
Description of circuit files for Lab 7 – Single Cycle Data Path

The CPUComponents.circ file contains the following incomplete subcircuits:

BranchAddress – Computation of the address to branch to. Given the branch offset, this component does the shift by
two (addresses are always on words), then adds the current PC. The input pins on the left, from the top:

PC – 32 bits (PC for current instruction plus 4)
Branch offset – 32 bits

The output pin on the right is the branch address

BranchControl – Determines whether a branch is taken
 The input pins on the left, from the top:

Unconditional branch control — 1 bit
Conditional branch control — 1 bit
Zero (from ALU) — 1 bit

Output pin on the right:
 control to MUX that determines next value to PC — 1 bit
 0 — PC gets PC+4
 1 — PC gets branch address
——————————————————————————————————————

The CPUComponents.circ file contains the following completed subcircuits:

InstructionDecode – splits out the instruction fields from the instruction. The field connections on the right of this
component are as follows from top to bottom:

Opcode – 11 bits
Rn – 5 bits
Rm – 5 bits
Rd/t – 5 bits
ShAmt – 6 bits (Unused in our implementation)
full instruction to immediate extend unit – 32 bits
opcode to ALU control unit — 11 bits

Registers – a full bank of 32 32-bit registers. The pins on the left side are, from the top:
Select Read Register A – 5 bits
Select Read Register B – 5 bits
Select Write Register – 5 bits
Data to Write – 32 bits

The control pins on the top, one bit:
Write Enable

The control pins on the bottom, one bit each:
Clock
Reset – sets all registers to zero

The output pins on the right side, each 32 bits, top to bottom:
Read Register A
Read Register B

Note: Register 31 is hardwired to be zero and writing to it has no effect.

Inst Mem Interface – accesses the instruction memory. The instruction memory is shown below it in the diagram.
Connections, each 32 bits:

Instruction Address – on the left
Instruction – on the right

Data Mem Interface – provides an interface for accessing the data memory. The pins on the left, from the top:
Data Address – 32 bits, for either write to memory or reds from memory
Data to Memory – 32 bits, data to be written to the memory

Control pins at the top, one bit each:
 MemWrite
 MemRead
Pin on the right:
 Data value read from memory — 32 bits
Pins on the bottom:
 Clock signal in — 1 bit
 Other pins on the bottom connect to the Logi-Sim memory component

Sign Extend – Takes full 32-bit instruction and determines which bits to sign extend, using bits 26 and 31 to
differentiate between a load/store, a conditional branch, or an unconditional branch. Selects the appropriate field and
sign-extends to 32 bits.
Left input pin:
 full instruction — 32 bits
Right output pin:
 sign-extended immediate — 32 bits (indeterminate on some instructions)

ALU – creates a MIPS ALU circuit (somewhat different from the one defined in the text). The pins on the left, each
32 bits:

Input A
Input B

The control pin on the bottom takes the 4-bit ALU control signal.
The output pins on the right, from top to bottom:

Zero – 1 bit
Result – 32 bits
Sign — 1 bit
Overflow – 1 bit
Carry out — 1 Bit

Note: The four 1 bit outputs are just those needed to set the condition register (not implemented)

For the ALU the operation controls are as follows:

and 0000
or 0001
add 0010
sub 0110
nor 1100 (not implemented)
pass B 0011 (for CBZ, note error in the text)

The MiscComponents.circ file contains the following subcircuits that are used to build the CPUComponents.circ
subcircuits:

GetSign – send the sign bit of a 32-bit input to the down output and passes the 32-bit value to the right output.

Zero – takes a 32-bit input and outputs a single bit as 1 if the value is zero, 0 otherwise.

Overflow – Takes the a, b and sum high order bits and sets the output bit to 1 if there is overflow/underflow from an
arithmetic operation in the ALU (two operation bits at 10 indicating an add/subtract op)

Registers4 – creates 4 32-bit registers with 2-bit control for selecting read-1, read-2 and write.

Registers4Z – same as above except the three register is hard-wired to be zero, cannot be written.

WordAddress – Pulls an 8-bit word address from a 32-bit byte address – the logi-sim memory uses 8-bit addresses
for 32-bit words.

MemoryData – Uses tri-state controls to create memory interface. Makes our data memry interface simpler.

The control.circ file supplies the control and the ALUcontrol circuits to the datapath.circ file.

Subcircuits:

Control – input is the eleven-bit opcode from the instruction and output are the following control lines:
 Unconditional Branch – 1 for branch, 0 otherwise
 Conditional Branch – 1 for conditional branch, 0 otherwise
 MemToReg – 1 if write value for register is from memory, 0 otherwise
 MemRead – 1 for a memory read (for lw), 0 otherwise
 MemWrite – 1 if if memory is to be written, 0 otherwise
 ALUSrc – indicates source for ALU B-operand, 0 for the rt register and 1 for the

sign-shifted immediate
 RegWrite – 1 if a register is to be written, 0 otherwise
 Reg2Loc – determines whether second (B) read register is from rm (0) or rt (1)

control_0– subcircuits for building the control circuit

ALUcontrol – input is the eleven-bit opcode from control, output is the 4-bit control for the ALU.

ALUcontrol_0 – subcircuit for implementing ALUcontrol circuit

Fake_Control and Fake_ALUcontrol – subcircuits that can be used in place of the control and ALUcontrol circuits
for testing. If these are placed in the locations for control and ALUcontrol in the datapath circuit, then an eight-bit
input can be placed on the top of the Fake_Control and a four-bit input on the top of the Fake_ALUcontrol, so the
control output values can be set by the user for testing purposes.

The SingleCycleCPU.circ file contains an incomplete implementation of the simplified ARM (LEGv8) single cycle
processor described in the book.

