
COSC 201 Sample Exam 1 Name__________________

1. Define or describe the following:

a. Assembly language
A language for which each instruction is a mnemonic for a corresponding machine
instruction, with the exception of a few “pseudo-instructions” which translate into a very
few machine instructions. Compilers translate high-level languages into assembly code,
which an assembler then translates into machine code.

b. Instruction Set Architecture
The specification of the binary machine instructions that a machine can execute,
including the exact layout of the bit pattern for an instruction: the opcodes, any
immediate value or address, any registers used. The ISA provides the abstraction on
which higher-level languages are built and for which different implementations of the
machine can be built.

c. Benchmark Suite
A collection of programs that are used to test the performance of computers. The
SPEC benchmark is one example of a benchmark suite developed by a consortium of
manufacturers and users.

d. Register indirect (with base) addressing
An address (base) is accessed from a register and is added to an immediate part
(offset) to give the address where the desired data item is stored. This is used in
ARMv8 in load and store instructions as with
ldur Xa, [Xb, val]
where Xb is the register with the base address that is added to the immediate value val,
the data then being stored in register Xa.

COSC 201 Sample Exam 1 Name__________________

e. Register
A storage unit for storing a string of bits, typically one “word,” in a computer. Usually
comprised of flip-flops, one per bit.

f. Hertz

One cycle per second.
This is the unit, usually in mega (millions) or giga (billions) that computer clock rate is
measured.

g. Edge-triggered

A storage device such as a register or memory unit is edge-triggered if the state (bit)
stored can change only on a clock edge, that is when the clock is changing level from
high to low (falling edge-triggered) or low to high (rising edge triggered).

h. DRAM

Dynamic Random Access Memory. A bit is stored as a voltage in a capacitor controlled
by a transistor. Since capacitors leak voltage over time, the bits stored need to be
refreshed periodically (every few nanoseconds) by reading and rewriting, hence the
term dynamic. This makes dynamic RAM slower than the more expensive static RAM
(SRAM).

falling edge

rising edge

COSC 201 Sample Exam 1 Name__________________

2. Suppose you have the following instruction set mix:

 Instr type CPI % in program
 A 1 50
 B 2 25
 C 4 25

a. What is the average CPI for this mix?

CPI = (1 * 0.5) + (2 * 0.25) + (4 * 0.25) = 2.0

b. If the clock rate is 800 MHz, what is the MIPS for this machine/instruction mix?

MIPS = 800 MHz / 2.0 CPI = (800 * 106 cycles/second) / (2 cycles / instruction) =
 400 * 106 instructions/second = 400 MIPS

c. Why is MIPS not by itself a good basis for determining the performance of a given
machine?
MIPS depends on the instruction mix used in testing -- a program with many type A
instructions above will have a higher MIPS -- so it may be compiler dependent. MIPS
also depend on the architecture. An architecture with simpler instructions which are fast
but do not do as much as instructions on a machine with more complex instructions may
have a higher MIPS for a program that runs in the same or slower speed.

3. a. Write ARMv8 assembly code that will execute the following C statement. Assume
that the following registers are used to represent the variables.

a in register X19
b in register X20
c in register X21

a = (a + b) - (c – 33)

add X9, X19, X20
sub X10, X21, 33
sub X19, X9, X10

COSC 201 Sample Exam 1 Name__________________

b. Write ARMv8 assembly code that will execute the following C statements. Assume
that the following registers are used to represent the variables:

base address of list in register X19
length of list (len) in register X20
sum in register X21
k in register X22

sum = 0;
for(k = 0; k < len; k++)
 sum += list[k];

sub X21, X21, X21 // sum = 0
sub X22, X22, X22 // k= 0

for: sub X9, X22, X20 // k < len ? (could use subs and b.ge)
 cbz X9, forend // if not, end loop
 lsl X10, X22, 3 // compute X10 = 8*k
 add X10, X10, X19 // X10 = addr(list[k])
 ldur X10, [X10, 0] // X10 = list[k]
 add X21, X21, X10 // sum += list[k]
 add X22, X22, 1 // k++
 b for // jump to beginning of loop
forend:

COSC 201 Sample Exam 1 Name__________________

4. Consider the following function prototype for C++:

int Combo(int a, int b);

Assume that the function Combo has six local variables stored in registers X19, X20,
X21, X22, X9, and X10, with the usual conventions, where X19 and X20 are used to
store the parameters. Assume that the function Combo makes calls to other functions.
Outline the steps needed to execute the following function call in assembly code,
assuming the variables are assigned to registers, x in X23, a in X19, b in X20.

 x += Combo(a, b);

You may answer by explaining the steps in words, or by writing assembly code with
comments explaining the purpose of each statement, or a mix of the two. If you are
unsure whether something needs to be done, put it in. Include all operations done by
the caller function (the function where the above line of code occurs) and the callee
function (the function Combo) that are needed to make the function call work. Indicate
the body of the function Combo with a comment <body of function>.

COSC 201 Sample Exam 1 Name__________________

In caller function
1. Place parameters in a registers add X0, X19, XZR
 add X1, X20, XZR
2. Jump and link (putting return bl Combo
 address into X30 and jumping to
 function)

8. Use returned value add X23, X0, X23

In function Combo Combo:
3.a. Adjust stack pointer sub SP, SP, 40
 b. and save state stur X19, [SP, 32]
 (save registers used and stur X20, [SP, 24]
 X30 register) stur X21, [SP, 16]
 stur X22, [SP, 8]
 stur X30, [SP, 0]

4. Move parameters into locals add X19, X0, XZR
 add X20, X1, XZR

5. Execute function, placing <body of function>
 return value in return register(s) add X0, X?, XZR // X? = ret val

6.b. retore state ldur X19, [SP, 32]
 (save registers used and ldur X20, [SP, 24]
 X30 register) ldur X21, [SP, 16]
 ldur X22, [SP, 8]
 ldur X30, [SP, 0]
 a. readjust stack pointer add SP, SP, 40

7. Return to caller br X30

COSC 201 Sample Exam 1 Name__________________

5. Draw the transistor circuit for a 3-way AND gate.

In 1

In 2

In 3

Out

COSC 201 Sample Exam 1 Name__________________

6. Draw the logic gate circuit for a decoder with 3 input lines and the appropriate
number of output lines. Where might such a circuit be used?

Used to select which register or memory location to write to.

In 2

In 1

In 0

D2

D3

D4

D5

D6

D7

D0

D1

COSC 201 Sample Exam 1 Name__________________

7. Consider the following diagram.

a. The two parts of the circuit that are boxed are identical. Explain what one of

these circuits by itself is and how it works.

Each of these circuits is a D-latch. When the clock is high, whatever value is on the
Data In line is stored and is also on the data out line. When the Clock is low, the stored
value remains captured on the Out (Q) line, regardless of any changes on the Data In
line. The ~Q line has the opposite of the Q line.

b. The complete circuit forms a standard unit. Describe what it is, how it works, and
where it might be used in a CPU.

The whole Circuit is a flip-flop, which also stores a single bit value. However, in a
flip-flop, the value on the Data-In line is stored during the falling edge of the clock.
While the clock is high, the first (master) latch is open and captures the data value.
When the clock falls through the falling edge to low, the second (slave) latch (using
the negated clock) is open, capturing the signal on the first latch. If the data In
signal changes while the clock is low, it will not affect the stored value because the
master latch is closed and will not change. If the data value changes while the clock
is high, it will change the master latch, but not the slave. It is only the value on the
end of the high signal, kept on while the clock falls to low that is captured.

COSC 201 Sample Exam 1 Name__________________

8. Consider the hex number 0x33104000.
a. Write this as a binary number

0011 0011 0001 0000 0100 0000 0000 0000

b. Write this as an integer base ten, assuming two's complement representation. (Write
the value as a sum of powers of two, with the appropriate sign, e.g. 2^27 + 2^22 + … +
2^5.)

+ 2^29 + 2^28 + 2^25 + 2^24 + 2^20 +2^14

c. Write this number as a decimal, assuming it is in IEEE-754 floating point
representation for 32-bit floats.
Sign is +
Exp is 01100110 in bias 127 this is (2+4+32+64)-127 = -25
Fraction is 0010000010…, so significand is 1.001000001 = 1 + 1/8 + 1/512 = 577/512
Final is + 577 x 2^-34

d. Write the instruction that this represents. (Hint: The opcode 001100 is for the
instruction andi)

andi $24, $16, 0x4000 is sufficient. This is also

andi $t8, $s0, 2^15

This was for MIPS. The opcode for ARMv8 would be 11 bits: 00110011000 = 0x198,
which is not an opcode for our ARMv8 subset. On an exam you would get a valid
opcode with suggestion given in hex, as with the 0x198 here.

