
Yale University
Department of Computer Science

Design Principles of Policy Languages
for Path-Vector Protocols

Timothy G. Griffin Aaron D. Jaggard
Vijay Ramachandran

YALEU/DCS/TR-1250
April 2004

This work was partially supported by the U.S. Department of Defense (DoD) University Research Initiative
(URI) program administered by the Office of Naval Research (ONR). A shortened form of this work has
been published as a conference paper [8].

Design Principles of Policy Languages for Path-Vector Protocols

Timothy G. Griffin∗ Aaron D. Jaggard† Vijay Ramachandran‡

Abstract

BGP is unique among IP-routing protocols in that rout-
ing is determined using semantically rich routing poli-
cies. However, this expressiveness has come with hidden
risks. The interaction of locally defined routing policies
can lead to unexpected global routing anomalies, which
can be very difficult to identify and correct in the de-
centralized and competitive Internet environment. These
risks increase as the complexity of local policies increase,
which is precisely the current trend. BGP policy lan-
guages have evolved in a rather organic fashion with lit-
tle effort to avoid policy-interaction problems. We be-
lieve that researchers should start to consider how to de-
sign policy languages for path-vector protocols in order
to avoid routing anomalies while obtaining desirable pro-
tocol properties. We take a few steps in this direction by
identifying the important dimensions of this design space
and characterizing some of the inherent design trade-offs.
We do this in a general way that is not constrained by the
details of BGP.

This work was partially supported by the U.S. Department of De-
fense (DoD) University Research Initiative (URI) program administered
by the Office of Naval Research (ONR). A shortened form of this work
has been published as a conference paper [8].

∗Intel Research Laboratory at Cambridge, Cambridge, UK. E-mail:
tim.griffin@intel.com. This work was done while at AT&T Labs
– Research, Florham Park, NJ, USA.

†Dept. of Mathematics, Tulane University, New Orleans, LA, USA.
E-mail: adj@math.tulane.edu. Partially supported by ONR Grant
N00014-01-1-0795 and by ONR Grant N00014-01-1-0431. This work
was done while at the Dept. of Mathematics, University of Pennsylvania,
Philadelphia, PA, USA.

‡Dept. of Computer Science, Yale University, New Haven, CT, USA.
E-mail: vijayr@cs.yale.edu. Partially supported by a 2001–2004
U.S. DoD National Defense Science and Engineering Graduate (ND-
SEG) Fellowship and by ONR Grant N00014-01-1-0795.

1 Introduction

The Border Gateway Protocol (BGP) is the dynamic rout-
ing protocol used to connect autonomously administered
networks on the Internet [12, 21, 25]. BGP’s main task
is to establish and maintain best-effort connectivity, even
in the face of large-scale network outages. This con-
trasts with other, more familiar IP-routing protocols such
as OSPF and IS-IS, whose main task is to establish and
maintain connectivity within a single administrative do-
main [14].

BGP is unique among IP-routing protocols in that rout-
ing is determined using semantically rich routing policies.
It is important to note that the languages and techniques
for specifying BGP routing policies are not actually a part
of the protocol. The BGP specification (RFC 1771 [21])
merely describes the low-level binary formats of BGP
update messages, the intended meaning of the fields in-
cluded in update messages, and the correct operation of a
BGP-speaking router. On the other hand, routing-policy
languages have been developed by router vendors and
have evolved through interactions with network engineers
in an environment lacking vendor-independent standards.
Vendors typically provide hundreds of special commands
for use in the configuration of BGP policies. In addition,
BGP communities (RFC 1997 [3]) allow policy writers
to selectively attach tags to routes and use these to signal
policy information to other BGP-speaking routers. Rout-
ing policies can then condition their behavior on the pres-
ence or absence of specific community values. These de-
velopments have more and more given the task of writing
BGP configurations aspects associated with open-ended
programming. This allows network operators to encode
complex policies in order to address unforeseen situations
and has opened the door for a great deal of creativity and
experimentation in routing policies.

However, this rich expressiveness has come with hid-

1

den risks. The interaction between locally defined rout-
ing policies can lead to unexpected global routing anoma-
lies such as nondeterministic routing and protocol diver-
gence [9, 26]. If the interacting policies causing such
anomalies are defined in separate, autonomously admin-
istered networks, then these problems can be very diffi-
cult to debug and correct. For example, the setting of an
attribute in one autonomous system to implement “cold-
potato routing” can cause protocol divergence in a neigh-
boring autonomous system [4, 18]. We suspect that such
problems will only become more common as BGP con-
tinues to evolve with richer policy expressiveness. For ex-
ample, extended communities [20] provide an even more
flexible means of signaling information within and be-
tween autonomous systems than the original definition [3]
did. At the same time, applications of communities by
network operators are evolving to address complex issues
of interdomain traffic engineering [2].

We believe that the root cause of “BGP-configuration
problems” is a lack of design for the policy languages
that are used to configure this protocol. BGP policy lan-
guages have evolved in a rather organic fashion with little
or no effort made to avoid policy-interaction problems.
We believe that researchers should start to consider how
to design policy languages and path-vector protocols that
together avoid such risks and yet retain other desirable
features. We take a few steps in this direction by identi-
fying the important dimensions of this design space and
characterizing some of the inherent design trade-offs. We
do this in a general way that is not constrained by the de-
tails of BGP. As a result, our framework may offer guid-
ance not only in the analysis of proposals to correct or ex-
tend BGP but also in the analysis of other BGP-like proto-
cols such as a version of BGP supporting Virtual Private
Networks [22], Telephony Routing over IP (TRIP) [23],
and of various proposals for interdomain routing of opti-
cal paths [19, 27].

1.1 Overview of the Design Space

We feel that our main contribution is in the identifica-
tion of the design goals of policy languages and path-
vector protocols. In addition, we formalize these goals
and path-vector implementations in a way that allows in-
herent trade-offs to be rigorously characterized.

We identify six important design goals for any path-
vector protocol and policy language:

Expressiveness. From the perspective of a network oper-
ator, we desire policy languages that are as expressive as
possible. For example, shortest-path routing is not expres-
sive enough for the requirements of current interdomain
routing because it is unable to capture the “natural” rout-
ing conditions arising from the pervasive economic roles
of customer, provider, and peer [15, 16]. The challenge
then is to design policy languages that are as expressive
as possible, and yet not so expressive that other design
goals are sacrificed.

Robustness. We require predictability, i.e., that any non-
determinism in routing policies is not the result of un-
wanted policy interactions, and the existence of a routing
solution which is always found by the protocol (this pre-
vents protocol divergence). Furthermore, we insist that
the same is true of any configuration that results from any
combination of link and node failures in the network. The
goal of robustness is the primary constraint on the expres-
sive power of a policy language; we are generally uninter-
ested in non-robust policies.

Autonomy. Network operators often require a high de-
gree of autonomy when defining routing policies. We
may have a good intuition about what this means—that
policy writers are given wide latitude in defining poli-
cies that reflect their own interests and not the interests of
their neighbors. Here, generalized autonomy will mean
the ability to define a partition on routes and then rank
the partition classes arbitrarily. Operationally, autonomy
is important because it isolates an autonomous system
from policy changes occurring in other (neighboring or
distant) autonomous systems. Without a high degree of
autonomy, network operators would have to continually
“tweak” their policies to compensate for unseen changes
made to policies elsewhere.

In addition to a generalized definition, we present one
notion of autonomy important for BGP—autonomy of
neighbor ranking—that allows policy writers to classify
neighbors and set route preferences in accordance with
this classification. This type of autonomy is required for a
BGP policy language to support policies compatible with
present-day commercial realities of the Internet.

Protocol Transparency. Many “obvious” approaches to

2

achieving very expressive and robust systems involve a
high cost; they add machinery that is invisible to policy
writers to the underlying path-vector system. What is lost
is protocol transparency—the ability of network opera-
tors to understand the semantics of policies they write. If
the protocol itself is allowed to dynamically modify the
input policies (in order to ensure robustness, for exam-
ple), then it may become very difficult, if not impossible,
to maintain and debug routing policies.

Global Consistency. One way to achieve robustness is to
implement a mechanism enforcing a global-consistency
constraint that guarantees robustness. This constraint
could be enforced in any number of ways, including an
additional protocol or set of protocols, by convention, by
regulation, by economic incentives, or by some combina-
tion of methods. Of course, the easier such a constraint is
to check, the better. We note that in the current Internet,
there is no global-consistency checking of BGP policies.

Policy Opaqueness. This design goal measures the de-
gree to which details of routing policies are to be kept pri-
vate or hidden from those outside of a routing domain (the
term is from Geoff Huston [17]). Full policy opaqueness
is, of course, in direct conflict with any sort of global-
consistency enforcement. Therefore, the design challenge
is to find a happy medium that allows for the exposure of
just enough information to ensure robustness while at the
same time allowing for a sufficient amount of information
hiding to satisfy policy writers.

Our formalization starts with defining three distinct
components of any path-vector protocol: the underlying
path-vector system, the policy language, and any global
consistency assumptions about the network. The path-
vector system should be thought of as the low-level means
of carrying messages between systems, much like RFC
1771. Section 2 presents a definition for path-vector sys-
tems that formalizes the information that nodes exchange,
various restrictions on nodes’ behavior, and the way that
protocols mediate interactions between nodes. As we de-
fine various components, we illustrate them with a run-
ning example that models BGP. Additional examples are
given in Section 3.

We separate the definition of a path-vector system from
the definition of a policy language: a policy language is
a high-level declaration of how the attributes describing a

route change when the route is exchanged between neigh-
bors. Section 2.3 defines the intended role of policy lan-
guages in path-vector-system configuration.

The notions of expressiveness and robustness are for-
malized in Sections 4 and 5. For both we employ the
Stable Paths Problem (SPP) [9] as a semantic model of
path-vector systems. We identify one class of robust sys-
tems as our target for expressiveness (Definition 5.4 and
Theorem 5.10). Autonomy and transparency are formal-
ized in Sections 6.1 and 6.2. Policy opaqueness is briefly
discussed in Section 6.4, while global constraints are con-
sidered in Section 7.

Besides the more obvious trade-offs already men-
tioned, we identify several more subtle ones:

1. Any system with a policy language that is maximally
expressive but has no global constraint must give up
either autonomy of neighbor ranking or transparency
(or both) (Theorem 6.9).

2. Any autonomous, transparent, and robust system
with a policy language at least as expressive as
shortest-path routing must have a non-trivial global
constraint (Theorem 7.4).

These results tell us that, if we seek to design expres-
sive policy languages that are transparent, autonomous,
and robust, then we must consider the global constraint
as an integral part of the design. Indeed, current path-
vector protocols may succeed in part because of assump-
tions about the global network; our framework highlights
the importance of this component of design.

Figure 1 illustrates the design space for robust and
transparent path-vector policy systems. (This figure is
meant to aid in developing intuitions, and should not be
taken too literally.) The x-axis represents the expressive
power of systems, and the y-axis represents the relative
difficulty of checking the global constraint. Combinations
of path-vector systems and policy languages which fall
close to the bottom right of Figure 1 are generally desir-
able.

Some points in the space deserve attention. On the
bottom horizontal line lie systems that require no global
constraint to be robust. In this paper, we assume “min-
imal” expressiveness is “Shortest-Paths” routing; a sim-
ple extension to this is “Shortest-Available Paths,” which

3

customer/provider
relationships

acyclic

Minimal Maximal

Maximal Global

Expressive
Power

Not Tractable

Tractable

cust. & prov.
consistency

cust., prov., peer
consistency

Constraints

 Shortest Paths

 Shortest Available Paths

CP+BU

CP

HBGP

HBGP+BU

}+

Globally Increasing
Path RankingExpressive

Power

Constraints
No Global

Robust BGP

Figure 1: Design space for robust and transparent path-vector systems.

allows routes to be filtered (even if they are the short-
est) and chooses the shortest path from the remaining
routes. (Both examples are given in Section 3.) We take
“maximal” expressiveness to be the expressive power of
a natural class of robust systems that we define in Sec-
tion 5.3. Two possible systems which possess the prop-
erty “Globally Increasing Path Ranking” are discussed in
Section 6.3; while these achieve maximal expressiveness
with no global constraint, they sacrifice other design goals
in the process. The final extreme point, “Robust BGP,” is
a system in which all BGP policies are collected and veri-
fied not to contain conflicting policies. One might use the
Routing Policy Specification Language (RPSL) [1] in the
manner suggested in [7] to accomplish this. Many practi-
cal issues make this scenario unlikely; furthermore, it was
shown in [10] that, in the worst case, checking various
global-consistency constraints is NP-hard.

Hierarchical BGP systems (inspired by [5, 6]) provide
examples from today’s commercial Internet. Figure 1 in-
cludes the system CP, a BGP-like system in which the
policy language allows nodes to classify neighbors as
customers and providers and to rank routes consistent
with those relationships; CP is robust if there are no cy-

cles in the customer/provider graph and if classifications
of neighbors are consistent. We might increase the ex-
pressiveness of this system in two ways: (1) allow an
additional classification of neighbors as peers, in which
case we must modify the global constraint to addition-
ally check the consistency of peer classifications (the sys-
tem HBGP); or (2) modify the policy language to per-
mit marking routes for backup use (the system CP+BU).
Combining both approaches achieves the expressiveness
of the system HBGP+BU. These types of systems are dis-
cussed in Section 8. Note that in the real world, there are
no existing methods to enforce either the local or global
constraints, although Internet economics seems to ensure
that networks behave in close approximation to the rules
described by the above-mentioned robustness conditions.

2 Path-Vector Policy Systems

In this section, we define the “protocol part” of our frame-
work: the underlying exchange system for route informa-
tion. We sketch the components independent of any par-
ticular system or instance of a system. Using the defini-

4

tions presented here, we can rigorously explore the proto-
col design space in later sections.

2.1 Dynamics of Path-Vector Routing

We first briefly discuss the intended dynamics of routing
using a path-vector system, as this motivates the system
components we define in our framework.

Informally, let each node in the network be a protocol-
speaking router responsible for its autonomous domain.
A node advertises destinations in its network to its neigh-
bors, and they further transmit this information to their
neighbors, etc. Whenever a router gets new information
about a destination, it determines the best route to that
destination given all the up-to-date information it has col-
lected. We expect that routers will influence these deci-
sions by modifying route attributes. This can be done on
export, when routes are advertised to neighbors (or pos-
sibly filtered out altogether), or on import, when data are
collected and stored for decision-making.

Therefore, we assume that there is some data structure
to store and exchange route information, and that trans-
formations to these data structures are made on import
and export as dictated by routers’ policy configurations.
The exchange of these data structures between neighbors
as described above will eventually permeate the network
with knowledge about the various destinations originated
by routers. Comparing these data structures gives a “best”
route to a destination.

2.2 Formal Definition of
Path-Vector Systems

As we develop our framework, we will use a simplified
model of BGP as a running example. This example model
assumes that each node (router) represents an entire au-
tonomous system and thus treats only External BGP (not
Internal BGP). It also ignores most BGP attributes and
simplifies others. We will adorn the elements of this ex-
ample system with the subscript µbgp.

2.2.1 Route Information

A path descriptor is a data record about a path that con-
tains enough information (e.g., the routing destination, the
sequence of AS numbers along the entire path, routers’

preference values for the path, transmission cost, etc.) for
a router to compare it to other paths and to inform its
neighbors about the path so that they can do the same. A
router learns of paths by receiving descriptors from neigh-
bors and preserves knowledge of potential best routes by
storing descriptors for paths to all known destinations.

The path-vector-system specification includes a de-
scription of the components in a path descriptor and a
map that ranks them using values from a totally ordered
set. This ranking permits routers to determine best routes
based on just the information contained in the available
descriptors to a destination; in particular, the rank of a
descriptor depends only on that descriptor. Determining
rank normally involves some components of path descrip-
tors that can be transformed by both locally configured
policies and the underlying message-exchange protocol
itself.

Definition 2.1. Let the quadruple

I = (D, R, U , ω)

be the route-information portion of the path-vector-
system specification. The components are defined as fol-
lows:

D is the set of possible routing destinations;

R is the set of path descriptors, such that to every r ∈ R
there must be associated a unique dest(r) ∈ D;

U is a set totally ordered by ≤; and

ω is a function (the ranking function) from R to U that
determines how path descriptors are ranked (thus, the
role of path-descriptor attributes in choosing routes).

Remark 2.2. Although the mechanics of determining
“best” routes will be discussed in Section 2.6, we observe
the convention that the ranking function will map more
preferred paths to smaller elements of U .

Running Example, Part 1. In our example system, let
D be the set of all IPv4 CIDR blocks. Let the set of path
descriptors be

Rµbgp = Dµbgp × N × Seq(N) × N × 2C ,

where N is the set of natural numbers, Seq(N) is the set
of finite sequences of natural numbers, and C is the set

5

{red, blue, green}. If r = (d, l, P, n, S) ∈ Rµbgp ,
then d is the destination of r, l is the local preference, P
is the AS path, n is the next hop, and the elements of S
are the colors of r. Colors are meant to be a very simple
model of BGP communities [3].

Let Uµbgp = N × N × N and ω((d, l, P, n, S)) =
(l, |P |, n), with the ordering ≤µbgp on Uµbgp given by
(l, m, n) ≤µbgp (l′, m′, n′) if and only if:

l > l′; or
l = l′, m < m′; or
l = l′, m = m′, n ≤ n′.

The combination of ≤µbgp and ωµbgp prefers higher lo-
cal preference, with ties broken by preferring smaller AS-
path length and then smaller value of the next hop.

2.2.2 Import and Export Policies

Path-vector systems explicitly include operations for im-
porting routes from neighbors and exporting routes to
neighbors. Router operators provide separate import and
export configuration policies to describe router behavior
when exchanging route information, e.g., to change path-
descriptor attributes for a route affecting its rank or to fil-
ter out routes altogether. The set of node policies across
the network would therefore be a component of a spe-
cific instance of the path-vector system. On a low level,
the import and export policies are per-neighbor functions
on path descriptors that transform their components to
make preference changes in accordance with local pol-
icy. We expect that policies will usually be written in a
higher-level policy language, which motivates the policy-
language component of design.

A path-vector system includes local-policy constraints
on what import and export policies are allowed. These
limits on the expressiveness of local policies can help
guarantee robustness and can help ensure that a protocol
achieves its goals; e.g., if policies can only add a positive
value to a path-cost attribute that alone determines path
rank, the path-vector system implements lowest-cost-path
routing.

Formally, let elements of the function space 2R → 2R

be called policy functions (these are functions on sets
of path descriptors, thus describing transformations on
them). We then define local-policy constraints in the fol-
lowing way.

Definition 2.3. Let the triple

C = (Lin , Lout , O)

be the local-constraints portion of the path-vector-system
specification. Lin and Lout are predicates on import and
export policy functions, respectively. If L in(f) or Lout (f)
holds, then f is a legal local-policy function. Further-
more, we assume that if either Lin(f) or Lout (f) holds,
then f satisfies:

(1) for each X ⊆ R, if |X | = 1 then |f(X)| ≤ 1;

(2) for each X ⊆ R, f(X) =
⋃

r∈X f({r}); and

(3) for each r1, r2 ∈ R, if f({r1}) = {r2}, then
dest(r1) = dest(r2).

O is a predicate defined on subsets of R used to define
what sets of path descriptors can be originated at a node.
A node can only advertise newly originated destinations
described by X ⊆ R if O(X) holds.

Running Example, Part 2. In our simplified-BGP exam-
ple, we want policies to affect only the local-preference
and colors (communities) attributes of path descriptors.
We let Lin

µbgp(f) and Lout
µbgp(f) hold if and only if f satis-

fies conditions (1)–(3) above as well as

(4) f((d, l, P, n, S)) = {(d′, l′, P ′, n′, S′)} implies
d′ = d, P ′ = P , and n′ = n.

Additionally, the only path descriptors which may be
originated by nodes are those with an AS path contain-
ing the AS alone (because the destination should be in
the originating AS’s domain) and a default local pref-
erence of 0, so we let Oµbgp(X) be true if and only if
(d, l, P, n, S) ∈ X implies l = 0 and P = v where v is
the originating AS.

2.2.3 Application of Policies

Although import and export policies allow router oper-
ators to configure their routers, we must recognize that
it is the router (or the protocol itself) actually applies
those policies to path descriptors encountered while run-
ning the protocol. Therefore, path-vector-system spec-
ifications include a policy-application function for both

6

the import and export operations. These functions de-
scribe the transformations used by the protocol to apply
operator-provided policies to path descriptors. This al-
lows the application of policies to be consistent with the
goals of the protocol, e.g., routers may only apply poli-
cies when they satisfy a local condition guaranteeing ro-
bustness. These functions are often used to make changes
to path descriptors uniformly throughout all information
exchanges in addition to applying the operator-provided
configuration policy (e.g., appending a node name to the
described path or hiding certain attributes when they con-
tain private information). Formally, we have

Definition 2.4. Let the pair

T = (tin , tout)

be the protocol-transformation portion of the path-vector-
system specification. Both tin and tout are functions of
type (N × N × (2R → 2R) × 2R) → 2R; the first two
arguments are node names, the third is the policy function
to apply, the fourth is the target set of path descriptors.

Running Example, Part 3. We now give the protocol
transformations for our model of BGP. If u and v are
nodes, f is a policy function (expected to be u’s export
policy function for v), and X is a set of path descriptors
(expected to be known to u), then

toutµbgp(u, v, f, X) = {(d, 0, vP, u, S)
| (d, m, P, w, S) ∈ f(X)}.

The protocol applies the (export) policy function (which
may change local preference and colors) and then updates
the AS-path and next-hop values to reflect the edge {u, v}
in the extended path. It also sets the local preference value
to 0, hiding this value from the node receiving information
about this path. If Y is a set of path descriptors (expected
to be toutµbgp(u, v, f, X)) and g is v’s import policy func-
tion for u, then we let

tinµbgp(v, u, g, Y) = { g(r) | r ∈ Y,

r describes a simple path}.

The protocol thus takes care of filtering any paths which
contain loops.

2.2.4 Path-Vector System

Definition 2.5. A path-vector system is a triple of the
form

PV = (I, C, T)

where the components are as defined in Definitions 2.1–
2.4.

2.3 Policy Languages

Of course, policy writers don’t actually write mathemat-
ical functions, but rather write specifications in a path-
vector policy language. We expect that such languages
can be given a rigorous semantics so that policies written
in the language can be treated as specifications for func-
tions on path descriptors. A policy language essentially
is a local constraint on the policy functions that can be
written for a path-vector system. Policy-language design-
ers must ensure that legal policy specifications are guar-
anteed to have semantics that conform to the constraints
of the target path-vector system(s). In practice, this may
involve some type of compilation to low-level, vendor-
specific configuration commands—a transformation that
may be rather complex. However, separating the defini-
tion of a policy language from the definition of a path-
vector system allows us to consider multiple policy lan-
guages for the same path-vector system. We can also dis-
cuss using different path-vector systems to implement the
same policy language.

Definition 2.6. A policy language PL for a path-vector
system is a language and a semantic functionM that maps
each policy configuration p written in this language to a
triple

M(p) = (min , mout , morig)

of partial functions of types

min , mout : V × V → (2R → 2R)
morig : V → 2R

If u and v are node identifiers, then min(v, u) and
min(v, u) are called the import and export policy func-
tions at v for u, respectively, and L in(min(v, u)) and
Lout (mout(v, u)) hold whenever these policy functions

7

are defined. These functions transform sets of path de-
scriptors. Finally, the function morig maps node identi-
fiers v to finite subsets of R such that O(morig (v)) holds
whenever morig(v) is defined.

We take policy configurations to be the language-
specific definitions of policies for one or more nodes; the
set of valid policy configurations is part of the language
PL.

Running Example, Part 4. We define a simple policy
language PLµbgp . A policy configuration in this language
is a list of declarations, each having one of the forms:

export from v to W : rule
import at v from W : rule

originate from v : (d, 0, ε, v, S)

The first and second type declare export and import poli-
cies, respectively, and the third type declares routes to be
originated from a node. The sets W represent all of the
neighboring nodes to which a given declaration is applied.
Each rule is a transformation of objects in Rµbgp defined
by a list of clauses:

C1 =⇒ A1

C2 =⇒ A2

...
...

...
Cn =⇒ An

where each Ci is a boolean predicate over path descrip-
tors and each Ai is an action to be taken on the input path
descriptor. The actions are either of the form reject, or
they are statements that modify the local preference or
colors of a path descriptor. For each path descriptor r
input to such a rule, the action associated with the first
predicate that evaluates to true is performed on r. If no
clause matches, the empty set is returned. MPLµbgp

(p)
is easy to determine given the form of policy configura-
tions in PLµbgp ; see part 5 of the running example in the
following subsection.

2.4 Instances of Path-Vector Systems

Definition 2.7. An instance of a path-vector system PV
with respect to a policy language PL (or an instance of
(PV , PL)) is a pair

I = (G, P),

where G = (V, E) is an undirected graph, called
the signaling graph, and the configuration function P
maps nodes v ∈ V to policy configurations P (v) =
pv in the policy language PL so that M(pv) =
(F in

v , F out
v , F orig

v). We require that F orig
v (v) is defined

and that, for every {v, u} ∈ E, both F in
v (v, u) and

F out
v (v, u) are defined. We will assume that the vertex

set V is a subset of N.
Let F (I) = (F in , F out , F orig) where

F in (v, u) = F in
v (v, u)

F out (v, u) = F out
v (v, u)

F orig (v, u) =
⋃

w∈V

F orig
w (v)

F is a summary configuration function for the instance
that represents the collection of policy configurations pro-
vided by nodes in the instance. However, F technically
describes transformations on path descriptors, and thus is
a somewhat “compiled” or “lower-level” version of the
policies for the instance, independent of the policy lan-
guage used to specify them.

Remark 2.8. In most cases, nodes will not originate de-
scriptors on behalf of other nodes, i.e., F orig

w (v) = ∅ for
w �= v, and nodes will not have policies for non-incident
edges, i.e., F in

w (v, u),F out
w (v, u) are not defined for

w �= v. In addition, we suggest and often assume that
the origination constraint includes a clause to check that
nodes only originate path descriptors for destinations they
represent or contain, i.e.,

O(X) ⇒
[
r ∈ X ⇒

(
dest(r) = v ⇒ r ∈ F orig

v (v)
)]

Definition 2.9. Given two instances I = (G, P) and
I ′ = (G′, P ′) of (PV , PL), the instance I ′ is said to
be a sub-instance of I if G′ is a subgraph of G and the
configuration function P ′ is equal to P when restricted to
G′. For example, given any instance I = (G, P) and
G′, a subgraph of G, the instance I ′ = (G′, P) is a sub-
instance of I .

Running Example, Part 5. One instance of
(PV µbgp , PLµbgp) consists of the five-vertex graph
shown in Figure 2 and policy configurations in Figure 3.

8

4

1

2 3

5

Figure 2: A simple 5 node graph.

2.5 Realizable Path Descriptors

We are particularly interested in the path descriptors that
arise as the result of first originating a path descriptor
at some node and then forwarding it along some path in
the network, applying the appropriate export, import, and
protocol transform functions along the way. We call these
realizable path descriptors. Because we do not usually
make use of the path descriptors that arise after applying
an export transform but before applying the correspond-
ing input transform, we combine these functions into arc
policy functions for convenience.

Definition 2.10. Let I be an instance of (PL, PV) with
signaling graph G = (V, E); let {v, u} ∈ E be any
edge. Then the arc policy function F(v,u) is the function
which takes the path descriptors at u and produces the
path descriptors that v has after import from u. Thus, for
X ⊆ R,

F(v,u)(X) = tin(v, u, F in(v, u),
tout (u, v, F out (u, v), X)).

Note that it may be the case that F(v,u)(X) = ∅ for some
X �= ∅. In this case we say that the path descriptors of X
have been filtered out by F(v,u).

Conditions (1)–(3) given in Definition 2.3 only need
to hold for the functions {F(v, u) | {v, u} ∈ E}; how-
ever, because tout and tin are specified separately from
the policies F out and F in , it may be easier for those de-
signing the protocol transformations t in and tout to as-
sume that all policies satisfying Lout or Lin also satisfy
these conditions (and for the compilers of policies into
functions to know that it suffices to satisfy these condi-
tions).

originate from 1 : (d, 0, (1), 1, ∅)
export from 1 to {2} :

true =⇒ r.colors := {red}
export from 1 to {3, 4} :

true =⇒ r.colors := {blue}
export from 1 to 5 :

true =⇒ r.colors := {green}

import at 2 from {1, 3, 5} :
blue ∈ r.colors =⇒ r.local-preference := 100
red ∈ r.colors =⇒ r.local-preference := 50
green ∈ r.colors =⇒ r.local-preference := 10

export from 2 to {3, 5} :
true =⇒ r

import at 3 from {1} :
true =⇒ r.local-preference := 100

import at 3 from {2, 4} :
green ∈ r.colors =⇒ r.local-preference := 1000
blue ∈ r.colors =⇒ r.local-preference := 500

export from 3 to {2, 4} :
true =⇒ r

import at 4 from {1} :
true =⇒ r.local-preference := 10

import at 4 from {3, 5} :
green ∈ r.colors =⇒ r.local-preference := 50
blue ∈ r.colors =⇒ r.local-preference := 25

export from 4 to {3, 5} :
true =⇒ r

import at 5 from {1, 2, 4} :
green ∈ r.colors =⇒ r.local-preference := 2
red ∈ r.colors =⇒ r.local-preference := 1

export from 5 to {2, 4} :
true =⇒ r

Figure 3: Example policy configurations in PLµbgp .

Suppose that the path P is a simple path in G from
a node v to node w; we write this as a sequence
P = vx1 . . . xkw of distinct nodes starting with v
and ending with w. If rw ∈ F orig (w), then we let
r(P, rw) ⊆ R be the result of passing rw along P
and applying the corresponding arc policies. Formally,
if P = w, set r(w, rw) = {rw}. If v �= w then
write P = vx1 . . . xkw = vP ′ and let r(vP ′, rw) =
F(v,x1)(r(P ′, rw)).

Definition 2.11. The set of path descriptors realizable at
u in I is the set Ru

I of descriptors which may be originated
at u or which may be obtained by (legally) originating a
descriptor elsewhere and passing it along a network path,

9

successively transforming it with the appropriate arc poli-
cies. Formally:

Ru
I = F orig (u) ∪

{r′ ∈ r(P, rw) | w ∈ V, rw ∈ F orig (w),
and P is a path from u to w}.

2.6 Path-Vector Solutions

A solution for an instance of a path-vector system is an
assignment of path descriptors to nodes which is both re-
alizable and which satisfies each node’s preferences to as
great an extent as possible given the assignments to the
surrounding nodes.

Definition 2.12. A path assignment ρ is a mapping from
V to 2R. Given a path assignment ρ, define the set
C (ρ, v) of candidates at node v to be

F orig (v) ∪ {r ∈ R | {v, u} ∈ E ∧ r ∈ F(v, u)(ρ(u))},

i.e., those path descriptors which are either originated at v
or which are the result of importing descriptors assigned
by ρ to v’s neighbors.

Definition 2.13. For X ⊆ R, let the set min(X) be the
set of descriptors in X (for all destinations) which are
minimally ranked among the descriptors with the same
destination, i.e., define min(X) =

{r ∈ X | ∀ r′ dest(r′) = dest(r) ⇒ ω(r) ≤ ω(r′)}.

The assignment ρ is a solution for I if for each v ∈ V we
have (1) ρ(v) ⊆ Rv

I and (2) ρ(v) = min(C (ρ, v)).

For the instance I , let sol (I) be set of solutions for I .
Note that it may be the case that sol(I) = ∅.

Running Example, Part 6. The unique solution ρµbgp to
the instance from part 5 of our running example is shown
in Table 1. Note that the sub-instance obtained by deleting
the edge {1, 5} from the graph has two solutions; so, this
instance is not robust.

3 Examples

We first discuss two points in the design space that were
mentioned in the overview and then present an additional,
more complex example.

v ρµbgp(v)
1 {(d, 0, (1), 1, ∅)}
2 {(d, 50, (2, 1), 1, {red})}
3 {(d, 1000, (3, 4, 5, 1), 4, {green})}
4 {(d, 50, (4, 5, 1), 5, {green})}
5 {(d, 2, (5, 1), 1, {green})}

Table 1: Unique solution for our running example.

3.1 Shortest-Paths Routing

Example 3.1. (Shortest Paths) Let Rsp = Dsp × N ×
Seq(N). The second component of r ∈ Rsp is a non-
negative length associated with the path in the third com-
ponent of r; this length is the sole factor in path ranking,
with shorter paths preferred. We permit nodes to incre-
ment the length of a path on import or export, so that
Lin = Lout = Lsp where Lsp(f) holds iff there exists a
positive integer n such that for all d ∈ Dsp , m ∈ N, P ∈
Seq(N), we have f({(d, m, P)}) = {(d, m + n, P)}.

We define the export policy-application function
toutsp (u, v, f, X) to produce the set

{(d, m, uP) | (d, m, P) ∈ f(X)}.

That is, toutsp merely extends the path P with the node
u. We define the import policy-application function
tinsp(u, v, f, X) to produce the set

f({r | r = (d, l, P) ∈ X where P is a simple path}).

That is tinsp eliminates path descriptors with a loop, and
then applies the import policy.

Remark 3.2. Note that by replacing Seq(N) with N

we could model “distance vector” protocols similar to
RIP [13]. However, we will restrict our attention to those
systems that do not allow signaling paths of arbitrary
length.

Example 3.3. (Shortest-Available Paths) This system is
a slight extension of Shortest Paths in which path descrip-
tors can be filtered out, both on import and export. We
simply modify the local constraints L in and Lout to allow
filtering, leaving all other definitions unchanged. The new
constraint Lsap(f) holds iff there exists a positive integer
n such that for all d ∈ Dsp , m ∈ N, P ∈ Seq(N),
either f({(d, m, P)}) = ∅ or f({(d, m, P)}) =
{(d, m + n, P)}.

10

3.2 A Catalan Example

We now give an example which is rather unlike traditional
routing problems and which suggests the broad applica-
bility of the framework we have presented. The policy-
application functions of this path-vector system ensure
that the path descriptors which are passed between nodes
are those whose paths are subpaths of lattice paths related
to the famous Catalan numbers. We thus denote this path
vector system by PV cat . The set Ucat includes ∞, and
the ranking function ωcat is constructed so that exactly
the desired lattice paths are given finite rank; subpaths of
the desired paths are not filtered but instead given infinite
rank.

The policies written by nodes in an instance of this
system do not affect which paths are imported and ex-
ported; they only determine the rank of the path descrip-
tors which are constrained by PV cat to have finite rank.
Given the myriad of combinatorial interpretations of the
Catalan numbers, there are many ways that nodes in an in-
stance of PV cat can interpret and then “naturally” order
the path descriptors that they receive from their neighbors.
We suggest a few such policies below.

3.2.1 The Path Vector System PVcat

We assume that each node in an instance of PV cat has
a neighbor one step to the north and one step to the east
(as though points with integer coordinates in R2) and that
the protocol knows the spatial relationship between neigh-
bors.

Let Seq(0, 1) be the set of all finite 0–1 sequences, and
let Rcat = Dcat ×N×N×N×Seq(0, 1). We then make
the following definitions.

Ucat = N ∪ {∞}
destcat(d, x, y, z, P) = d

ωcat(d, x, y, z, P) =

{
z, x = y

∞, otherwise

In r = {d, x, y, z, P}, we will use P to encode the
corresponding path (using 0 for east steps and 1 for north
steps) and x and y to store the number of east and north
steps in the path.

We let Ocat(X) hold if and only if r ∈ X ⇒
r = (d, 0, 0, m, ε), where ε is the empty se-
quence. Let Lcat(f) hold if and only if for every r =
(d, x, y, z, P) ∈ Rcat , f({r}) = {(d, x, y, z′, P)},
so that f may only change the fourth element of the path
descriptor. We take Lcat to be the constraint on both im-
port and export functions.

Lin
cat(f) = Lcat(f)

Lout
cat (f) = Lcat(f)

Remark 3.4. Note that Lcat ensures that policies do not
filter paths as in Shortest Paths (Example 3.1). This could
be changed to allow filtering as in Shortest-Available
Paths (Example 3.3).

We define the export policy-application function
toutcat (u, v, f, X) to be the set

{(d, x + 1, y, z, 0P) | (d, x, y, z, P) ∈ f(X)}

if v is 1 step east of u, the set

{(d, x, y + 1, z, 1P) | (d, x, y, z, P) ∈ f(X)}

if v is 1 step north of u, and ∅ otherwise. Thus toutcat re-
stricts the export of descriptors to those neighbors which
are one step east or north from the exporting node. It also
updates the path P , prepending a 0 or 1, depending on
whether this export is to the east or north, and the total
number of east (x) and north (y) steps in P . Note that
we do not make assumptions about the labels of the nodes
(although we could express these restrictions using node
labels from N×N). We define tincat(u, v, f, X) to be the
set

f({(d, x, y, z, P) ∈ X | y ≥ x}).
The combination of toutcat and tincat ensures that the path

descriptors which have not been filtered correspond to
paths with north and east steps and that, starting at the
destination, have never made more east steps than north
steps as they are forwarded. It is well known that the num-
ber of such paths with exactly n steps north and n steps
east is the nth Catalan number 1

n+1

(
2n
n

)
. The definition

of ωcat means that the path descriptors which have finite
rank are exactly those which have passed along equally
many north and east steps. While PV cat determines the
set of descriptors which are assigned finite rank at each

11

node, it has no impact on the ordering of the descriptors in
this set. These rankings will be determined by the policies
of nodes in an instance of PV cat and may correspond to
natural orderings on some of the many families of objects
counted by the Catalan numbers (66 examples of which
are given in Exercise 6.19 of [24]).

3.2.2 Policies for PVcat

Assume that we have some policy language PLcat for
PVcat in which a node can describe: a family of objects
counted by the Catalan numbers; a ranking of these ob-
jects; and an appropriate bijection between the objects and
Catalan sequences. (A Catalan sequence of size n is an
element of Seq(0, 1) with n 0s and n 1s, such that no ini-
tial subsequence has more 0s than 1s.) We now consider
different policy functions, compiled from policies writ-
ten in PLcat and which satisfy Lcat , which may arise in
PVcat . These functions must be of the form

f({d, x, y, z, P}) = {(d, x, y, z′, P)},

so we will define the functions below by defining z ′ in
each instance.

The first two examples use as objects lattice paths (i.e.,
composed of the steps (1, 0) and (0, 1)) from (0, 0) to
(n, n) which never fall below the diagonal y = x. They
also use the bijection described in the definition of PV cat

in which a 1 appearing in an element of Seq(0, 1) corre-
sponds to a step of (0, 1) in a lattice path. For the first
example, let the ranking of a path be its area, i.e., the
number of whole squares below the path and above the
diagonal y = x. The import function then sets z ′ to be the
area of the path corresponding to P . For our second ex-
ample, we prefer shorter paths to longer ones, and given
two paths of the same length, we prefer the one which
has the (1, 0) step at the first step where they differ. For
a sequence P of length 2n, the import function then sets
z′ to be

∑n−1
i=1

(
2i
i

)
/(i + 1) plus the number of paths of

length 2n that have a (1, 0) step in the first place where
they differ from P .

Among all paths of length 2n, the path along the di-
agonal (alternating north and east steps) will be the most
preferred using both of these policies, while the path con-
sisting of n steps north followed by n steps east will be
the least preferred. However, the first policy will prefer
any path along the diagonal to any other path, regardless

of the lengths of the two paths, in contrast to the second
policy. They will also disagree on the relative rankings
of the two paths encoded by P1 = 1011111 . . .00000 . . .
and P2 = 110010101010

Policies might also be written which view the object
encoded by a sequence P of length 2n as an ordering π
of {1, . . . , n} which does not have three (possibly non-
adjacent) elements in decreasing order (a 321-avoiding
permutation). (See [24] for a bijection to the lattice paths
we have been considering.) The import function could as-
sign to z′ any number of values, including various permu-
tation statistics (e.g., descents, inversions) evaluated on π.
Once the path P is viewed as a permutation, there are a
wide variety of ways to define z.

4 Expressiveness

To rigorously capture the expressive power of path-vector
systems, we use a variant of the Stable Paths Problem
(SPP) [9] as a sematic domain. After reviewing the SPP
framework, we show how to map path-vector instances to
equivalence classes of SPP instances and use this to com-
pare the expressiveness of path-vector policy systems.

4.1 The Stable Paths Problem (SPP)

Definition 4.1. The quadruple

S = (G, v0, P , Λ)

is an instance of the Stable Paths Problem (SPP) if G =
(V, E) is a finite undirected graph, v0 ∈ V (called the
origin), P is a set of simple paths in G terminating at v0,
and the mapping Λ takes nodes v ∈ V to a path ranking
function λv = Λ(v). Each λv is a function that takes a
path in Pv = {P ∈ P | P is a path starting at v} to its
rank in N. If W ⊆ Pv, then the subset of “best paths” in
W , min(λv, W) ⊆ W , is defined as the set

{P ∈ W | for every P ′ ∈ W, λv(P) ≤ λv(P ′)}.

Definition 4.2. A path assignment for an SPP-instance S
is any mapping π from V to subsets of P such that π(v) ⊆
Pv. The set candidates(u, π) consists of all permitted
paths at u that can be formed by extending the paths as-
signed to neighbors of u. For u = v0, candidates(u, π) =

12

{(u)}, and for u �= v0, candidates(u, π) equals

{uQ ∈ Pu | {v, u} ∈ E and Q = π(v)}.

A path assignment π is a solution for an SPP if for ev-
ery node u we have π(u) = min(λu, candidates(u, π)).
That is, if F is a functional that takes path assignments
π to path assignments F (π), defined as F (π)(u) =
min(λu, candidates(u, π)), then the solutions of the SPP
are exactly the fixed points of F (for any solution π we
have F (π) = π, and F (π) = π implies π is a solution).

A convenient abbreviation for the best path at u under π
is defined to be best(u, π) = min(λu, candidates(u, π)).
Then π is a solution if π(u) = best(u, π) at each node u.

Remark 4.3. The definition for SPP given here is a bit
more general than that of [9] in that we do not require
“strictness,” which guarantees that |π(v)| ≤ 1 for every
solution π. In addition, we have changed the order of the
ranking to prefer paths with smaller (not larger) rank. Fi-
nally, we have allowed any node v0 ∈ V to be the origin.

4.2 Mapping Path-Vector Systems
to SPP Instances

Suppose that I = (G(V, E), F) is an instance of some
(PV , PL). We may represent I as a set of instances of
the Stable Paths Problem (SPP). For each w ∈ V and each
rw ∈ F orig(w) we construct an SPP instance S(I,w,rw).

Definition 4.4. Define I(w, rw) to be a restriction of
instance I where the only descriptor originated is rw at
node w. Given I(w, rw), define the corresponding SPP
instance S(I,w,rw) as described below, and let S(I) =
{I(w, rw) | w ∈ V, rw ∈ F orig (w)} be the set of all
SPP instances which correspond to a restriction of I .

Let the set of permitted paths in S(I,w,rw) be
P(I,w,rw) = {P | r(P, rw) �= ∅}. For each v ∈ V ,
set the values of the ranking function λv

(I,w,rw) such that
the following holds: λv

(I,w,rw)(P1) ≤ λv
(I,w,rw)(P2) if

and only if {r1} = r(P1, rw), {r2} = r(P2, rw), and
ω(r1) ≤ ω(r2).

It may be that λv
(I,w,rw)(P1) = λv

(I,w,rw)(P2) for paths
P1 �= P2. This can happen in one of two ways. First, it
may be the case that r(P1, rw) = r(P2, rw). That is,

two distinct signaling paths may result in the same path
descriptor. Or, it may be the case that r1 = r(P1, rw) �=
r(P2, rw) = r2, but ω(r1) = ω(r2).

There is an exact correspondence between the set of
solutions for I and the set of solutions for S(I) as shown
by the following theorems. (The proofs are mostly al-
gebraic manipulation using the definitions above and we
defer them to Appendix A.)

Theorem 4.5. If π is a solution for S(I,w,rw), then

ρπ(v) =
⋃

P∈π(v)

r(P, rw)

is a solution for I(w, rw).

Theorem 4.6. If ρ is a solution for I(w, rw), then

πρ(v) = {P ∈ Pv | r(P, rw) ⊆ ρ(v)}

is a solution for S(I,w,rw).

Theorem 4.7. πρπ = π and ρπρ = ρ.

Running Example, Part 7. An SPP corresponding to our
running example is presented in Figure 4. Node 1 is the
origin. Next to each node are the permitted paths of that
node listed in order of preference, starting with the most
preferred at the top. Note that the actual values of the
ranking function are not important, only the relative pref-
erence of each permitted path at each node; this figure can
be taken to represent an entire equivalence class of SPPs
with different values for each λv but the same orderings
on each set Pv.

5 1
5 2 1

2 3 1
2 3 4 1
2 1
2 5 1
2 3 4 5 1

4 5 1
4 3 2 5 1
4 3 1
4 1

3 2 5 1
3 4 5 1
3 4 1
3 1

4

1

2 3

5

1

Figure 4: SPP for running example.

13

4.3 Definition of Expressive Power

Two distinct SPPs can represent the same set of solutions
because the specific values in N that a ranking function
λv takes on are not really important—what is important is
the relationship between the rankings of permitted paths
at a given node v.

For any SPP instance S, define two relations, S and
�S , on permitted paths P . First, P1 S P2 if and only if
P1, P2 ∈ P and P1 is a subpath of P2, i.e., there exists
a path Q (possibly ε, the empty path) such that QP1 =
P2. Note that S is a partial order on permitted paths.
Second, P1�S P2 if and only if there is a v ∈ V such that
P1, P2 ∈ Pv and λv(P1) ≤ λv(P2). Define relation �S

to be the transitive closure of the relation S ∪ �S .

Definition 4.8. We say that two SPPs S1 and S2 are
equivalent if they are defined on the same graph, have the
same set of permitted paths, and �S1 = �S2 . Define the
set E(S) to be the set of all SPPs equivalent to S.

Definition 4.9. We define the expressive power of
a path-vector policy system (PV , PL) as the set
M(PV , PL) =

{E(S) | S ∈ S(I) for some (PV , PL) instance I}.

M(PV) means the maximal expressive power of PV
when it is not constrained by a policy language, i.e., the
maximal expressive power of PV with respect to a pol-
icy language allowing all legal policy functions to be ex-
pressed.

Remark 4.10. We note that

M(PV sp) � M(PV sap) � M(PV µbgp).

Shortest-Available Paths (PV sap) allows nodes to filter
routes while Shortest Paths (PV sp) does not. Any rout-
ing configuration in PV sp is captured by PV sap . But,
given any configuration permitted in PV sp , we can filter
one of the routes and obtain a new configuration where
the policies are permitted by PV sap but not PV sp ; thus,
M(PV sp) � M(PV sap). Likewise, because PV µbgp

essentially allows nodes to rank routes in any order, it per-
mits a routing configuration where a node prefers a longer
path to a shorter one. Therefore its expressive power is
more than that of PV sap .

5 Robustness

We first define robustness using SPP semantics and then
present a natural class of expressive, robust SPPs, charac-
terizing this class in the path-vector framework.

5.1 Definition of Robustness

Definition 5.1. An instance I over (PV , PL) is said to be
robust if it has a unique solution and every sub-instance of
I has a unique solution. If every instance of a path-vector
policy system (PV , PL) is robust, then (PV , PL) is said
to be robust.

Definition 5.2. In a similar manner, we can define robust-
ness of SPP instances. Define the set RSPP as

RSPP = {E(S) | S is a robust SPP instance}.

Given the results of the previous section, we then see
that a path-vector policy system (PV , PL) is robust if
and only if

M(PV , PL) ⊆ RSPP .

We are interested in the design space of robust path-vector
policy systems.

Conjecture 5.3. For every (PV , PL), if M(PV , PL) ⊆
RSPP , then there exists an E(S) ∈ RSPP such that
E(S) �∈ M(PV , PL). In other words, no path-vector
policy system can capture exactly all robust systems.

5.2 A Natural Set of Robust Systems

Definition 5.4. The SPP S is almost-partially ordered if
�S is reflexive, transitive, and obeys the following rule:

Rule 5.5. P1 �S P2 and P2 �S P1 implies that P1 = P2

or ∃ v such that P1, P2 ∈ Pv.

(Traditional notions of antisymmetry and partial order-
ing for �S do not allow permitted paths of equal rank at
any node; thus, we use the slightly modified notion given
above.) Then let

APOSPP = {E(S) | S is almost-partially ordered}

be the set of all almost-partially ordered equivalence
classes of SPPs.

14

If the SPP S is almost-partially ordered, then we will
write P1 ≤ P2 for P1 �S P2, and we will write P1 < P2

if P1 �S P2 but P2 ��SP1.

Theorem 5.6. If an SPP instance S is almost-partially
ordered, then it is robust.

In order to prove Theorem 5.6, we must introduce an-
other definition from the SPP framework [9].

Definition 5.7. A dispute wheel is a cycle of nodes
v1, v2, . . . , vk, vk+1 = v1 in an SPP instance such
that there exist paths R1, R2, . . . , Rk, Rk+1 = R1 and
Q1, Q2, . . . , Qk, Qk+1 = Q1 such that Qi ∈ Pvi ,
RiQi+1 ∈ Pvi , and λvi(RiQi+1) < λvi (Qi). The nodes
and paths Ri are on the rim of the dispute wheel, while
the paths Qi are called the spokes of the wheel.

The following lemma connecting dispute wheels and
Definition 5.4 will be useful in proving Theorem 5.6.

Lemma 5.8. The SPP S is almost-partially ordered if and
only if it has no dispute wheel.

Proof. First, suppose that S is almost-partially ordered.
Furthermore, suppose that S has a dispute wheel with
Ri, Qi as in Definition 5.7 Because λui(Qi−1) ≤
λui(RiQi), we know that RiQi ≤ Qi−1 because ≤ sub-
sumes relation �S . And because Qi is a subpath of RiQi,
we know that Qi < RiQi. Therefore, Qi < Qi−1. Fol-
lowing this chain of inequalities around the dispute wheel
yields the contradiction Qi < Qi. Therefore, S has no
dispute wheel.

For the other direction, suppose that S has no dispute
wheel and also assume that S is not almost-partially or-
dered. If S is not almost-partially ordered, then there must
exist paths P1 and P2 that violate Rule 5.5 because the re-
lation �S is inherently reflexive and transitive; i.e.,

∃P1 �= P2 such that

(i) P1 �S P2,

(ii) P2 �S P1, and

(iii) ∀v∈V : {P1, P2} �⊂ Pv

Conditions (i) and (ii) imply that there exist sets of paths
{Yi} and {Zj}, not necessarily distinct, such that

P1 = Y1 S Y2 �S · · · S Yn−1 �S Yn = P2

and

P2 = Z1 S Z2 �S · · · S Zn−1 �S Zn = P1,

respectively. From (iii) we know that it is not the case that
P1 �S P2 or that P2 �S P1; if P1 S P2 and P2 S P1

then P1 = P2, which is not possible if P1 and P2 vi-
olate Rule 5.5. Therefore, there must be intervening
distinct paths in the cycle of relationships above, i.e.,
({Yi} ∪ {Zj})\{P1, P2} �= ∅. Using the “cycle of paths”
in {Yi}∪{Zj}, we can build a dispute wheel: if X1SX2

for X1, X2 ∈ {Yi} ∪ {Zj}, then X1 is a subpath of X2

and X1 can be a spoke path while X2 can be the spoke
path X1 exported to a rim neighbor; then X2 �S X3 and
X2 is the rim path preferred to the spoke path X3, etc.

The existence of a dispute wheel in S is a contradiction;
thus S is almost-partially ordered.

With Lemma 5.8 in hand and a result from [9], we can
proceed with the proof of Theorem 5.6.

Proof. If S is almost-partially ordered, then by
Lemma 5.8 it has no dispute wheel. Then by Theo-
rem V.10 in [9], S is robust. (In particular, Theorem V.3
in [9] states that a dispute-wheel-free S has a solution,
Theorem V.4 states that it has a unique solution, The-
orem V.9 guarantees that the SPVP algorithm from [9]
will converge to a solution for S, and Theorem V.10
guarantees that a unique solution can be found in the
presence of link and node failures.)

Remark 5.9. An alternative proof may be possible us-
ing fixed point theory. As remarked in Definition 4.2, the
solutions of the SPP are exactly the fixed points of F , be-
cause F (π) = π implies π is a solution, and for any solu-
tion π we have F (π) = π. Perhaps there is some relation
that we can impose on the function space of path assign-
ments so that if S is almost partially ordered, then: (1)
this relation is partially ordered; (2) F is monotonically
increasing; and (3) F is continuous with respect to this
order. Then the above proof could dispense with dispute
wheels and instead use standard fixed point theorems.

Theorem 5.10. If M(PV ,PL) ⊆ APOSPP , then the
path-vector policy system (PV ,PL) is robust.

Proof. This follows from Theorem 5.6.

15

Remark 5.11. The above theorems give the broadest-
known sufficient condition for robustness and are consis-
tent with the results in [9].

5.3 Increasing Path-Vector Systems

Definition 5.12. The SPP instance S is increasing if

λu(Q) < λv(vQ)

for all edges {u, v} with path Q permitted at u and path
vQ permitted at v. (We are comparing the rankings as-
signed by different nodes; these values have no a priori
relationship.) Let

ISPP = {E(S) | S is increasing}
be the set of all increasing equivalence classes of SPPs.

Theorem 5.13. APOSPP = ISPP .

Proof. Clearly ISPP ⊆ APOSPP because if the SPP
S is increasing, its preferences are already consistent with
the subpath relation so that �S is an almost-partial or-
der; so, we only need to show that APOSPP ⊆ ISPP .
If S is an SPP such that E(S) ∈ APOSPP , then we
can topologically sort the permitted paths of S. (See Ap-
pendix B for details of this process.) We can then cre-
ate a new SPP S′ by creating a new ranking function λ ′

which both respects this topological order (so that the sys-
tem is increasing) and which has the same relative prefer-
ences as λ. Clearly E(S) = E(S ′); as S′ is increasing,
E(S) ∈ ISPP .

Ideally, we would like to construct a (PV , PL) pair
such that M(PV , PL) = ISPP , thus obtaining expres-
siveness and robustness. We now examine two ways to
modify the running-example system PV µbgp so that the
result is an increasing path-vector system. As we see in
the next section, each of these systems lacks some de-
sirable property, a conflict which is in fact unavoidable
(Theorem 6.9).

Example 5.14. System PV up shares local preferences
between nodes (therefore, it is not policy-opaque) and has
local policy constraints that enforce increasing rank be-
tween neighbors. Modify the definition of tout so that the
local-preference value is passed between neighbors:

toutup (u, v, f, X) = { (d, m, uP, u)
| (d, m, P, x) ∈ f(X)}.

Let the export constraint be

Lout
up (f) ⇔ ∀ r, ω({r}) ≤ ω(f({r}))

and let the import constraint be

Lin
up(f) ⇔ ∀ r, ω({r}) < ω(f({r})).

That is, we constrain the legal policies to be those that
increase path rank; in theory, such policies can be written
because nodes have access to neighbors’ local-preference
values.

Example 5.15. System PV force modifies both protocol
transformations so that they filter out descriptors whose
rank does not increase under the application of the policy
function in question. If r = (d, l, P, n) ∈ X , define
h(r) = (d, 0, P, n). Then let tinforce(u, v, f, X) be the
set

{f({h(r)}) | r ∈ X describes a simple path
and ω({r}) < ω(f({h(r)}))}

and let toutforce(u, v, f, X) be the set

{(d, l, uP, u) | r = (d, l, P, x) ∈ f(X)
and ω({r}) ≤ ω(f({r}))}.

Remark 5.16. M(PV up) = M(PV force) = ISPP .

6 Autonomy, Transparency, and
Policy Opaqueness

6.1 Autonomy

Network operators often require a high degree of auton-
omy when defining routing policies, i.e., they want wide
latitude to write policies that reflect their own interests.

We first define a general notion of autonomy. A col-
lection of predicates on path descriptors, such that exactly
one predicate holds for each descriptor in R, induces a
partition Π of R. A partial order on these predicates in-
duces a partial order on R. A path-vector policy system is
autonomous with respect to (Π,≤Π) if there exists a legal
policy that ranks routes consistent with the partial order
on Π induced by ≤Π.

For example, a policy writer may wish to rank routes
solely as a function of the value of one particular attribute

16

of descriptors in the system. If he or she is to do so with
full freedom, the system must be autonomous with respect
to every partial ordering of the collection of predicates
which test the value of that attribute. A system without
this autonomy may have local-policy constraints prevent-
ing the desired policy configuration.) We can say that
the space of ordered partitions given which a path-vector
policy system is autonomous represents the autonomy of
the system, and that full autonomy is reached when pol-
icy writers can write policies consistent with all possible
partitions.

Formally, we have the following.

Definition 6.1. A path-vector system PV is autonomous
with respect to partition Π of X ⊂ R iff for any partial or-
der ≤Π on the partition, there exists a legal import policy
f (i.e., Lin(f) holds) such that for all ri ∈ Πi, rj ∈ Πj

with Πi <Π Πj , there exist r̂i, r̂j ∈ R such that

(f(ri) = r̂i and f(rj) = r̂j) ⇒ ω(r̂i) < ω(r̂j).

Useful partition types, as described above, include par-
titions based on attributes, e.g., “Let r ∈ Πi ⊂ R iff
A(r) = i” (the index set of the partition is the set of pos-
sible attribute values A(r)). If PV is autonomous with
respect to such a partition, we will say that PV is au-
tonomous with respect to A.

Remark 6.2. If PV is autonomous with respect to A and
B together (i.e., “Let r ∈ Π{ij} ⊂ R iff A(r) = i and
B(r) = j”), then PV is both autonomous with respect
to A and autonomous with respect to B. The converse of
this is not true.

Definition 6.3. The autonomy of a path-vector system
PV is

A(PV) = {Π | PV is autonomous with respect to Π}

One intuitive definition for the concept of full auton-
omy might be that PV is autonomous with respect to all
possible predicates Π. However, this is not reachable. To
give a more useful definition, we first introduce the fol-
lowing concept.

Definition 6.4. Q(r, v) is an importability predicate iff
Q(r, v) holds if tin applies some F in(v, u) to r ∈ X ⊂
R.

Definition 6.5. PV has full autonomy iff there exists a
PL such that for all instances I over (PV , PL) and all
vertices v in the instance graph there exists an importa-
bility predicate Imp(r, v) such that for all partitions Π of
{r ∈ R | Imp(r, v)}, PV is autonomous with respect to
Π.

This definition of full autonomy is more reasonable be-
cause it includes node independence and limits the scope
of path descriptors considered to those that are actually
imported at a given node. Informally then, a path-vector
system has full autonomy when imported path descriptors
can be ranked freely at every node.

We now define a more specific notion of autonomy suit-
able for BGP-like systems. It describes the ability to clas-
sify neighbors, e.g., so that an ISP can prefer routes from
customers over routes from peers.

Definition 6.6. The path-vector policy system (PV , PL)
supports autonomy of neighbor ranking if, for every in-
stance I , node v, and a partition C1, C2, . . . , Ck of the
set of neighbors of v, there exists a legal import policy at
v that does not filter routes such that, for 1 ≤ j ≤ k − 1,
v always prefers routes sent from partition Cj over those
sent from partition Cj+1.

Note that autonomy of neighbor ranking is simply au-
tonomy with respect to a partition on the value of the
next hop (or path vector) attribute of “importable” path
descriptors.

The system PV up in Example 5.14 does not sup-
port autonomy of neighbor ranking. However the sys-
tem PV force in Example 5.15 does, but in what might
be called a draconian manner, i.e., the policy-application
functions enforce increasing rank even if the policy
writer’s policies do not—routes that are not increasing in
rank are simply filtered out by the protocol (not the poli-
cies).

6.2 Protocol Transparency

This brings us to another important property for policy
writers: they should be able to easily understand the se-
mantics of policies that they write. For example, the
import-policy application Y = tin(v, u, f, X) is de-
fined with the user-supplied policy f as input, but there is
no guarantee that the policy writer can easily understand
why the output Y is obtained.

17

Definition 6.7. Suppose there exists a function t̂in

whose definition does not depend on f , such that
tin(v, u, f, X) = f(t̂in(v, u, X)). Then PV is
said to apply import policies transparently. Similarly, if
there exists a function t̂out such that tout (v, u, f, X) =
t̂out(v, u, f(X)), then PV is said to apply export poli-
cies transparently. If both of these conditions hold, then
PV is transparent. In this case, we can define the func-
tion t(v, u, X) = t̂in(v, u, t̂out (u, v, X)) and note
that

F(v, u)(X) = F in(v, u)(t(v, u, F out (u, v)(X))).

That is, the transformation between two neighboring
nodes participating in PV can be easily understood as the
composition of three functions: the export policy at one
node; a fixed, uniform transformation t given by PV ; and
the import policy at another node.

Remark 6.8. The system PV force is not transparent, but
the systems PV up and PV µbgp are.

6.3 A Design Trade-off

We saw that the systems PV up and PV force are both ro-
bust, yet one supports autonomy of neighbor ranking but
is not transparent while the other is transparent but does
not support autonomy of neighbor ranking. This is just
one example of a more general design trade-off:

Theorem 6.9. If (PV , PL) is any path-vector policy
system with M(PV , PL) = APOSPP , then either
(PV , PL) does not support autonomy of neighbor rank-
ing or PV is not transparent, or both.

Proof. The SPP instance GOOD GADGET in Figure 5(a)
is in APOSPP , so it must be expressible by some
(PV , PL) instance. If (PV , PL) supports autonomy
of neighbor ranking, then node 2 can change its policies
to prefer paths through node 3, producing the SPP in-
stance BAD GADGET in Figure 5(b) which has no solu-
tion. Therefore, because M(PV ,PL) = APOSPP ,
the policy-application functions of PV must not allow
this policy to take effect, i.e., the system is not transpar-
ent.

2 3 1
2 1

4 2 1
4 1

1

1

2 3

4

3 1
3 4 1

(a) (b)

2 3 1
2 1

3 4 1
3 1

32

1

1

4

4 2 1
4 1

Figure 5: (a) The SPP GOOD GADGET and its unique so-
lution. (b) The SPP BAD GADGET.

6.4 Policy Opaqueness

Policy writers might often think of autonomy and trans-
parency in terms of path-descriptor attributes. In partic-
ular, a policy writer might be concerned with what free-
dom he or she has to change a path-descriptor attribute
and what effect such a change might have. A related con-
cern, the property of policy opaqueness that we discuss in
this section, is whether attribute settings are shared with
neighbors or kept private. On one hand, the exchange
of information might be important to allow policy writ-
ers to make important conditional assignments that affect
ranking or the overall robustness of the system; on the
other hand, policy writers may not want to disclose their
changes to path-descriptor settings (especially when these
changes should not influence others).

Informally, an opaque system is one where policy-
related attributes are kept hidden when path descriptors
are exchanged between nodes. It is expected that this “in-
formation hiding” occurs in the protocol transform func-
tions (specifically tout , because we expect tin to be ex-
ecuted by a router that is different than the one that last
set attribute values) as a built-in transformation to the
path descriptor. So that we may conveniently discuss the
opaqueness of a system in terms of which attributes are
shared and which are kept private, we make the following
definition. Let r−A be the path descriptor r with attribute
A removed.

Definition 6.10. Attribute A is opaque iff, for any two
r1, r2 ∈ R, r−A

1 = r−A
2 implies that

tout (v, u,F out(v, u), {r1}
)

= tout (v, u, F out(v, u), {r2}
)

18

for all v, u (i.e., either r1 and r2 are both filtered or they
produce the same descriptor).

An opaque attribute, then, is one that is essentially
cleared on export (after application of tout).

Remark 6.11. The local-preference attribute is opaque in
the systems PV force and PV µbgp , but not in the system
PV up . In this case, the opaqueness of local-preference
and autonomy of neighbor ranking are closely intertwined
because adjusting rank for next-hop involves adjusting the
local-preference value accordingly; this is not arbitrarily
permitted in PV up . It is the implementation of ranking
restrictions in PV up that removes the opaqueness of lo-
cal preference. It is not generally true that loss of auton-
omy of neighbor ranking goes hand-in-hand with a loss of
opaqueness.

7 Global Constraints

Theorem 6.9 shows that the expressive power of
APOSPP can be reached only if a path-vector policy
system gives up either transparency or some autonomy.
However, both of these may be very important in many
applications. In this section, we discuss an approach that
will allow us to move beyond this dilemma: relying on
global assumptions in the network.

The expressive power of a path-vector policy system is
largely dictated by the local constraints included in the
specification and those enforced by the policy language.
We introduce the complementary notion of a global con-
straint as any function K that maps any (PV , PL) in-
stance I to {TRUE, FALSE}.

Definition 7.1. A globally constrained path-vector pol-
icy system is a triple (PV , PL, K), where K is a
global constraint for (PV , PL). I is a legal instance
of (PV , PL, K) if I is an instance of (PV , PL) and
K(I) = TRUE.

Definition 7.2. Let M(PV , PL, K) be the set

{E(S) | S ∈ S(I) for a legal (PV , PL) instance I}.

Definition 7.3. Define the constraint Kapo as

Kapo(I) ⇔ ∀S ∈ S(I), E(S) ∈ APOSPP .

We say that the global constraint K is robust for
(PV , PL) if, for every instance I , K(I) implies Kapo(I).

The following theorem implies that global constraints
are indeed an integral part of path-vector-system design.

Theorem 7.4. Suppose the global constraint K is robust
for a transparent (PV , PL) allowing autonomy of neigh-
bor ranking such that M(PV sp) � M(PV ,PL, K) (i.e.,
at least as expressive as shortest paths). Then K must be
non-trivial.

Proof. If we are not restricted to shortest-paths routing,
then autonomy of neighbor ranking and transparency al-
low us to express BAD GADGET. Only a non-trivial global
constraint could prevent this.

8 An Application: Class-Based
Path-Vector Policy Systems

The Hierarchical-BGP points in the design space (HBGP,
etc.), motivated by [5, 6], are examples of a general class
of transparent systems where some type of autonomy of
neighbor ranking is relevant: route transformations de-
pend on the partition of neighbors into classes. We will
refer to systems that use a generalized version of such a
policy language as class-based systems. Theorem 7.4 tells
us that such systems require a nontrivial global constraint;
in this section we sketch design guidelines for these sys-
tems.

8.1 The Class-Based Path-Vector System

We fix a BGP-like path-vector system that can implement
scoping and relative preference rules dictated by class re-
lationships (such as those in [5, 6]). By scope, we mean
the conditions under which routes are shared with neigh-
bors, and by relative preference, we mean the difference
in rank assigned to routes learned from neighbors in dif-
ferent classes.

In our running-example system PV µbgp , path descrip-
tors r contain a local preference attribute l(r) that can
be set to assign rank based on the class of the exporting
neighbor. This attribute is not shared between nodes, intu-
itively allowing some autonomy and opaqueness. Limited

19

scoping can be implemented by filtering routes. How-
ever, this notion of scope is restrictive, e.g., it does not
allow easy flagging of a backup route, especially when
the next hop might be through a neighbor of an ordinarily
preferred class. Therefore, we extend the path descriptor
r, following [5], to include a level attribute g(r). This
attribute is nondecreasing and shared and will have prece-
dence in ranking; thus, it can be used to communicate no-
tions of scope that override relative-preference rules en-
coded in the local-preference attribute.

Remark 8.1. If all nodes agreed on an encoding within
local preference for indicating backup routes or some
information were shared between nodes, backup-route
scoping would be possible in BGP (PV µbgp) without ad-
ditional attributes. However, the additional attribute can
separate the awkward encoding and information sharing
from attributes meant for local use. The original descrip-
tion of HBGP+BU in [5] discussed these same issues.

The components of the path-vector system PV cb that
we use for class-based applications are as follows.

Rcb = Dcb × N × N × Seq(N)
Ucb = N × Z (lexically ordered)

dest cb(d, g, l, P) = d
ωcb(d, g, l, P) = (g,−l)

Ocb(X) = (r ∈ X) ⇒ (∃d ∈ Dcb, m ∈ N

such that r = (d, 0, 0, m))
Lin

cb(f) = (((d′, g′, l′, P ′) = f(d, g, l, P))
⇒ (g ≤ g′ ∧ P = P ′))

Lout
cb (f) = (((d′, g′, l′, P ′) = f(d, g, l, P))

⇒ (g ≤ g′ ∧ P = P ′))
tincb(u, v, f, X) = {(d, g, l, P) ∈ f(X)

| P is a simple path}
tout
cb (u, v, f, X) = {(d, g, 0, uP) | (d, g, l, P) ∈ f(X)}

Note that Lin
cb and Lout

cb guarantee that the level at-
tribute is nondecreasing and that toutcb guarantees that lo-
cal preference is not shared. When ranking, a smaller
level attribute is first preferred, then higher local pref-
erence. Also, note that PV cb is transparent: let
t(v, u, X) = {(d , g , 0, uP) | (d, g, l, P) ∈
X where uP is a simple path} in Definition 6.7.

8.2 Class-Based Policy Languages

The second component of design is a policy language ca-
pable of expressing scope and relative-preference rules for
class-based systems. We first make formal the notion of
class relationships. Let C = {C1, C2, . . . , Cc} be a set of
classes. Every node v ∈ V will have a class-assignment
function Cv : V → C that assigns each neighbor of v a
class in C. As an example, consider node v in Figure 6.
Here, a node v with neighbors u, w, x has assigned classes
Ck, Ci, Cj to these neighbors, respectively.

u v

w

x

d
P

Q

C v(w =)

C v(x = C)

C v(u =) C

C

k

i

j

Direction of path descriptor export

Figure 6: Class assignments to neighbors of node v and
paths to a destination node d.

Class assignments might require some consistency,
e.g., that “customer” and “provider” assignments occur
in consistent pairs; such requirements in a system are ex-
pressed by the cross-class matrix X = {0, 1}c×c. For any
pair of nodes u, v ∈ V , if Cv(u) = Ci, then Xij = 1 if
Cu(v) is permitted to be Cj ; otherwise, Xij = 0.

Remark 8.2. By defintion, X must be symmetric.

Let (•) be the set of order operators, e.g., =, <,≤, etc.,
and �, which means “any relationship,” so that z1�z2

is true for any z1, z2 in the same ordered set. Relative
preference between classes will be described by the pref-
erence matrix W = (•)c×c so that if Wij = •, then
nodes should treat path descriptors ri, rj imported from
neighbors in classes Ci, Cj , respectively, in a way that
ensures ω(ri) • ω(rj); e.g., in Figure 6, if Wij is <,
then node v should prefer the path P over the path Q.
The policy-language compiler can enforce this as a con-
straint on local-preference-attribute values set by import
policies.

20

Scope will be described by the level matrix M =
((•) ∪ {⊥})c×c. For any node v and neighbors w, u with
Cv(w) = Ci and Cv(u) = Ck, if Mik = ⊥ then for any
path descriptor r imported from w, F out (v, u)({r}) must
equal ∅. This setting is used to prevent the exchange of
routes between classes altogether (filtering); e.g., in Fig-
ure 6, if Mik = ⊥, then v would not export to u any
routes it learned from w. Other scoping conditions can
be described by allowing or enforcing a change in the
level attribute. One example is backup routing: Because
lower levels take precedence, a backup route can be as-
signed a higher level value to avoid being chosen even if
it passes through a preferred class. This situation can be
sketched using our example Figure 6: Formally, for any
node v and two neighbors w, u with C v(w) = Ci and
Cv(u) = Ck, assume there is a path P from w to some
destination d. Let rw be the path descriptor at v for the
path vP , and let ru be the path descriptor for the path vP
exported to u, i.e., {rw} = F out(v, u)({rw}). The pol-
icy complier should enforce through constraints on level-
attribute values set in export policies that, if • = Mik,
then g(rw) • g(ru).

Because the level attribute has precedence in ranking
over the local-preference attribute, the preference matrix
W only applies to descriptors of the same level-attribute
value; automatically, lower level values are preferred and
this allows descriptors of different levels to be exchanged
by neighbors of any class.

Example 8.3. For the system HBGP+BU, let C =
{C1, C2, C3}, where C1 can be interpreted “customer,”
C2 as “peer,” and C3 as “upstream provider.” X should
enforce consistent customer-provider and peer-peer rela-
tionships; W should enforce that customer routes are pre-
ferred over peer routes, and both are preferred over up-
stream routes; M should enforce that customer routes are
shared with all neighbors, and that peer and upstream
routes are only shared with customers. In addition, M
should permit nodes to flag routes as backup routes so
that they are less preferred even if relative preference rules
would dictate otherwise. The resulting matrices X , W ,
and M are as follows.

X =

⎡
⎣ 0 0 1

0 1 0
1 0 0

⎤
⎦

W =

⎡
⎣ � < <

> � <
> > �

⎤
⎦

M =

⎡
⎣ ≤ ≤ ≤

≤ < <
≤ < ⊥

⎤
⎦

A class description is the quadruple

CD = (C, X, W, M).

CD contains all the information necessary to generate a
policy language for PV cb whose “compiler,” the seman-
tic function M, can generate tuples (F in ,F out ,F orig)
from node policies that (1) list class assignments (i.e., C v)
for neighbors and (2) give local preferences and level set-
tings for routes. The tuples will honor the scope and rel-
ative preference rules described by CD if the compiler
does the following at each node v given its policy config-
uration p in PL:

1. For all neighbors u, let F in(v, u) set the local prefer-
ence (and possibly level) attributes of imported path
descriptors as specified in the policy configuration
p. Check that for all pairs of neighbors u, w, if
Cv(u) = Ci, Cv(w) = Cj , and • = Wij , then for
all ru ∈ F(v,u)(Ru

I) and rw ∈ F(v,w)(Rw
I), we have

that ω(ru) • ω(rw) if g(ru) = g(rw).

2. For all neighbors u, let F out (v, u) set the level of
outgoing path descriptors as specified in the pol-
icy configuration p. Then check that for all pairs
of neighbors u, w, if Cv(w) = Ci, Cv(u) = Cj ,
and • = Mij , then for all r ∈ F(v,w)(Rw

I),
g(r)•g(F out (v, u)(r)), unless • = ⊥, in which case
F out (v, u)(r) = ∅.

The policy language can enforce the local constraints de-
scribed by X , W , and M . Class consistency, along with
any further conditions necessary for robustness, must be
built into the accompanying global constraint.

Remark 8.4. Class-based systems are autonomous with
respect to next-hop class if the descriptors have the same
level-attribute value; because a neighbor can be assigned
any class, as long as the assignments are consistent, this
essentially means that class-based systems have a re-
stricted form of autonomy of neighbor ranking.

21

8.3 Class-Based Global Constraints

Let the class-consistency constraint C be defined as

∀u, v ∈ V,

(Cv(u) = Ci) ⇒ (Cu(v) ∈ {Cj ∈ C | Xij = 1}) .

Let Kcb = C ∧ J, where J is some constraint such that Kcb

is robust for PV cb with respect to some PL of the form
described above. We now examine how to suitably define
the robustness check J.

Given the results from Section 5.2, we know that a good
starting point for guaranteeing robustness is precluding
dispute wheels. Because of the preference and scoping
rules associated with class-based systems, we can more
easily find potential dispute wheels given the class assign-
ments made by nodes. We first introduce the following
helpful result.

Lemma 8.5. The path descriptors corresponding to all
paths RiQi+1 and Qi on a dispute-wheel rim in an SPP
mapped from a class-based instance have equal level-
attribute values.

Proof. In this proof, SPPs are those mapped from in-
stances of a path-vector system; so, if P ∈ P v in the
SPP S ∈ S(I), define d(P) ∈ Rcb as the realizable path
descriptor for path P at node v in the path-vector instance
I . Recall that g(r) is the level attribute of r.

Assume we have a dispute wheel in some SPP
S ∈ S(I); then for all i, λvi(RiQi+1) < λvi(Qi),
so ω(d(RiQi+1)) < ω(d(Qi)); this means that
g(d(RiQi+1)) ≤ g(d(Qi)). Level is nondecreasing, so
g(d(Qi+1)) ≤ g(d(RiQi+1)). These two inequalities
imply that g(d(Qi+1)) ≤ g(d(Qi)) for all i; iterating
around the wheel yields g(d(Qi)) ≤ g(d(Qi+1)), thus
g(d(Qi)) = g(d(Qi+1)) = g(d(RiQi+1)).

Let e = {v, u} ∈ E and let Cv(u) = Ci. If e is on
a dispute wheel rim, then by Lemma 8.5, there must be a
class assignment of another node w by v such that v can
export to u a path descriptor from w without increasing
the level attribute. But when an edge lies on a dispute
wheel rim, it imports a descriptor from two nodes, one
along a spoke edge and one also on the rim; so, this con-
dition is true for both the node adjacent to the spoke edge
leading to v and for the node adjacent to the rim edge

leading to v. This condition, in turn, applies to the rim
edge {w, v} as well (a dispute wheel must contain at least
two distinct directed edges), but we cannot iterate further
around the wheel because w could import from rim edge
e. However, we have just proved that the following state-
ment must hold for any rim edge e:

Lemma 8.6. If e = {v, u} ∈ E with Cv(u) = Ci is on
a dispute-wheel rim, then there exists some

Cj ∈ {Cx | Xjx = 1 and Mxi permits equality}

such that
∃k : Mkj = 1.

We can then use Lemma 8.6 to form a constraint that
prevents dispute wheels just based on class assignments:

Theorem 8.7. Given an instance signaling graph G and
class assignments, consider the subgraph H containing
only edges {v, u}, Cv(u) = Ci, with Ci satisfying the
condition in Lemma 8.6. If H is acyclic then there is no
dispute wheel.

Proof. Dispute wheen rims must contain edges satisfying
the condition in Lemma 8.6. Thus if the signaling sub-
graph containing only these edges is acyclic, no cycle of
these edges, including a dispute wheel in the general sig-
naling graph, is possible.

Remark 8.8. The sufficient condition in Theorem 8.7 is
unnecessarily strong in most cases. However, if W =
�c×c then this is the only global constraint we know of
that can guarantee no dispute wheel. Furthermore, M of-
ten permits the construction of a “homogeneous dispute
wheel,” one where all class assignments in the direction
of export are the same around the rim. The constraint in
Theorem 8.7 can be weakened to allow such cycles in the
testing subgraph and these cycles can then be checked for
separately. This observation is especially important for
HBGP+BU, where the only potential dispute wheels are
homogeneous, and these cycles are prevented by standard
Internet economics (see the following example).

Example 8.9. For the system HBGP+BU, J need only
check that no customer-provider cycles exist: A sim-
ple case-by-case analysis of possible class assignments,
given the constraints in matrices C and M , shows that the

22

only dispute wheels possible are cycles in the customer-
provider relationship graph. This follows directly from
Lemma 8.5. Consider the other possibilities of edges on
the dispute wheel:

1. Suppose we have a rim edge e = {v, u} where
Cv(u) = C3. Then node v must import from a
node w without increasing the level attribute; how-
ever, only M31 permits equality so Cv(w) = C1.
Because only X13 = 1, we have that Cw(v) = 3. If
w is on a spoke, then because W prefers routes from
C1 neighbors such as w, the adjacent rim node must
also be of class C1. Thus the only situation is one
where the adjacent rim edge to v must have the same
assignment as this one; this gives the homogeneous
customer-provider cycle.

2. Suppose we have a rim edge e = {v, u} where
Cv(u) = C2. Just as with the case above, only
M21 permits equality, and by a similar argument, the
adjacent rim edge to v must be a customer-provider
edge. But this results in case (1) above where the
dispute wheel must have these edges all the way
around the rim, which contradicts the assumption
that Cv(u) = C2. Thus this edge e cannot be on
a dispute wheel.

3. Suppose we have a rim edge e = {v, u} where
Cv(u) = C1. All values M1i permit equality, so v
can import the dispute path descriptors from neigh-
bors of any class. Consider the assigment along the
rim edge e′ = {w, v} adjacent to v. By case (2)
above, Cw(v) �= C2. If Cw(v) = C3 then all dis-
pute wheel edges must have this directed assignment,
as in case (1) above, so this contradicts the assumed
class assignment along edge e. The only other pos-
sibility is that Cw(v) = C1, which would give a
customer-provider cycle.

Checking for these customer-provider cycles is tractable;
even without an explicit check, the basic economics of the
current commercial Internet naturally prevent nodes from
being customers or providers of themselves.

9 Open Problems

We have defined the Path-Vector Policy System frame-
work: we identified and formalized dimensions of the pro-
tocol design space in a way that highlights the role of pol-
icy languages.

Several issues that we discussed require additional
work. First, either Conjecture 5.3 must be proven or
a broader sufficient condition for robustness should be
found. Second, the power of class-based systems must
be investigated further; in particular, the robustness check
presented in Theorem 8.7 is too strong. It is likely that
a closer examination of the preference and scoping rules
will give a more reasonable set of constraints that do not
“over-protect” against dispute wheels and do not preclude
too many robust instances. Third, while we justify the in-
clusion of global constraints in protocol design, we do not
discuss how they are enforced. Distributed algorithms,
supplementary protocols, or economic incentives could
check global consistency. We can also ask what level of
expressiveness can be achieved by an autonomous, trans-
parent, and robust system with an imposed global con-
straint that can be checked by one of the above methods
in polynomial time. Finally, additional useful degrees of
autonomy should be identified and analyzed (perhaps in
the context of specific routing applications).

We have focused on the static semantics of path-vector
systems rather than their dynamic behavior. However, in
non-deterministic systems, the static and dynamic seman-
tics may become intertwined, e.g., a node might use some
temporal condition to break ties between equally ranked
routes from different neighbors in a BGP-like system—a
system that prefers more recent routes will have very dif-
ferent semantics than one that prefers older routes. Both
non-deterministic systems and their dynamic semantics
should be investigated. Furthermore, the static semantics
of a path-vector system are independent of the algorithm
used to find solutions; we are particularly interested in
distributed approaches to this problem.

We have focused on the signaling of routes without
discussion of how this corresponds to forwarding in the
data plane. For example, in BGP, the signaling graph of
Internal BGP (IBGP) need not have any relationship to
the forwarding graph (IGP forwarding). Several routing
anomalies that are related to this independence in BGP
have been described elsewhere in [11]. In general, there

23

will be some interaction between the signaling graph, the
physical network supporting this signaling, and the paths
in the data plane which are controlled by the paths in the
signaling plane. We need a general theory that describes
this interaction for path-vector protocols.

References

[1] C. Alaettinoglu, T. Bates, E. Gerich, D. Karrenberg,
D. Meyer, M. Terpstra, and C. Villamizar. Routing
Policy Specification Language (RPSL). RFC 2280,
1998.

[2] O. Bonaventure and B. Quoitin. Common Utiliza-
tions of BGP Community Attribute. Manuscript,
2003.

[3] R. Chandra, P. Traina, and T. Li. BGP Communities
Attribute. RFC 1997, 1996.

[4] Cisco Field Note. Endless BGP Conver-
gence Problem in Cisco IOS Software Releases.
http://www.cisco.com/warp/public/770/
fn12942.html, October 2001.

[5] L. Gao, T. G. Griffin, and J. Rexford. Inherently
Safe Backup Routing with BGP. In Proc. IEEE IN-
FOCOM 2001, 1:547–556, April 2001.

[6] L. Gao and J. Rexford. Stable Internet Routing with-
out Global Coordination. In Proc. ACM SIGMET-
RICS, pages 307–317, June 2000.

[7] R. Govindan, C. Alaettinoglu, G. Eddy, D. Kessens,
S. Kumar, and W. Lee. An Architecture for Sta-
ble, Analyzable Internet Routing. IEEE Network,
13(1):29–35, 1999.

[8] T. G. Griffin, A. D. Jaggard, and V. Ramachandran.
Design Principles of Policy Languages for Path Vec-
tor Protocols. In Proc. ACM SIGCOMM’03, August
2003.

[9] T. G. Griffin, F. B. Shepherd, and G. Wilfong.
The Stable Paths Problem and Interdomain Rout-
ing. IEEE/ACM Transactions on Networking,
10(2):232–243, April 2002.

[10] T. G. Griffin and G. Wilfong. An Analysis of
BGP Convergence Properties. In Proc. ACM SIG-
COMM’99, pages 277–288, September 1999.

[11] T. G. Griffin and G. Wilfong. On the Correctness of
IBGP Configuration. In Proc. ACM SIGCOMM’02,
August 2002.

[12] B. Halabi. Internet Routing Architectures. Cisco
Press, 1997.

[13] C. Hendrick. Routing Information Protocol (RIP).
RFC 1058, 1988.

[14] C. Huitema. Routing in the Internet. Prentice Hall,
1995.

[15] G. Huston. Interconnection, Peering and Settle-
ments: Part I. Internet Protocol Journal, 2(1):2–16,
March 1999.

[16] G. Huston. Interconnection, Peering and Settle-
ments: Part II. Internet Protocol Journal, 2(2):2–23,
June 1999.

[17] G. Huston. Scaling Interdomain Routing—A View
Forward. Internet Protocol Journal, 4(4):2–16, De-
cember 2001.

[18] D. McPherson, V. Gill, D. Walton, and A. Re-
tana. BGP Persistent Route Oscillation Condition.
Manuscript, 2002.

[19] B. Rajagopalan, J. Luciani, and D. Awduche. IP
Over Optical Networks: A Framework. Manuscript,
2003.

[20] S. Ramachandra and D. Tappan. BGP Extended
Communities Attribute. Internet Draft, 2001. Work
in progress.

[21] Y. Rekhter and T. Li. A Border Gateway Protocol.
RFC 1771 (BGP version 4), 1995.

[22] E. Rosen and Y. Rekhter. BGP/MPLS VPNs. RFC
2547, 1999.

[23] J. Rosenberg, H. Salma, and M. Squire. Telephony
Routing Over IP (TRIP). RFC 3219. January 2002.

24

[24] R. P. Stanley. Enumerative Combinatorics, Vol. 2.
Cambridge University Press, Cambridge, 1999.

[25] J. W. Stewart. BGP4, Inter-domain Routing in the
Internet. Addison-Wesley, 1998.

[26] K. Varadhan, R. Govindan, and D. Estrin. Persistent
Route Oscillations in Inter-domain Routing. Com-
puter Networks, 32:1–16, 2000.

[27] Y. Xu, A. Basu, and Y. Xue. A BGP/GMPSL
Solution for Inter-domain Optical Networking.
Manuscript, 2002.

A Proofs of SPP and Path-Vector
Solution Equivalence

Theorem A.1 (4.5). If π is a solution for S(I,w,rw), then

ρπ(v) =
⋃

P∈π(v)

r(P, rw)

is a solution for I(w, rw).

Proof. It is clear that for each v, all path descriptors in
ρπ(v) are realizable. We must show that for each v,
ρπ(v) = min(C (ρπ , v)). If v = w, then ρπ(w) =
{(w)} = min(C (ρπ , w)) by definition. Suppose that
v �= w. We first note that for any Y ⊆ P v,

A =
⋃

P∈min(λv , Y)

r(P, rw)

= min

(⋃
P∈Y

r(P, rw)

)

= B,

because

r ∈ A
iff {r} = r(P, rw) for some P ∈ min(λv, Y)
iff {r} = r(P, rw) for some P ∈ Y such that for

every P ′ ∈ Y, λv
(I, w, rw)(P) ≤ λv

(I, w, rw)(P
′)

iff for some P ∈ Y such that for every P ′ ∈ Y,
{r} = r(P, rw), {r′} = r(P, rw),
and ω(r) ≤ ω(r′)

iff for all r′ ∈ (
⋃

P∈Y r(P, rw)), ω(r) ≤ ω(r′)
iff r ∈ B.

Let Y = {(vQ ∈ Pv | {v, u} ∈ E and Q = π(u)}.
Because π is a solution we have π(v) = min(λv, Y) and
we have

ρπ(v)
=

⋃
P∈π(v) r(P, rw)

=
⋃

P∈min(λv , Y) r(P, rw)
= min(

⋃
P∈Y r(P, rw))

= min({r ∈ R | r ∈ r(P, rw) for some P ∈ Y })
= min({r ∈ R | r ∈ r(P, rw) for some

P ∈ {(vQ ∈ Pv | {v, u} ∈ E and Q = π(u)}})
= min({r ∈ R | {v, u} ∈ E and

r ∈
⋃

Q∈π(u) r(vQ, rw)})
= min({r ∈ R | {v, u} ∈ E and

r ∈
⋃

Q∈π(u) F(v, u)(r(Q, rw))})
= min({r ∈ R | {v, u} ∈ E and

r ∈ F(v, u)(
⋃

Q∈π(u) r(Q, rw))})
= min({r ∈ R | {v, u} ∈ E and

r ∈ F(v, u)(ρπ(u))})
= min(C (ρπ , v)),

which completes the proof.

Theorem A.2 (4.6). If ρ is a solution for I(w, rw), then

πρ(v) = {P ∈ Pv | r(P, rw) ⊆ ρ(v)}

is a solution for S(I,w,rw).

Proof. We need to show that for each v we have πρ(v) =
min(λv, candidates(v, πρ)). Because ρ is a solution
for I(w, rw), we know that ρ(v) = C (ρ, v) =
min(F orig (v) ∪ Y), where

Y = {r ∈ R | {v, u} ∈ E and r ∈ F(v, u)(ρ(u))}.

It is easy to show that for any X we have

{P ∈ Pv | r(P, rw) ⊆ min(X)} =
min(λv, {P ∈ Pv | r(P, rw) ⊆ X}).

25

When v �= w, then

πρ(v)
= {P ∈ Pv | r(P, rw) ⊆ ρ(v)}
= {P ∈ Pv | r(P, rw) ⊆ min(Y)}
= min(λv, {P ∈ Pv | r(P, rw) ⊆

{r ∈ R | {v, u} ∈ E and r ∈ F(v, u)(ρ(u))}})
= min(λv, {(vQ ∈ Pv | {v, u} ∈ E and

Q = {P ′ ∈ Pv | r(P ′, rw) ⊆ ρ(u)}})
= min(λv, {(vQ ∈ Pv | {v, u} ∈ E and

Q = πρ(u)})
= min(λv, candidates(v, πρ))

When v = w, note that ρ(v) = {rw}, so we have
πρ(v) = {P ∈ Pv | r(P, rw) ⊆ {rw}} = {(w)} =
min(λv , candidates(v, πρ)).

Theorem A.3 (4.7). πρπ = π and ρπρ = ρ.

Proof.

π(v)
= {P ∈ Pv | ∅ �= r(P, rw) ⊆

⋃
Q∈π(v) r(Q, rw)}

= {P ∈ Pv | ∅ �= r(P, rw) ⊆ ρπ(v)}
= πρπ (v)

ρ(v)
=

⋃
P∈({P∈Pv|∅�=r(P, rw)⊆ρ(v)}) r(P, rw)

=
⋃

P∈πρ(v) r(P, rw)
= ρπρ(v).

B Topologically Sorting SPPs

Theorem B.1. If S ∈ APOSPP then there exists an
instance S ′ ∈ ISPP such that S ′ ∈ E(S).

Proof. We give an iterative process converging to a path-
ranking function Λ that is increasing.

Define the path-rank function for node v at step k to be
λv

k. For all v ∈ V and P ∈ Pv, let λv
k(P) = ∞ for all

k ≤ 0. For k > 0, define λv
k as follows: At every node

v �= v0, consider exactly the paths permitted at v, P v,
which have the form vuP ′, where either u = v0 and P ′ =
ε or u �= v0 and uP ′ ∈ Pu. List these in decreasing order
of preference as P1 = vu1P

′
1, P2 = vu2P

′
2, . . . , Pi =

vuiP
′
i . (Ties can be broken arbitrarily.) If u1 = v0, then

let
λv

k+1(P1) = 1,

and if u1 �= v0 let

λv
k+1(P1) = λu1

k (P ′
1) + 1.

For the less preferred paths Pj , 2 ≤ j ≤ i, if uj = v0, let

λv
k+1(Pj) = λv

k(Pj−1) + 1,

and for uj �= v0 let

λv
k+1(Pj) = max

{
λ

uj

k (P ′
j), λv

k+1(Pj−1)
}

+ 1.

Assume that all undefined values of λ are ∞ in the above.
Assuming that the set of permitted paths is closed un-

der the taking of subpaths, if the longest permitted path
in the SPP has k edges, then for all v ∈ V and for all
P ∈ Pv, λv

k′ (P) �= ∞ for every k′ ≥ k. The path-
rank functions will stabilize over iterations if the SPP S is
almost-partially ordered, so in S ′, let

Λ(v) = lim
k→∞

λv
k.

Note that in using the above iterative process, ranks
are always set higher than neighboring ranks because of
the increment used in defining λv

k. Indeed, λv(vuP) >
λu(uP) after convergence, thus Λ and S ′ are increasing.

Finally, it is clear that S ′ ∈ E(S), because the rank-
ing given by the converging import functions is consistent
with the SPP preference list at every node.

Remark B.2. Any almost-partially ordered SPP can be
convered to an increasing SPP using the method described
above. It can also be shown that an SPP which cannot
converge with respect to the above process (i.e., for some
P ∈ Pv, there does not exist any integer k ′ such that
λv

k(P) �= ∞ for k ≥ k′) must have a dispute wheel and
thus is not almost-partially ordered.

26

	Title Page
	Abstract
	1. Introduction
	2. Path-Vector Policy Systems
	3. Examples
	4. Expressiveness
	5. Robustness
	6. Autonomy, Transparency, and Policy Opaqueness
	7. Global Constraints
	8. Class-Based Path-Vector Systems
	9. Open Problems
	References
	A. SPP Proofs
	B. Topologically Sorting SPPs

