmable? Yes Only in controller Yes Yes Yes Yes
Ease of use High High Low Medium Low Low
Program static analysis Yes No No No No No
Multiple users? Yes With FlowVisor [16] No No Unknown Unknown
Application-focussed Yes No No No Yes Yes
High performance Unknown Yes Yes No Unknown Unknown

packets. Network operators might use Morpheme to monitor
and shape traffic demands in order to satisfy service-level
agreements. Network providers might delegate access to their
customers so that the customers can manage and measure their
own traffic streams. There are different security, flexibility, and
safety concerns in each of these settings, but our approach
could be successfully adapted to each of these contexts.

As an example use case, consider a network researcher who
wishes to achieve a network measurement goal on a set of
routers in an operational network or research testbed. The
researcher might write programs in the Morpheme language to
actively collect measurement data from the set of routers (see
Section IV for examples of specific programs the researcher
might create). The researcher would obtain credentials in
order to load the programs on target routers. Once loaded,
the programs would execute until stopped by the researcher.
Although addressing design tools and tools for automatic
resource consumption analysis of Morpheme programs are
beyond the scope of the present work, the researcher would
use the Morpheme compiler to perform analysis of the programs
prior to loading and running them to ensure that they satisfy
the resource constraints of the target environment.

B. Framework

(1) Primitive Functions: We specify a set of primitive
functions that extend the basic capability of a router, including
primitives to cover a broad array of data plane-operations:
packet inspection, modification (including dropping a packet),
generation, control flow and scheduling, and utility-like func-
tions such as random number generation. Our process for
defining primitives focuses on generalizing the functional
requirements of specific application and service domains,
resulting in capabilities that are both effective and attractive
for developers, as well as generally applicable and useful. Our
objective is to keep the primitives conceptually simple, and
thereby keep implementation feasible. We recognize that this
may not always be the case and we plan to investigate the
complexities of primitive implementation in future work.

(2) The Morpheme Programming Language: The Mor-
pheme programming language coordinates and gives access to
the primitive functions. Our objectives with Morpheme are to
develop a language that is expressive, easy to use, and easy to
analyze. The language syntax we define relates directly to the
primitive functions, and we include constructs for simple but
important programmatic capabilities such as loops, conditionals,

and mathematical expressions, along with network-specific
functions such as generating, inspecting, and modifying packets.
Although our current design does not support user-defined
functions or data structures such as tables and associative
arrays (hashes), we intend to include support for these in the
future. A key objective is to make the language restrictive so
that programs can be evaluated effectively and will run on
systems with limited resources.

(3) Runtime Environment: The initial execution environ-
ment for Morpheme programs is envisioned to be simple and
relatively easy to implement. Each Morpheme program is
allocated a dedicated network processor thread on a target
router, with no mechanism for spawning additional threads.
This is motivated by the increasing ubiquity of NP-based
network systems such as the CRS-1 [17], which support 160
simultaneous execution threads. While this program-per-thread
approach is neither scalable nor efficient from an NP utilization
perspective, it eliminates the complex scheduling, resource
management, and security measures that a shared environment
would require. The only other assumption that we make for
this paper is that programs have access to all traffic flowing
through a node. In a live setting this will almost certainly not
be the case for security, privacy, and scalability reasons.

(4) Router Access Control: Our router access control model
follows directly from the program-per-thread execution strategy.
Morpheme programs can only be executed on routers by users
who have proper authorization. We assume that user credentials
are established offline. A properly credentialed user will be
granted access to some set of routers in a network. The user
will have the opportunity to load, start, and stop programs
whenever they wish. We envision these control operations to
happen in an out-of-band process, and for them to be managed
and facilitated with purpose-built tools.

IV. ROUTER PRIMITIVES

The starting point for our work is the idea of specifying
simple router-based functions that cover a broad set of data
plane-oriented applications and services. In this paper we focus
on three target application domains: real-time applications
network measurement (both passive and active) and traffic
engineering/network virtualization. The selection of these
domains was made to highlight the flexibility of our approach.
We argue that the primitives are widely applicable in data plane-
oriented applications, although we cannot claim completeness
of our primitive set. In future work, we plan to apply a

framework such as [18] so that we can reason formally about
the scope and capabilities of our primitives.

There are essentially two types of primitives in our design:
events and actions. The basic idea is that an action, or set
of actions, can be associated with the occurrence of an event.
Invoking an event or action is specified in terms of Morpheme
statements. In this section, we focus on the range of primitives
in our present design. The next section describes Morpheme
from a programming language perspective.

Events trigger the execution of Morpheme code blocks
which contain action primitives. Events may be associated with
a timer expiry or packet receipt. Primitives exist for setting
timers that will trigger the execution of Morpheme actions.
The after and periodic primitives can be used to set one-off
and recurring timers, respectively.

Besides timers, an action or sequence of actions can be
associated with the arrival of a packet that matches certain
criteria. In this work, we assume that all packets pass through
the Morpheme runtime environment. While this assumption
is convenient for our initial implementation, it should not be
considered necessary. More generally, one could consider a
mechanism external to Morpheme (e.g., an access control list)
that could perform the necessary function of selecting packets
for Morpheme processing.

Action primitives form the core functionality of Morpheme.
Here we focus on data plane-oriented primitives, motivated
by and generalized from the specific domains of real-time
applications, network measurement, and traffic engineering.

Target Domain 1: Real-time Applications: The key require-
ment for real-time applications is for predictable performance.
This typically translates into ensuring low delay and loss in
the face of uncertain competing traffic demands.
Traffic classification and marking. The field primitive is
provided to enable access to arbitrary elements in a packet’s
headers or payload. A user of the field primitive is required to
specify the header name (or payload) and the size of the data
to access and its offset in the specified header, or field name
mnemonic. The field primitive can also be used to modify
a packet’s headers or contents. Thus, field can be used for
classification of a packet as well as marking it. For example,
if we wanted to set the IP TOS bits to 0x10 (“low delay”) for
all UDP traffic, we could use the following code:
if field ip proto == udp:

field ip tos |= 0x10

Expedited forwarding. We define a forward...queue prim-
itive to specify a numeric output queue to which a packet
should be directed and how the packet should be queued (at
the head or tail of the queue). For example, the following
would forward all UDP packets to the head of the default
output queue (defined as queue 0):
if field ip proto == udp:

forward next-hop queue 0 head

Explicit discard of packets. For low-priority flows or for
flows that are excessive consumers of bandwidth, it may be

desirable to explicitly drop packets. A simple drop primitive
is provided for that purpose.
Timestamp manipulation. Monitoring bandwidth consump-
tion of flows is useful for ensuring superior performance for
real-time traffic (and for possibly degrading the performance of
low priority traffic). In order to evaluate bandwidth consumption
over time, the ability to request the current time is necessary. A
now primitive is provided for that purpose. It yields the current
time as a floating point value.

With the above primitives, along with other basic Morpheme
features described below, a basic rate-limiting application can
be created. The following Morpheme program attempts to
cap all TCP traffic to 500 kb/s by periodically computing an
exponentially weighted moving average of TCP bandwidth
consumption. The moving average is recomputed every 1/4
second, at minimum. If the rate exceeds 500 kb/s, all traffic
during an interval is dropped.
; simple rate limit program.
ratecap = 500000.0
rateewma = 0.0
lastts = now

bytes = 0
alpha = 0.1
mininterval = 0.25
if field ip proto == tcp:

bytes += field ip len
ts = now

; check if time to recompute rate
if mininterval < (ts - lastts):

ratenow = bytes / (ts - lastts)
rateewma = ratenow*alpha+rateewma*(1-alpha)
bytes = 0
lastts = ts

if rateewma > ratecap:
drop

With other Morpheme constructs, the example could be
extended to vary traffic rate limits depending on time of day or
other conditions. The example also highlights how an external
entity could apply in-network traffic shaping to different classes
of their own traffic to preserve QoS for their high-priority
flows. Neither of these applications are possible with current
generation routers.

Target Domain 2: Network Measurement: For network
measurement, the key requirements are to be able to create
and send probes for active measurement, to annotate packets
with passive measurement data, and to have a minimal impact
on other data plane traffic if desired. We define the following
set of primitives for use with network measurement tasks.
Create and send a packet. The probe action is used to
construct and send a new packet. Parameters to this primitive
can be used to specify the header and payload contents:
probe 10.10.2.1 udp dport 3000 payload {42/4B}

The above example creates and sends a UDP packet with a
particular destination address and port, and with a payload
consisting of the number 42 stored as a 4-byte quantity.

Using the probe primitive along with a timer, the following
Morpheme program could be used to implement the Badabing
packet loss measurement algorithm which sends geometrically

distributed probe pairs, with each probe consisting of three
rapidly emitted packets [19]:
seq = 0
interval = 0.005
slot = 0
next = geom-rv 0.3
; wait ’next’ time intervals before sending next
periodic next * interval:

repeat i in 3:
probe 10.0.1.1 udp dport 3000 \

payload {slot/4B seq/4B i/4B}
if slot % 2 == 0:

; send next probe at next time slot
next = 1

else:
; otherwise, wait for some geometrically
; distributed number of time slots
next = geom-rv 0.3

slot += next
seq += 1

We also note that random number generation primitives
enable packet sampling, and that the field primitive in
conjunction with standard mathematical operators can be used
to perform hashing for the purpose of load balancing or
collection of flow-based traffic statistics. In the latter case,
the notion of flow can be flexibly defined within a program.
Annotate a measurement probe. Another measurement prim-
itive enables annotation of packets with passive measurement
data as they are forwarded through a router. For example,
high-resolution timestamps could be added to a packet both on
ingress and egress from a router. Interface addresses could also
be added to a packet. More generally, any passive measurement
data that is readily available (e.g., SNMP MIB variables) could
be added to a packet as it is forwarded through a router. (Note
that modifying packet contents may require recomputing header
checksums.) We define a set of primitives for each of these
functions:
input-timestamp

output-timestamp

input-address

output-address

input-mib 1.3.6.1.2.1.31.1.1.1.6.
output-mib 1.3.6.1.2.1.31.1.1.1.6.

In the example above, packets are annotated with timestamps,
interface addresses, and the ifHCInOctets counter (from the
Interfaces Group MIB [20]) on both ingress and egress.
Conditional packet forwarding. The forward...when action
can be used to specify that a probe should be held until
a condition involving the output queue becomes true. This
statement implies that additional buffer space and processing
is needed at router egress. Packets that are processed with
forward...when are held until the specified condition becomes
true. Because buffer space is finite, packets held awaiting a
when condition may be eventually dropped. We discuss this
issue further in Section VI.

Interestingly, using forward...when could be used to imple-
ment a record-route feature that has minimal impact on other
data plane traffic:
input-address

output-address

forward next-hop when outputqueue < 0.1

Note that the destination specified in the forward statement
can be a specific host rather than the default next-hop. Using
this feature could enable a user to a packet to a specific
intermediate host that is not on the standard forwarding path,
thereby enabling active measurement of arbitrary paths.

Target Domain 3: Traffic Engineering and VPNs: The
third application domain for which we define an initial set of
primitives is traffic engineering and virtual private networks,
or more generally, network virtualization. The motivation
for this capability is similar to OpenFlow (i.e., to support
sophisticated routing and traffic management), but our approach
is more general. These applications typically rely on an
additional packet header to tag or tunnel traffic, e.g., through an
MPLS [21] shim header that includes a label or an additional
IP header for GRE. Although we have defined an initial set of
primitives for these applications, we have not yet implemented
them in our prototype.

We introduce a primitive for packet header insertion and
removal (header insert and header remove) for these appli-
cations. This primitive is required for adding and removing
shim headers and to encapsulate and decapsulate an existing IP
packet within another. In addition, the field primitive describe
above can be used for modifying existing shim headers. A
combination of the header and field primitives can be used
to implement push-, pop-, and swap-like functionalities for
tagged network virtualization techniques, e.g., MPLS. Given
these primitives, Morpheme can be used to dynamically assign
virtual paths to flows depending on traffic load, time of day,
or any other expressible criteria.

V. THE MORPHEME LANGUAGE

Morpheme’s router primitives provide the end effectors that
interact with the network environment. The Morpheme lan-
guage provides the control logic that guides these interactions.
Here we describe how the primitives developed above are
embedded within a more fully-functional language to allow
creation of complex router programs.

A. Language Design
As a language, Morpheme must be flexible, able to support

a wide variety of router-based applications now and into
the future. Yet it must also be restrictive enough to allow
strong static analysis, and support efficient compilation to
run on resource-constrained devices such as NPs and FPGAs.
Morpheme’s syntax and semantics must be familiar and
accessible to a broad range of users: it should make easy
things easy, and hard things possible.

1) Concrete Syntax: Morpheme’s syntax is inspired by
Python. Line breaks separate statements, and indentation marks
statement blocks, as in:

timestamp = now

if timestamp > previous + 10:
late += 1
retry = (late < 5)

else:
previous = timestamp

Beyond assignments, several additional simple statements
expose the router primitives discussed in Section IV.

Compound statements include conditionals as seen above,
a repeat statement for bounded looping, and periodic and
after statements for multi- or single-use timer-triggered
execution of statement blocks:

repeat <id> in <expr>:
<statements>

periodic <expr>:
<statements>

after <expr>:
<statements>

Note that there are no goto statements, no while loops,
and no generalized for loops as in C/C++. Furthermore,
at present there are no defined functions and therefore no
recursion. We likewise omit Cilk-style spawn/sync or any
other form of generalized parallelism [22]. The only looping
constructs are repeat and periodic. The former is iteration-
bound, while the latter repeats forever but always with a
timed delay between iterations. Therefore, it is impossible
for a Morpheme program to consume unlimited CPU resources
without either completing execution or at least relinquishing
the CPU while waiting for a timer to expire. Likewise no
Morpheme program can send an unlimited number of packets or
consume unlimited network bandwidth before either completing
execution or at least sleeping on a periodic timer. This realizes
part of a fundamental design goal: that every Morpheme
program is bounded in its consumption (or rate of consumption)
of system resources.

Expressions follow the style of Python or C/C++, with
all of the expected mathematical, logical, and bit-wise opera-
tors. A single new expression syntax, “field <section>
<size> <offset>,” accesses <size> bytes at the given
<offset> within the given <section> (payload, icmp,
udp, etc.) of the packet currently being processed. This
field syntax may appear on either the left or right sides
of assignments, thereby allowing packet contents to be read,
written, or even updated in place. For example,

field ip 1 1 |= 0x3

forces the ECN CE bits [23] on while leaving the current
packet otherwise unchanged.

2) Data Model: Like many scripting languages, Morpheme
allows new variables to be introduced and used at any point,
without explicitly declaring them first. Unlike most scripting
languages, though, Morpheme is intended for compilation
to high-performance NP- or FPGA-based routers, with no
underlying virtual machine. It is therefore important to statically
identify the number, sizes, and types of all variables used by
a Morpheme program. Furthermore, every Morpheme program
must require no more than some limited amount of data
memory, also identifiable statically. This realizes the other part
of our goal of bounded (or rate-bounded) resource demands in
all Morpheme code.

To achieve this, we adopt a restrictive data model with
only a few primitive types and no dynamic allocation. Each
Morpheme program variable holds either a Boolean value, a
signed integer, or a signed floating-point number. Morpheme
currently offers no structs, pointers, or other derived types,
though we intend to add support for tables, associative arrays
(hashes) and other types in the future. Given our current limited
palette of three data types, it is straightforward to infer the
types of all program variables automatically.

As can be seen from the examples given above, Morpheme is
an imperative language, not a functional one. This is consistent
with its scripting-inspired syntax and should be familiar to a
broad range of programmers. An imperative style is also a
natural fit for our target application domains: it easily expresses
in-place modification of packet fields or incremental updates
to counters, accumulators, and other measurement data. Purely
functional programming necessarily puts additional pressure on
data storage, often managed by a garbage collector. It is critical
that Morpheme resource demands be small and predictable,
supported by a very modest run-time environment. Adding
a real-time garbage collector would be undesirable. Thus we
opt for the simplicity and predictability of a small, sequential,
imperative language.

B. Compiler Implementation

We have implemented a reference compiler for Morpheme.
Our implementation consists of about two thousand lines of
Java and ANTLR code to create the lexer/parser, type checker,
code generator, and other intermediate analysis passes.

1) Lexing, Parsing, and Front End: The entire Morpheme
lexer and parser consist of just 152 lines of ANTLR code
defining the language grammar, token structure, and mapping of
this syntax into the compiler’s abstract syntax tree intermediate
form. This reflects our desire to keep the language structure
simple and accessible. After parsing, Morpheme programs
undergo four checking/analysis phases:

Type inference identifies every named variable used in
the program, and initially assumes that each has a fictitious
“unused” type. We then trace the flow of values from one
location to another, and widen each variable’s type as needed
to accommodate the values it receives.

Type inference makes repeated passes over the Morpheme
program until reaching a fixed-point after which no variables’
types change. At this point, each variable has the most
restrictive type able to hold all values that may flow into
it at run time. The type coercion lattice is of finite height
(unknown � Boolean � integer � floating-point) and type
inference is monotonic, moving types up this lattice but never
down.

Type checking validates the types discovered by type
inference against the required types of arguments to language
primitives. For example, a probe port must be integral, while
if statement’s branch condition must be Boolean.

Useless variable analysis identifies and reports variables
whose types are still unknown after type inference. This can

happen if a variable is never initialized at all, or if it is only
initialized with copies of other uninitialized variables.

Induction variable analysis ensures that repeat loops
eventually terminate. Each repeat <id> in <expr> loop steps
some named induction variable <id> across values from 0
though <expr> - 1 with <expr> being evaluated just once,
when the loop begins. If a Morpheme program could directly
change an active induction variable (e.g., reset it to 0), then
one could create infinite, non-timer-triggered loops, which we
clearly wish to avoid. Therefore, within the loop body, the
induction variable must neither be assigned to directly nor used
as the index for any nested repeat loop.

2) Back End and Code Generation: Depending on the target
platform, the information provided by the front end may suffice
to drive code generation directly. Our reference implementation
atop Click, however, requires additional transformations to align
certain Morpheme language features with Click.

Callback extraction bridges the gap between Morpheme’s
timer-delayed compound statements and Click’s run-time
model of timer-triggered callback functions. We identify each
periodic or after statement and replace it with a compiler-
internal statement that registers a one-shot timer and calls some
named callback function when the timer expires. The block of
code that originally appeared within each periodic or after

statement is extracted and stored separately; the code generator
builds a suitable callback function containing these statements.
For periodic blocks, the callback function additionally installs
its own timer to give the desired periodic behavior.

Code generation emits C++ source code as Morpheme’s
“assembly language.” This offers us some measure of portability
without having to deal with low-level details such as register
allocation or instruction selection for all supported target
platforms. A single Morpheme program is converted into a
single C++ class definition. Each Morpheme variable is a field
in this class, using the statically-declared type selected during
type inference. A specially-designated main method represents
the Morpheme program’s entry point, while additional methods
encapsulate periodic and after blocks so that they may be
used as callback functions.

C. Resource Consumption Analysis
Routers provide critical network infrastructure, and have

only limited memory, speed, and other resources. Morpheme
programs must behave appropriately in this sensitive environ-
ment. The restrictions designed into the Morpheme language
let us classify Morpheme programs according to their resource-
consumption behavior, and perform various static analyses
to bound that consumption. Here we discuss these program
categories and the analyses that each allows.

1) Program Categories: Statically mortal programs must
always complete execution after a finite length of time, and this
finite limit can be determined completely statically. Programs
in this category contain no periodic statements. Furthermore,
if a program contains any repeat or after statements, then
the iteration count or timer duration (respectively) must be a
constant expression known at compile time.

For a statically mortal program, several analyses can compute
exact upper limits on resources consumed, including

• maximum execution time, given platform-specific time
requirements for primitives such as probe, drop, etc.;

• maximum number of probe packets or bytes that can be
sent across the network;

• total storage required for all program state, since Mor-
pheme offers neither recursion nor heap allocation

• total storage required for all program instructions, since
Morpheme offers no dynamic code generation

Dynamically mortal programs must always complete exe-
cution after a finite length of time, but this time bound may not
be known at compile time. Programs in this category contain
no periodic statements, but may contain arbitrary repeat or
after statements, including those with iteration counts or timer
durations computed at run time. The following program which
reads its loop count from a packet is dynamically (but not
statically) mortal:

repeat attempt in field payload 4 12:
probe ...

A dynamically mortal program is subject to similar analyses
as a statically mortal program, but with resource limits given
as formulae rather than as compile-time constant values. Thus,
we can determine maximum execution time as a function
of outside inputs and internally-computed values. Analysis of
maximum probe packet counts and bytes sent similarly changes
from a single hard value to a function describing resources
used as a function of other dynamic behaviors. We retain the
ability to compute the exact total storage required for data and
instructions, as Morpheme is incapable of expressing programs
with unlimited storage appetites.

Statically rate-limited programs are immortal, but can never
demand system attention at more than some fixed rate. A
program in this category may contain periodic statements,
but the timer delay argument to each such statement must be
a constant expression known at compile time.

Programs in this category allow analysis similar to that of
statically mortal programs, but with maxima expressed in terms
of resource consumption rates rather than absolute counts. As
before, we retain the ability to compute the exact total storage
required for data and instructions, as this is always limited and
statically known in all Morpheme programs.

Dynamically rate-limited programs are immortal, and the
frequency with which they may demand system attention
is not statically limited or known at compile time. This is
the most general category, and includes Morpheme programs
whose periodic statements compute timer delays at run time,
possibly based on outside inputs from the network. Resource
consumption analysis for programs in this group is both
formula-based (as for dynamically mortal code) and described
in terms of consumption rate over time (as for statically rate-
limited code). Data and instruction storage requirements remain
finite and statically determined.

2) Implications: Table II summarizes the Morpheme pro-
gram categories, from most to least restrictive, along with the

TABLE II
SUMMARY OF RESOURCE-CONSUMPTION PROGRAM CATEGORIES AND ANALYSES EACH SUPPORTS.

Restrictions Possible Analyses

Program Category periodic repeat & after Time Packets Bytes Data Code

statically mortal forbidden constant exact exact exact exact exact
dynamically mortal forbidden unrestricted formula formula formula exact exact
statically rate-limited constant unrestricted rate rate rate exact exact
dynamically rate-limited unrestricted unrestricted rate formula rate formula rate formula exact exact

types of analyses that can be performed. Observe that even
the least-restrictive group always provides exact limits on code
and data size. Thus, we can verify that some router is at least
capable of hosting a given Morpheme program at the time of
deployment, enabling some form of admission control.

More generally, these program categories can help form
the access control policies mentioned in Section III. The
compiler can easily identify a given program’s category. A
network administrator might limit novice users to injecting only
statically mortal code, for which one can prove hard limits on
compute time and bandwidth consumption. Most experienced
users might be allowed to move down the table, loosening
static restrictions and gaining greater dynamic flexibility.

VI. PROTOTYPE IMPLEMENTATION

We implemented a prototype runtime environment for
Morpheme in the Click modular router [1]. The functionality of
the Morpheme runtime is split across two elements within our
Click implementation. The key element is called MetaMorphic

and implements the bulk of the functionality required to support
the various Morpheme primitives and language features. Timer
handling (to support after and periodic) is handled here, as
is probe creation and emission, packet access and modification,
and ingress passive data annotation (e.g., input timestamps,
input MIB data). Most importantly, the compiled C++ code
emitted from the Morpheme compiler is loaded and invoked
by MetaMorphic.

All functions that are logically related to router egress are
preprocessed in the MetaMorphic element. In essence, metadata
are added to a packet to indicate that it needs a certain type
of egress processing by the Morpheme runtime. For example,
metadata are added to indicate any passive data that need to
be written to the packet on egress. The metadata are added so
that a back-end Morpheme element (MorphQueue) can perform
any remaining run-time tasks prior to packet egress. We note
that any passive data to be added to a packet in MorphQueue

are written just before the packet is passed on to be sent to
the network. Thus, timestamps and other data are applied as
close as possible to the packet leaving the router.

Besides application of egress passive measurement data,
processing of forward...when and forward...queue state-
ments are handled in the MorphQueue element. Metadata are
added to a packet in MetaMorphic to indicate the type of back-
end processing that needs to take place. In the case of when
processing, a reference to a Boolean function generated by
the Morpheme compiler is passed along in order to evaluate

the condition expressed in the original Morpheme program.
A fixed-size circular queue is used to store packets waiting
for a when condition to become true (“packet purgatory”).
As the packets are added and removed from the queue, the
Boolean functions associated with packets in purgatory are
executed. If the function returns true, the packet is released
and forwarded. If the queue is filled and a new packet arrives
for when processing, the packet at the head of the queue is
dropped to create space for the new arrival. To a user, it will
appear that the packet is lost, but no indication is sent to the
user as to its fate. This issue brings up a larger question of how
to handle exceptional conditions in the Morpheme runtime —
should a user be immediately notified using, e.g., a mechanism
similar to an SNMP trap? If not, should some other method
be used to propagate exceptions? In future work we hope to
gain more insight into these issues.

Finally, we note that a restriction with our current imple-
mentation is that it only supports Click running in user-mode,
which limits performance. We intend to make the necessary
changes for a kernel-mode implementation in the future.

VII. EVALUATION

We now describe a series of microbenchmark experiments to
evaluate our prototype implementation of Morpheme and the
Morpheme runtime in Click. Through these experiments, our
goal is to demonstrate the capabilities of Morpheme in simple
and easily analyzable scenarios. To that end, our microbench-
marks are not intended to demonstrate “new” networking
functionalities, but rather to understand the performance and
utility of Morpheme in well-studied application contexts.

A. Testbed

For our experiment testbed, we used two nodes to generate
traffic that flowed through another node running a Morpheme-
enabled version of Click. Traffic was then forwarded to a single
sink node. All links were 1 Gb/s. On either side of the Click
node we installed Ethernet taps that diverted copies of all
packets received by or sent from the Click host to a separate
host. We used this additional calibration node as a way to better
understand delays or inaccuracies introduced by Morpheme.
Each host in our testbed ran Linux 2.6.31 kernels and each had
multiple Intel Gigabit Ethernet interfaces, a quad-core Intel
Xeon processor running at 2.4 GHz, and 2GB of RAM. Due
to restrictions with running Click in user mode, we needed a
way to artificially induce queuing within Click. To accomplish
that, we introduced a BandwidthShaper element configured to

shape traffic to 2 Mb/s. The result is that packets could build
up in the back-end MorphQueue element, which was configured
to hold a maximum of 100 packets.

Unless otherwise stated below, we used a simple background
traffic scenario for all experiments. Using Harpoon [24], we
created a set of 5 long-lived TCP flows from each source node
to the sink node. In addition to this traffic, we sent UDP probes
from one of the source nodes to the sink node. These probes
were sent at a rate of one per second and were used to collect
information from Morpheme. As the probes were forwarded
through the Click node, Morpheme was configured to annotate
them with various passively-collected data, e.g., timestamps. In
our experiments below, we use the passive measurement data
collected in these “drive-by” probes in order to understand
the behavior and performance of Morpheme. Importantly, we
verified that the data collected in the probes was accurate and
sufficiently precise using the calibration node in our testbed.
On this node, we collected packet traces that were used for
the verification process. For all experiments, our comparisons
revealed that the probe-collected data was accurate, thus we
examine the probe data directly in the experiments described
below. Finally, we note that all microbenchmark experiments
were run for 3 minutes each.

B. Experiments
a) Baseline experiment: For our initial experiments we

used the following simple Morpheme program:
input-timestamp

output-timestamp

Additional Morpheme code (not shown) specifies that these
timestamps are only applied to the UDP probes that pass
through the router. (This is true for all experiments described
unless otherwise specified.)

We ran the above program in a scenario with no background
traffic, and in one with two long-lived TCP sources. In the
experiment with no background traffic, the average time taken
for a packet to pass through Click, as measured using the
Morpheme-enabled timestamps, was about 2 milliseconds. This
relatively high value is due to running Click in user mode.
Figure 1 shows results for the scenario with the two long-lived
TCP sources. We see that the timestamp differences reveal
the well-known sawtooth behavior of TCP in simple network
settings.

b) Probe emission: Next, we assess the ability of the
Morpheme runtime to accurately emit probes. We used the
program below to emit probes every second with embedded
sequence numbers and timestamps.
periodic 1.0:

pnum += 1
ts = now

probe 10.10.200.1 udp dport 4000 \
payload {pnum/4B ts/8B}

We experimented with this Morpheme program both in the
absence and presence of background traffic. In each case, the
Morpheme runtime maintained the packet emission schedule
as specified, which we verified from our calibration host. In

the experiment with background traffic some probes were lost
at the output queue of the router, indicating that Morpheme
could be used to actively measure loss on the same router
from which probes are sent.

c) High-priority forwarding: In this experiment, we ran
the following program with 10 background traffic sources and
the UDP probes:
input-timestamp

output-timestamp

output-mib queue-length
forward next-hop queue 0 head

Our goal was to evaluate the effect of high-priority for-
warding primitives in Morpheme. In this experiment, the UDP
probes are inserted at the head of the output queue. All other
TCP traffic is processed normally (i.e., added to the tail of the
output queue). Figure 2 shows a CDF of internal router delays
for the UDP probes. From the figure, we see that probes see low
forwarding delays despite the router being heavily congested.
The maximum of 10 milliseconds is related to the default time
slice for the user-mode Click process. When examining the
output queue length at the time that each UDP probe is sent
to the egress link (via information stamped by Morpheme into
each UDP probe), we found that, as expected, it was generally
close to full. Because of the Morpheme runtime processing,
the probes essentially bypass this congestion, resulting in
significantly better service.

d) Rate limiting: We used the rate limit example program
shown in Section IV in our final benchmark experiment. That
program implements a basic exponentially-weighted moving
average calculation of the background TCP traffic. This average
is computed periodically and is used to test whether the rate is
above a 500 Kb/s limit. If so, then all TCP traffic during the
next interval (before the next EWMA calculation) is dropped.
Clearly, this kind of rate limitation is rather blunt, but serves
to illustrate the capabilities of Morpheme. Note that for UDP
traffic, this rate limit does not apply. Also in this experiment,
we added Morpheme code to include the computed EWMA
rate in the UDP probe as it passes through the router (using a
field expression) as well as timestamps on input and output.
Thus, we could easily collect measurements from Morpheme
itself about how the program ran.

Figure 3 plots the computed EWMA value from the Mor-
pheme program that is stamped into probes as they pass through
the router. Observe that the measured rate hovers around 500
Kb/s, which is the target maximum rate in the Morpheme
program. It is expected that the rate will rise above this level
due to recomputing the EWMA at discrete time intervals. Still,
Morpheme effectively limits the bandwidth consumption of all
TCP traffic.

We believe that the microbenchmark experiments described
in this section highlight the capabilities, ease of use, and
potential of Morpheme. In future work, we intend to investigate
more complex examples and scenarios.

VIII. SUMMARY AND CONCLUSIONS

The increasing use of network processors in routers and
growing capabilities of devices such as NetFPGAs suggest

0 50 100 150

0.
0

0.
2

0.
4

0.
6

time (seconds)

tim
e

in
si

de
 ro

ut
er

 (s
ec

)

Fig. 1. Baseline Morpheme program with two
background TCP sources.

0.000 0.002 0.004 0.006 0.008 0.010

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

time inside router (seconds)

P
(X

<
=

x)

Fig. 2. CDF of probe forwarding times through
Click (egress-ingress timestamp).

0 50 100 150

0
40

00
00

10
00

00
0

time (seconds)

m
ea

su
re

d
ra

te
 (b

ps
)

Fig. 3. Results from rate limit benchmark
experiment.

intriguing possibilities for new router-supported applications
and services. The goal of our work is to develop a simple,
yet powerful programming environment for routers that facili-
tates development of network applications and services. Our
approach is based on specifying general primitive functions
that are accessed and composed into more complex functions
through a new high-level programming language, Morpheme.
To demonstrate our approach, we specify a set of data plane-
oriented primitive functions along with the primitive-aware
Morpheme language, which includes additional capabilities
that facilitate the composition of larger programs. We built a
compiler which accepts programs written in the Morpheme
language and produces C++ code, which can be used as input to
target platforms. We demonstrate how the Morpheme language
facilitates resource analysis, which is critical to effective use
on resource constrained devices. Finally, we implemented
the primitive set in Click and conducted experiments that
highlight the utility of the primitive functions. The results of
the experiments illustrate the correctness of our implementation
and the simplicity of functions implemented in Morpheme.

In future work, we plan to expand the primitive set to
include control plane operations, and to consider our primitive
functions in a reasoning framework so that we can formally
assess their characteristics. We also plan to examine hardware
implementation issues toward the goal of being able to run
Morpheme programs on live systems such as NP-and FPGA-
based devices and scale to high-speed links.

ACKNOWLEDGMENTS

This work was supported in part by NSF grants CNS-
0716460, CNS-0831427 and CNS-0905186, NSF CAREER
awards CNS-1054985 and CCF-0953478, DoE contract DE-
SC0002153, and LLNL contract B580360. Any opinions,
findings, conclusions or other recommendations expressed in
this material are those of the authors and do not necessarily
reflect the view of the NSF, the DoE, or LLNL.

REFERENCES

[1] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click Modular Router,” ACM Transactions on Computer Systems, vol. 18,
no. 3, August 2000.

[2] J. Saltzer, D. Reed, and D. Clark, “End-to-end Arguments in System
Design,” ACM Transactions on Computer Systems, vol. 2, no. 4,
November 1984.

[3] A. Campbell, H. D. Meer, M. Kounavis, K. Miki, J. Vicente, and
D. Villela, “A survey of programmable networks,” ACM SIGCOMM
Computer Communication Review, vol. 29, no. 2, 1999.

[4] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, and G. Mindin, “A
Survey of Active Network Research,” IEEE Communications Magazine,
January 1997.

[5] D. Tennenhouse and D. Wetherall, “Towards an Active Network Archi-
tecture,” ACM SIGCOMM Computer Communications Review, vol. 26,
no. 2, April 1996.

[6] M. Hicks, P. Kakkar, J. Moore, C. Gunter, and S. Nettles, “PLAN: A
Packet Language for Active Networks,” in Proceedings of ACM SIGPLAN
ICFP, September 1998.

[7] L. Popa, N. Egi, S. Ratnasamy, and I. Stoica, “Building extensible
networks with rule-based forwarding,” in USENIX OSDI, 2010.

[8] J. Kelly, W. Araujo, and K. Banerjee, “Rapid Service Creation using the
JUNOS SDK,” in Proceedings of ACM SIGCOMM PRESTO Workshop,
August 2009.

[9] J. Naous, G. Gibb, S. Bolouki, and N. McKeown, “NetFPGA: Reusable
Router Architecture for Experimental Research,” in Proceedings of ACM
SIGCOMM PRESTO Workshop, August 2008.

[10] B. Davie and J. Medved, “A Programmable Router for Service Provider
Innovation,” in Proceedings of ACM SIGCOMM PRESTO Workshop,
August 2009.

[11] A. Voellmy and P. Hudak, “Nettle: Taking the sting out of programming
network routers,” in PADL, January 2011.

[12] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC Language: A Holistic Approach to Networked Embedded
Systems,” in Proceedings of ACM SIGPLAN PLDI, June 2003.

[13] N. Foster, R. Harrison, M. Freedman, C. Monsanto, J. Rexford, A. Story,
and D. Walker, “Frenetic: A network programming language,” in ACM
SIGPLAN ICFP, September 2011.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, 2008.

[15] J. Sommers, P. Barford, and M. Crovella, “Router Primitives for
Programmable Active Measurement,” in Proceedings of ACM SIGCOMM
PRESTO Workshop, August 2009.

[16] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Can the production network be the testbed?”,
in Proceedings of OSDI, October 2010.

[17] “Cisco CRS-1 Multishelf System,” http://www.cisco.com/en/US/products/ps5842/.
[18] M. Karsten, S. Keshav, and S. Prasad, “An Axiomatic Basis for

Communication,” in Proceedings of the Fifth Workshop on Hot Topics
in Networks, Irvine, CA, November 2006.

[19] J. Sommers, P. Barford, N. Duffield, and A. Ron, “Improving Accuracy
in End-to-end Packet Loss Measurement,” in Proceedings of ACM
SIGCOMM, August 2005.

[20] K. McCloghrie and F. Kastenholz, “The Interfaces Group MIB,” IETF
RFC 2863, 2000.

[21] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching
Architecture,” IETF RFC 3031, January 2001.

[22] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and
Y. Zhou, “Cilk: an efficient multithreaded runtime system,” in Proceedings
of ACM SIGPLAN PPOPP, 1995.

[23] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP,” IETF RFC 3168, September 2001.

[24] J. Sommers and P. Barford, “Self-configuring network traffic generation,”
in Proceedings of ACM SIGCOMM IMC, 2004.

