Categorical database modeling and lenses

Bob Rosebrugh
(with M. Johnson, RJ Wood)

Department of Mathematics and Computer Science
Mount Allison University

FMCS 2015 / 2015-06-05
Outline

Part 1:
- Categorical database models
- Database problems: nulls, (view) updates, integration
- The view update problem and universality

Part 2:
- The view update problem and asymmetric lenses
- Symmetric lenses and model synchronization
- Symmetric lenses via spans
Database systems

- To store/access persistent information (vs computation systems) and include:
 - storage management
 - query optimizers
 - journalling/backup and recovery
 - access control

- Modern systems are mainly *relational*
 - Codd defined relational model in 1970; implemented post 1980
 - Store *only* the relation (aka table) data structure
 - Well developed theory (but *not* our theory of relations...)
 - Relational design often uses Entity-Relationship-Attribute (ERA) model
To avoid redundancy, inconsistency

Data models prescribe database schemas with type *and* constraint information:

- Relational: table headings; (foreign) keys
- ERA: type graph; various constraint decorations
- Sketch Data Model (SkDM): types/constraints from a mixed sketch

Other data models: various extensions of ERA; functional; several other versions using sketches
(Some) categorical database studies (with syntax)

- Lellahi-Spyratos 1990–: Towards a Categorial Data Model Supporting Structured Objects and Inheritance (mixed sketches)
- Dampney-Johnson-Monro 1992–: An illustrated mathematical foundation for ERA (type cats)
- Rosebrugh-Wood 1992: Relational databases and indexed categories
- Baclawski et al. 1994: A categorical approach to database semantics
- Diskin-Cadish 1995–: Algebraic graph-based approach. . . (mixed sketches) . . .
- Piessens 1995–: Categorical data specifications (mixed sketches)
- Lippe-ter Hofstede 1996: A category theoretical approach to conceptual data modelling (type cats)
- Tuijn-Gyssens 1996: A categorical graph-oriented object data model (type graphs)
- Johnson-Rosebrugh-Dampney-Wood 1997–: the Sketch Data Model
- Pierce et al. 2006–: Lenses and view update translation . . .
- D. Spivak et al. 2009–: Simplicial databases (Δ), FQL
Database states and queries

- **Database state** for a schema is the currently stored information
 - In the relational model this is a set of relations (tables)
 - ERA speaks of ‘entity sets’, ‘relationship sets’, aiming at relational implementation
 - Categorical states: model functors.
- **Queries** extract information from a database state, also define access control and more
 - Relational queries expressed in “relational algebra”, return relations
 - ERA has no query language
 - Sketches often have a theory
ERA data model

- ERA diagrams have a graph with nodes:
 - Entities: type or class described by their
 - Attributes: which are typed
 - Relationships: between entities

- and edges that:
 - Join entities in a relationship; indicate subtyping
 - Possibly decorated: indicating constraints on relationships
 eg many-one (partial function); one-one (partial iso)

- Map to relational schemas having tables from:
 - Entities: column headings from attributes
 - Relationships: column headings from their entities
ERA example

Approach is relationship from Navaids to Runways

Directed edge means Approach “many-one”: partial function Navaids to Runways

is_a means subtype

Attributes not shown
Relational model

- Data definition language creates tables and constraints
- Database schema: a set of relation (table) schemas + integrity
- Relation schema: a list of attribute names with types:
 the column headings for tables + keys
- A relational database (state) is a set of relations (tables)
- Elements of relation (rows of a table) called tuples
Relational example

- Approach database schema with four relations:
 - $Airport(\text{ident}, \text{tower}, \text{weather})$
 - $Runway(\text{length}, \text{heading}, \text{atAirport})$
 - $Navaid(\text{operational}, \text{frequency}, \text{nrstAirport})$
 - $Approach(\text{fafMin}, \text{type}, \text{ptMin}, \text{toRunway}, \text{faf})$

- Attributes have types

- Integrity:
 - primary key: ident for $Airport$, . . .
 - foreign key: atAirport for $Runway$
 must match an $Airport$ primary key, . . .
Database access - relational model

- Access to tables is by ‘relational operators’
- SQL the standard *query language*
 (also a data definition language – schemas)
- Some standard operators:
 - select some rows of a table (WHERE in SQL syntax)
 - project on some columns (SELECT in SQL)
 - product of tables (FROM in SQL)
 - JOIN: tables on common columns = pullback along projections
 - UNION: tables with common schema
- e.g. SELECT `Approach.type`, `Runway.heading`
 FROM `Approach`, `Runway`
 WHERE `Approach.type` = 'ILS' AND
 `Runway.atAirport` = 'Syracuse'
- outputs the *ILS* approaches at *Syracuse*
- a projection from an equalizer contained in a product
Sketch data model

- Database schema is syntax: a sketch
- Database state is semantics: a model
- Models are a category
- Schemas related by sketch morphism (giving model substitution)

An **EA-sketch** $\mathcal{E} = (G, D, L, C)$ is a finite limit, finite sum sketch with

- a specified empty-base cone in L (vertex is called 1); domain 1 arrows called elements
- attributes are vertices of cocones of elements
- non-attributes called entities
- the graph of G is finite
- An EA sketch is **keyed** if each entity E has a specified monic arrow $k_E : E \rightarrowto A_E$ to an attribute A_E

D, L and C express constraints often *not expressible* in other data models
Example
Example

Arrows are foreign keys; Monos (incl. primary keys) are pullback constraints (not shown) ERA/Relational data models cannot even express that: Squares commute; bottom square is a pullback; \(\text{Navaid} \cong VOR + ILS \)
Database states and properties

- A database state S for EA sketch \mathbb{E}: a model of \mathbb{E} in a lextensive S (usually $S = \text{set}_0$)

- Category of database states of \mathbb{E} is $\text{mod}(\mathbb{E}, S)$ which has several properties:
 - Attribute values always the same (up to iso).
 - $\text{mod}(\mathbb{E}, S)$ has pullbacks – computed pointwise
 - Keyed \mathbb{E} makes $\text{mod}(\mathbb{E}, S)$ ordered
Implementation: *EASIK 3.0*

Entity-Attribute Sketch Implementation Kit
Third release January 2015

- Graphical interface for EA sketch design
- Automatic SQL code generation
- MySQL (open source) back end
- Has support for diagrams of SQL views (hence limited)
Implementation: EASIK 3.0
Associated theory and query language

- EA sketch \mathbb{E} is FS (finite sum) in the sense of Barr/Wells
- The associated FS theory $Q(\mathbb{E})$ is lextensive (finite lims and disjoint universal sums)
- $Q(\mathbb{E})$ constructed by closing \mathbb{E} under finite limits and disjoint universal sums.
- Basic fact:

 \[\text{mod}(Q(\mathbb{E})) \overset{\sim}{\longrightarrow} \text{mod}(\mathbb{E}) \]

- $Q(\mathbb{E})$ is the query language for the data design.
 - It contains, for example:
 - $\text{Airport} \times \text{Navaid}$, $\text{VOR} + \text{ILS}$...
 - also selections (= equalizers), joins, ...
 - $Q(\mathbb{E})$ is (the initial) model of \mathbb{E} in lextensive categories
Updates are models too

- An update from S to S' is a delete, insert, modification or a composite of them
- Updates are (co)spans from S to S' in $\text{mod}(\mathbb{E}, S)$
- but

$$\text{spn}(\text{mod}(\mathbb{E}, S)) \sim \rightarrow \text{mod}(\mathbb{E}, \text{spn}(S))$$

- So one and the same EA sketch specifies all three of
 - the statics (models),
 - the queries $Q(\mathbb{E})$ and
 - the dynamics (updates)

for a data domain.
Incomplete information

- Missing/unknown information is common
- Not avoidable e.g. unknown/no phone number in address book
- SQL allows null - not a typed value, rather a mark/flag

SQL’s version:

- Entails a 3-valued “logic” e.g. A null implies [[A > B]] = unk
- Rather odd truth tables result e.g. unk AND unk =?
 unk AND false =?
- Quantifiers also need definitions

So in SQL some consequences are:

- \(P \ OR \ NOT \ P \) may not be true
- \(X = X \) may not be true
- Transitivity of equality fails

C. Date, others: allowing null and 3VL undermines integrity of the relational model
Incomplete information and SkDM

Three approaches to incomplete information in SkDM:
where ‘missing’ information only for some entity to attribute arrows $E \rightarrow A$

- add $1 \xrightarrow{null} A_f$ for specified $E \xrightarrow{f} A$
 adds null values and changes the sketch
- add $E \xleftarrow{i_f} E' \xrightarrow{f'} A$ for specified $E \xrightarrow{f} A$
 adds partial maps and changes the sketch
- take models in ‘lifted sets’ i.e. the lifts of discrete orders
 (changes meaning of model)

So SkDM

- provides three intrinsic solutions for incomplete information
- which can be Morita equivalent (\cong model cats)
 (under fairly strong restrictions)
- and surprisingly, using lifted sets appears least suitable
 (at least for its effect on query language)
Database updates and views

Recall update

- changes database state(s)
- Examples: deletion, insertion, attribute modification

Either: modification of single state by delete or insert

or an update process: an endo U of states, S

A view

- may limit access e.g. for security
- or present information to user class e.g. clerk
- or specify boundary for database integration
- View schema has derived types/constraints –

“Get” view states V via the “view definition”

\[G : S \rightarrow V \]
View update problem

When can an update to view state(s) either

▶ for single (view) state (e.g. formal insertion a):

$$\begin{align*}
S & \quad \downarrow \\
GS & \quad \xrightarrow{a} \quad V
\end{align*}$$

▶ for an update process (e.g. U):

$$\begin{align*}
S & \quad \downarrow \\
G & \quad \xrightarrow{U} \quad V \quad \rightarrow \quad V
\end{align*}$$
View update problem

When can an update to view state(s) either

- for **single (view) state** (e.g. insert \(a \)):

\[
S \rightarrow S' \\
\text{GS} \rightarrow^a V
\]

- for an **update process** (e.g. \(U \)):

\[
S \rightarrow S \\
\text{G} \downarrow \quad \downarrow \quad \text{G} \\
V \rightarrow V \\
\text{U} \quad \rightarrow
\]

propagate (or lift) correctly to full database update?
The **view update problem**: when can update to view state propagate correctly to underlying state?

- May be no solution
- May be many solutions, but no canonical
- Very restricted support in SQL
- Abstraction limits updatable views
- SkDM provides less abstract, universal updatability
Two views of updates and views

Updates (abstract and less):

- Bancilhon-Spyratos (1982, and others): An update is an endofunction on an *abstract set* of database states—an *abstract process* prescribing an updated database state

- SkDM: A single delete or insert update: a monic in the model category; general update is a (co)span

Views (abstract and less):

- 1980’s (B&S and several others): A view is a (surjective) function from an abstract set of database states to an abstract set of view states

- SkDM: A view compares the database syntax (sketch) to the view syntax (another sketch)
SkDM views

- View schema may have types/constraints from E, but also derived types/constraints—from $Q(E)$
- View (schema) for EA sketch E: an EA sketch V and sketch morphism $V : V \rightarrow QE$.
- Obtain view state by substitution (model composition) from overlying state . . .
- Use $\text{mod}(E) \simeq \text{mod}(Q(E))$ and composition to define a “Get” functor:

$$V^* : \text{mod}(E) \rightarrow \text{mod}(V)$$

- so view state for view V is model V^*S for V
Views and database integration/interoperation

Views may describe a boundary:

\[\mathbb{E} \xleftarrow{V} \mathbb{V} \xrightarrow{V'} \mathbb{E}' \]

so on models \(V^* : \text{mod}(\mathbb{E}) \to \text{mod}(\mathbb{V}) \leftarrow \text{mod}(\mathbb{E}') : (V')^* \)

Models for \(\mathbb{E}, \mathbb{E}' \) consistent if they agree at \(\mathbb{V} \)

Given an \(\mathbb{E} \) model, is there a consistent \(\mathbb{E}' \) model? (a lifting problem)

More generally, federated database from a colimit of sketches

A related, more studied issue ...
Abstract view update problem

Bancilhon and Spyrtos (1982, and others) studied the view update problem. For them:

- the Get is a surjective view definition abstract set mapping $G : S \rightarrow V$
- a view update is an endo-function (process) $U : V \rightarrow V$
- a translation T_U of view update U is a database update on S lifting UG through G

```
S ----> T_U ---> S
\( G \downarrow \)  \( U \)  \( G \downarrow \)
V ----> V
```

Will return to consider finding translations below…
View update problem - SkDM

- View states can be updated, so ...
- **View update problem**: when can update to a view state V^*S propagate correctly to update of overlying (\mathcal{E}) state S?
- *or* if $T = V^*S$ updates to T', is there S to S' update with $T' = V^*S'$?
- When is such S' best possible? (which means?)
- Criteria on V, V or V^*?
SkDM propagatability

Let \(V : \mathcal{V} \rightarrow Q \mathcal{E} \) a view schema and \(t : V^*S \rightarrow T' \) insert update (of view states)

- \(t \) propagatable if exists (insert) update in \(\text{mod}(\mathcal{E}) \), \(m : S \rightarrow S' \) such that:
 - \(V^*m = t \)
 - for \(\mathcal{E} \) state \(S'' \) and (insert) update \(m'' : S \rightarrow S'' \) with \(V^*m'' = t't \)
 - exists unique (insert) \(m' : S' \rightarrow S'' \) with \(V^*m' = t' \)
 (see next slides)

- If every insert update to \(T = V^*S \) propagatable, say that \(T \) is insert updatable.

- propagatable delete is dual.
SkDM propagatability

\[V^* S \xrightarrow{t} T' \]
SkDM propagatability

\[S \xrightarrow{m} S' \]

\[V^* S \xrightarrow{t} T' \]
SkDM propagatability
SkDM propagatability
Criterion for updatability

- A view insert update $V^*S \rightarrow T'$ is propagatable precisely if it has an op-cartesian arrow.
- A view delete update $T' \rightarrow V^*S$ is propagatable when it has a cartesian arrow.
- So all delete (insert) updates are propagatable when V^* is an (op-)fibration.
(Non)-Propagatable examples

- \(V : \mathbb{V} \rightarrow \mathbb{Q} \mathbb{E} \) is insert (delete) \textit{updatable at entity} \(w \in \mathbb{V} \) if all inserts (deletes) into (from) \(w \) are propagatable.

- An insert or delete \textit{at} \(w \) changes the database state’s value only at \(w \) — the values in the model of other entities and attributes remain unchanged.

Assume \(\mathbb{E} \) has no (co)cones except 1 and attributes. Assume \(V \) ‘injective’.

- If \(Vw \) is not initial node of a commutative diagram in \(\mathbb{E} \) and arrows out of \(Vw \) (in \(\mathbb{E} \)) are in image of \(V \), then \(V \) insert updatable at \(w \).

- If arrows into \(Vw \) are in image of \(V \), then \(V \) is delete updatable at \(w \).
Suppose that $V = \{ w \}$

- if E has $f : Vw \rightarrow a$ where a non-trivial attribute, then V is not insert updatable at w.

- suppose E has $f : b \rightarrow a$ and A has element $a : 1 \rightarrow a$. Let Vw the pullback of f along a, then V is insert updatable at w.

- if E has discrete entities a and b and Vw the sum of a and b, V is not insert updatable.

- if E has discrete entities a and b and Vw the product of a and b. Then V is not insert updatable.

- Suppose $V = \{ a_0 \rightarrow w \}$, E has discrete entities a and b, $Va_0 = a$ and Vw the sum of a and b. Then V is insert updatable.
Sketch cofibrations

- In some cases we can guarantee full updatability, extending results of Street:

- sketch morphism \(\mathcal{V} : \mathcal{V} \to \mathcal{E} \) is a sketch embedding if:
 - graph morphism \(\mathcal{V} \) is injective on objects and edges
 - \(\mathcal{E} \) edge between nodes in \(\mathcal{V} \) image is in \(\mathcal{V} \) image (full)
 - \(\mathcal{E} \) comm diagram in \(\mathcal{V} \) image is from \(\mathcal{V} \) comm diagram
 - \(\mathcal{E} \) (co)cone in \(\mathcal{V} \) image is image of \(\mathcal{V} \) (co)cone
Sketch right cofibration: sketch embedding $V : \mathcal{V} \to \mathcal{E}$ such that
- \mathcal{E} (co)cone with base or vertex node in V image lies entirely in V image
- no edge in \mathcal{E} from node in image of V to node not in the image of V

Sketch left cofibration: sketch embedding $V : \mathcal{V} \to \mathcal{E}$ such that
- \mathcal{E} (co)cone with base or vertex node in V image lies entirely in V image
- no edge in \mathcal{E} from node not in image of V to node in image of V

Theorem
V a sketch left (respectively right) cofibration then $V^* : \text{mod}(\mathcal{E}) \to \text{mod}(\mathcal{V})$ a left (respectively right) fibration.
Abstract view updates (again)

Bancilhon and Spyropoulos (and others) studied the view update problem. They consider that

- database states are a set S
- view states are a set V – codomain of
- surjective view definition mapping $f : S \rightarrow V$
- view update is an endo-function $u : V \rightarrow V$

They consider a

- set U of view updates:
- assumed complete: a monoid of endos
Translation

- **translation** T_u of view update u is database update: endo-function on S such that $f(T_u(s)) = u(f(s))$

 \[s \xrightarrow{T_u} T_u(s) \quad f(s) \xrightarrow{u} u(f(s)) \]

 and $T_u(s) = s$ if $u(s) = s$

- a **translator** T for complete set of updates U is translations \{ $T_u \mid u \in U$ \}
Updatability and complements

- Bancilhon and Spyropoulos: a translator T for complete updates U implies exists “constant complement” view $g : S \rightarrow C$:
 - $\langle f, g \rangle : S \rightarrow V \times C$ a bijection (C complement of V)
 - $g(T_u(s)) = g(s)$ for $T_u \in T, s \in S$
 i.e. any T_u is “constant” on C
- also showed a converse—constant complement view gives translator
SkDM and complements

- For views \(\mathcal{V} \xrightarrow{V} \mathcal{Q}\mathcal{E} \) and \(\mathcal{C} \xrightarrow{C} \mathcal{Q}\mathcal{E} \), say \(\mathcal{C} \) a complement of \(\mathcal{V} \) if

\[
\text{mod}(\mathcal{E}) \xrightarrow{\langle V^*, C^* \rangle} \text{mod}(\mathcal{V}) \times \text{mod}(\mathcal{C})
\]

is full, faithful and one-one on objects.

- We don’t need ess’ly surjective

- (Insert) update \(\alpha : V^* S \rightarrow T \) in \(\text{mod}(\mathcal{V}) \) has \(\mathcal{C} \)-constant update if exists \(\hat{\alpha} \) in \(\text{mod}(\mathcal{E}) \) with \(\alpha = V^* \hat{\alpha} \) and \(C^*(\hat{\alpha}) \) an iso.

A single update result:

Theorem

\(\mathcal{V} \xrightarrow{V} \mathcal{Q}(\mathcal{E}) \) a view, \(\mathcal{C} \xrightarrow{C} \mathcal{Q}\mathcal{E} \) a complement and \(\alpha : V^* S \rightarrow T \) an insertion in \(\text{mod}(\mathcal{V}) \). \(\alpha \) propagatable if it has a \(\mathcal{C} \)-constant update. Similar result for deletes.
An example

- Persons with name, department, project assignments
- No commutative diagrams

![Diagram]

- Attributes: K_A, Name, K_D and K_P
- Entities Asst, Person, Dept and Proj
- Arrows k_A, n, k_D and k_P are keys
An example view

- View V specified by inclusion of sketch with graph: below.

- Composites np and k_Pq not edges in E but are in $Q(E)$.
View update may be propagatable with complement, but no ‘constant complement’

complement C for view V of the assignments database (example above) with graph:

\[
\begin{array}{c}
\text{Person} \\
\downarrow n \\
\text{Name} \\
\text{Dept} \\
\downarrow k_D \\
K_D \\
\text{Proj} \\
\downarrow k_P \\
K_P \\
\end{array}
\]

insertion of an assignment with new project value in V model is propagatable, but
cannot have a C-constant update (value at the entity Proj must change)
Pointed translation

Viewing updates as processes:

- **pointed view update** is $\langle U, u \rangle$ where

$$
\begin{array}{c}
\text{mod}(\mathbb{V}) \\
\downarrow U \\
\text{mod}(\mathbb{V}) \\
\end{array}
\quad
\begin{array}{c}
\text{mod}(\mathbb{V}) \\
\downarrow u \\
\text{mod}(\mathbb{V}) \\
\end{array}
\quad
\begin{array}{c}
\text{mod}(\mathbb{V}) \\
\downarrow 1 \\
\text{mod}(\mathbb{V}) \\
\end{array}

- A translation of $\langle U, u \rangle$ is $\langle L_U, l_u \rangle$ with L_U endo functor on $\text{mod}(\mathbb{E})$ and $UV^* = V^*L_U$, $1 \xrightarrow{l_u} L_U$ natural and $uV^* = V^*l_u : V^* \longrightarrow V^*L_U$

$$
\begin{array}{c}
\text{mod}(\mathbb{E}) \\
\downarrow L_U \\
\text{mod}(\mathbb{E}) \\
\end{array}
\quad
\begin{array}{c}
\text{mod}(\mathbb{E}) \\
\downarrow V^* \\
\text{mod}(\mathbb{E}) \\
\end{array}
\quad
\begin{array}{c}
\text{mod}(\mathbb{E}) \\
\downarrow 1 \\
\text{mod}(\mathbb{E}) \\
\end{array}
\quad
\begin{array}{c}
\text{mod}(\mathbb{E}) \\
\downarrow 1 \\
\text{mod}(\mathbb{E}) \\
\end{array}
\quad
\begin{array}{c}
\text{mod}(\mathbb{V}) \\
\downarrow U \\
\text{mod}(\mathbb{V}) \\
\end{array}
\quad
\begin{array}{c}
\text{mod}(\mathbb{V}) \\
\downarrow V^* \\
\text{mod}(\mathbb{V}) \\
\end{array}
\quad
\begin{array}{c}
\text{mod}(\mathbb{V}) \\
\downarrow 1 \\
\text{mod}(\mathbb{V}) \\
\end{array}
\quad
\begin{array}{c}
\text{mod}(\mathbb{V}) \\
\downarrow 1 \\
\text{mod}(\mathbb{V}) \\
\end{array}$
Universal translation

Translation $\langle L_U, l_u \rangle$ is universal when, for another translation $\langle L'_U, l'_u \rangle$ there is a unique $k : L_U \rightarrow L'_U$ such that $l'_u = kl_u$ and V^*k is the identity on the identity functor on mod(\mathbb{V}).

Theorem

Let $\mathbb{V} \xrightarrow{V} Q(\mathbb{E})$ a view and $\langle U, u \rangle$ a pointed view update. If V^* is an opfibration, then there is a universal translation $\langle L_U, l_u \rangle$ of $\langle U, u \rangle$.

End of Part 1...
Recall... Part 1:
- Categorical database models
- Database problems: nulls, (view) updates, integration
- The view update problem and universality

Now, Part 2:
- The view update problem and asymmetric lenses
- Symmetric lenses and model synchronization
- Symmetric lenses and spans
View update problem

When can an update to view state(s) either

- for single (view) state (e.g. formal insertion a):

$$GS \xrightarrow{a} V$$

- for an update process (e.g. U):

$$V \xrightarrow{U} V$$
View update problem

When can an update to view state(s) either

- for single (view) state (e.g. insert a):

$$\begin{array}{c}
S - - - - - S' \\
\downarrow \quad \downarrow \\
GS \xrightarrow{a} V
\end{array}$$

- for an update process (e.g. U):

$$\begin{array}{c}
S - - - - - S \\
\downarrow \quad \downarrow \\
V \xrightarrow{U} V
\end{array}$$

propagate (or lift) correctly to full database update?
Asymmetric Lenses

(B. Pierce et al, 2005)
Consider a full database state s and view state $G(s)$
When $G(s)$ updated to v, say, want strategy to find
updated full database state $s' = T_U s$ (over v):

$Idea$: provide a process $P : V \times S \rightarrow S$ called “Put” so that
$P(v, s)$ is the translated state s' after $G(s)$ updated to v
Some equations should follow...

This structure, called a lens, provides translations

Also arose in considering “abstract models of storage”
(where there is a similar update problem)
Asymmetric Lenses

Let \mathbf{C} be a category with finite limits

Definition

An asymmetric lens in \mathbf{C} is $L = (S, V, G, P)$ [or just (G, P)] where

- S and V are \mathbf{C} objects (... database states/view states)
- $S \xrightarrow{G} V$ aka ‘Get’ and $V \times S \xrightarrow{P} S$ aka ‘Put’

is called well-behaved (wb) if satisfying:

- PutGet: Get of Put is projection: $GP = \pi_0$ (or $GP(v, s) = v$)
- GetPut: Put for non-update is trivial $P\langle G, 1_S \rangle = 1_S$

and very well-behaved (vwb) if also satisfying:

PutPut: repeated Puts depend only on the last:

$P(1_V \times P) = P\pi_{0,2}$ (or $P(v', P(v, s)) = P(v', s)$)
the equations diagrammatically

\[V \times S \xrightarrow{P} S \xleftarrow{\text{PutGet}} V \]
\[S \xrightarrow{\langle G,1 \rangle} V \times S \]
\[V \times V \times S \xrightarrow{1 \times P} V \times S \]
\[V \times S \xrightarrow{P} V \]

So \(\Delta \Sigma G \xrightarrow{P} G \) is in \(\mathbf{C}/V \) where

\[\Sigma \]
\[\mathbf{C} \]
\[\perp \]
\[\Delta \]
\[\mathbf{C}/V \]
And moreover . . .

Proposition (JRW)

A (vwb) lens has P an algebra structure on G in \mathbf{C}/\mathbf{V} for the monad $\Delta \Sigma$ on \mathbf{C}/\mathbf{V}.

For vwb lenses:

- $\mathbf{C} = \textbf{set}$, $L = (G, P)$ recovers B&S results:

 $S \cong V \times C$, G the projection, C ‘complement’ of V, the translation: $T_U(s) := P(UGs, s)$

- $\mathbf{C} = \textbf{ord}$, recovers results of S. Hegner (2004)

- $\mathbf{C} = \textbf{cat}$: G a projection and hence fibration and opfibration
Lenses compose

We can compose lenses:
if $L = (S, V, G, P)$ and $M = (V, W, H, Q)$ are lenses in \mathbf{C}
then $ML = (S, W, HG, R)$ is a lens, with the Put R defined:

$W \times S \xrightarrow{1_W \times \langle G, 1_S \rangle} W \times V \times S \xrightarrow{\langle Q, 1_S \rangle} V \times S \xrightarrow{P} S$

Composites of wb, resp vwb, lenses are wb, resp vwb

There are identity on objects (ioo), \textit{non-full}
functors between categories of asymmetric lenses in \mathbf{C}

$\text{ALens}_v(\mathbf{C}) \longrightarrow \text{ALens}_w(\mathbf{C}) \longrightarrow \text{ALens}(\mathbf{C})$
Lenses preserved

Suppose $F : \mathbf{C} \to \mathbf{D}$ is a finite product preserving functor. For $L = (G, P)$ an asymmetric lens in \mathbf{C}, respectively: a well-behaved lens, very well-behaved lens $FL = (FG, FP)$ is an asymmetric lens in \mathbf{D}, respectively: a well-behaved lens, very well-behaved lens.

Moreover, F preserves lens composition and we denote:

$$F : \text{ALens}(\mathbf{C}) \to \text{ALens}(\mathbf{D})$$

respectively from $\text{ALens}_w(\mathbf{C})$ and $\text{ALens}_v(\mathbf{C})$.
Lenses and pullbacks

Proposition

For an asymmetric lens \(L = (G, P) \) and \(H : V' \to V \) in \(C \) pulling back \(G \) along \(H \) in \(C \)

\[
\begin{array}{c}
S \\
\downarrow G \\
V \\
\downarrow H \\
V' \\
\end{array}
\quad \begin{array}{c}
T \\
\downarrow G' \\
S \\
\downarrow H' \\
V' \\
\end{array}
\]

gives the Get for asymmetric lens \(L' = (G', P') \) with \(P' = \langle P(H \times H'), \pi_0 \rangle \)

Similarly for well-behaved and very well-behaved lenses

But: \(\text{ALens}(C), \text{ALens}_w(C), \text{ALens}_v(C) \) may not have pullbacks.
Less abstract lenses

For a Get (view functor) in \textbf{cat} denoted \(G : S \to V \) we prefer that (insert) view updates needing lifts should be morphisms \(GS \to V \), objects of \((G, 1_V)\)
(They were simply pairs \((V, S)\) in \(V \times S\) for the lenses above)

Thus, the \textbf{domain} of a less abstract Put \(P \) for \(G \) should be objects \((S, GS \to V)\) in \((G, 1_V)\)
Sorry about changing the order of arguments...
Values of \(P \) should be morphisms of \(G ?? \)
But universality allows them to be objects and \(P : (G, 1_V) \to S \)

First some notation...
A monad

Right comma projection $R(-)$ is functor part of a monad

$$R : \text{cat}/V \rightarrow \text{cat}/V$$

with unit component $G \xrightarrow{\eta_G} RG$ defined by

$$\eta_G = (1_V, G, 1_G) : S \rightarrow (G, 1_V)$$
defined universally.
A monad

and multiplication \(RRG \xrightarrow{\mu_G} RG \) defined by:

\[
\begin{array}{c}
\mu_G = (L_G 1_v \cdot L_{RG} 1_v, RRG, \beta(\alpha L_{RG} 1_v)) : (RG, 1_v) \to (G, 1_v)
\end{array}
\]

For later: left comma projection \(L(-) \) is functor part of a monad

\[
L : \text{cat}/V \to \text{cat}/V
\]

with \(LG : (1_v, G) \to V \)
And an iterate of a P

For $G : S \rightarrow V$ consider a $P : (G, 1_V) \rightarrow S$ satisfying $GP = RG$, so that

$GPL_{RG} 1_V = RG \cdot L_{RG} 1_V \xrightarrow{\beta} RRG$, define: $(P, 1_V)$ by
c-Lenses

Again, for a view in \textbf{cat}, $G : S \rightarrow V$
the “Put” for (insert) view updates $GS \rightarrow V$ should be
a process $P : (G, 1_V) \rightarrow S$, and we define:

Definition
A c-lens in \textbf{cat} is $L = (S, V, G, P)$, or just (G, P)
satisfying

- c-PutGet: $GP = RG$
- c-GetPut: $P\eta_G = 1_S$
- c-PutPut: $P\mu_G = P(P, 1_V)$

Compare with the original (vwb) lens equations... Could model
delete updates $V \rightarrow GS$, then “Put” s.b.
$P : (1_V, G) \rightarrow S$ using LG in the PutGet equation...
c-Lenses are opfibrations

or diagrammatically:

Recalling that an algebra structure for the monad

\[\text{cat} / V \xrightarrow{R} \text{cat} / V \]

is a split opfibration:

Proposition (JRW)

For a c-lens \(L = (S, V, G, P) \) in \(\text{cat} \), \(P \) is an algebra structure for \(R \) so \(G \) is a split opfibration.

65
c-Lenses compose

Opfibrations compose, so if $G : S \to V$ and $G' : V \to W$ are c-lenses, so is $G'G : S \to W$

Subcategory of cat with arrows c-lenses is denoted ACLens. Asymmetric lens in cat is a c-lens, so $\text{ALens}_v(\text{cat})$ is a subcategory.

Further, opfibrations pull back (along any functor) and a cospan of c-lenses gives span of c-lenses. Our interest in spans actually motivated by cospan of views G, H:

![cospan diagram]

giving a span of views G', H' (of c-lenses if G, H are)

Recall integration (for interoperation) of databases via views
The other side...

c-lenses are about inserts, what about deletes?
As noted, can use \(L \), but general updates are spans
Moreover, BX (lens) theorists don’t much like PutPut
But really not worried about composing inserts, or deletes
Rather concerned about “Mixed Put-Put”

Our resolution from a distributive law

\[
LR \xrightarrow{\lambda} RL
\]

For \(G : S \to V \) the functor \(LRG : (1_V, RG) \to V \)
domain objects of the form \(GS \xrightarrow{a} V \xleftarrow{b} V' \),
cospans \((a, b)\) from \(GS \) to \(V' \) and \(LR(G)(a, b) = V' \).

Now \(\lambda_G(GS \xrightarrow{a} V \xleftarrow{b} V') \) is the pullback of the cospan \((a, b)\).
The other side...

An RL algebra is R- and L-algebras $RG \xrightarrow{r} G$ and $LG \xrightarrow{l} G$ satisfying:
for any object S in S and any pullback (in V):

\[
\begin{array}{ccc}
V & \xrightarrow{i} & GS \xrightarrow{k} W \\
\downarrow{j} & & \downarrow{m} \\
V' & \xrightarrow{m} & W
\end{array}
\]

it is the case that $r(I(i, S), j) \cong I(m, r(S, k))$

Thus, if we can update both inserts (R transitions) and deletes (L transitions) \textit{and} those updates satisfy the condition, then we can update spans – arbitrary compositions of R and L transitions.
Another categorical version of lenses

Motivated by similar considerations Z. Diskin and co-authors called updates or morphisms deltas, made the set of deltas the domain of Put – now returning a delta (morphism) – with axioms similar to c-lenses

An (asymmetric) delta lens (d-lens) in \textbf{cat} is \(L = (S, V, G, P) \) where \(G : S \rightarrow V \) is a functor and \(P : \left| (G, 1_V) \right| \rightarrow |S^2| \) is a function and the data satisfy:

(i) d-PutInc: the domain of \(P(S, \alpha : GS \rightarrow V) \) is \(S \)

(ii) d-PutId: \(P(S, 1_{GS} : GS \rightarrow GS) = 1_S \)

(iii) d-PutGet: \(GP(S, \alpha : GS \rightarrow V) = \alpha \)

(iv) d-PutPut:

\[
P(S, \beta \alpha : GS \rightarrow V \rightarrow V') = P(S', \beta : GS' \rightarrow V')P(S, \alpha : GS \rightarrow V)
\]

where \(S' \) is the codomain of \(P(S, \alpha : GS \rightarrow V) \)
ADLens

Proposition
If \(L = (S, V, G, P) \) and \(M = (V, W, H, Q) \) are \(d \)-lenses then
then \(ML = (S, W, HG, R) \) is a \(d \)-lens, with \(R \) as
\[
|(HG, 1_W)| \xrightarrow{Q} |(G, 1_V)| \xrightarrow{P} |S|^2
\]
Identity functor is Get for a \(d \)-lens and unitary for composition.
Denote the resulting category ADLens

Proposition
If \(L = (S, V, G, P) \) is a \(d \)-lens and \(F : V' \rightarrow V \) is a functor then
\(G' \) in the pullback (in \text{cat}) is the Get of a \(d \)-lens
c-Lenses and d-Lenses

For $G : \mathbf{S} \to \mathbf{V}$, denote $G_0 = |\mathbf{S}| \to \mathbf{S} \xrightarrow{G} \mathbf{V}$ and $R_0 G : (G_0, 1_\mathbf{V}) \to \mathbf{V}$

Semi-monad (R_0, μ^0) on $\text{cat/\mathbf{V}}$ similar to R, and transformation η^0 to R_0 (from functor sending G to G_0)

Proposition

If $L = (\mathbf{S}, \mathbf{V}, G, P)$ is a d-lens then (G, P_0) is an (R_0, μ^0) algebra satisfying $P_0 \eta^0 G = P_0 \eta_{G_0} = I_\mathbf{S}$, and conversely.

Corollary

A c-lens is a d-lens; composition is compatible.

Though not every d-lens is a c-lens
Categories of asymmetric lenses

In summary:

\[\text{ALens}_v(\text{set}) \rightarrow \text{ALens}_v(\text{cat}) \rightarrow \text{ACLens} \rightarrow \text{ADLens} \]

\[\text{ALens}_v(\text{ord}) \]

All admit the \(Sp(U) \) construction which follows...
The $Sp(U)$ Construction

C with finite limits; $U : A \rightarrow C$ ioo functor reflecting isos
(We are thinking $ALens \rightarrow C$)
Assume an operation P on C cospans

$$B \overset{g}{\rightarrow} C \overset{U(r)}{\leftarrow} D$$

giving arrows $P(g, r)$ in A such that
1) there is in C a pullback:

$$\begin{array}{ccc}
B & \overset{g}{\rightarrow} & C \\
\downarrow{g} & & \downarrow{U(r)} \\
C & \overset{U(r)}{\leftarrow} & D \\
\end{array}$$

with $t' = U(r')$ where $r' = P(g, r)$

And...
The $Sp(U)$ Construction

2) If also $g = U(v)$ then for $v' = P(G(r), v)$ the square commutes (in A):

![Diagram]

Next, given U and operation P, define category $Sp(U)$:
Objects of A (or C)
Arrows \equiv_U equiv classes of spans in A where
The $Sp(U)$ Construction

\equiv_U generated by span morphisms in A

\[\begin{array}{ccc}
A & \overset{u}{\leftarrow} & C & \overset{v}{\rightarrow} & B \\
\downarrow & & \downarrow t & & \downarrow \\
D & \underset{u'}{\leftarrow} & C & \underset{v'}{\rightarrow} & A
\end{array} \]

with $u = u't$ and $v = v't$ and $G(t)$ split epi.

$Sp(U)$ composition by span composition in C

Proposition

With the data just defined, $Sp(U)$ is a category.
Proposition

Let $G : S \rightarrow V \leftarrow W : H$ be a cospan of functors and (G, P) a d-lens. Then, in the pullback square in cat:

\[
\begin{array}{ccc}
S & \rightarrow & T \\
\downarrow & & \downarrow \\
V & \leftarrow & W
\end{array}
\]

the functor G' together with $P' : |(G', 1_W)| \rightarrow |T^2|$ defined by $P'((S, W), \beta : G'(S, W) \rightarrow W') = (P(S, H(\beta)), \beta) : (S, W) \rightarrow (S', W')$ define a d-lens from T to W.

So $Sp(U)$ applies...
Symmetric lenses

(Hoffman, Pierce and Wagner, 2011)

Idea: Describe **re-synchronization** for model classes (of states) \(X, Y\) having synchronization (“complement”) information from \(C\).

Given states \(x, y\) synchronized by a complement \(c\) and an (updated) state \(x'\) of \(X\), determine re-synchronizing complement \(c'\) from \((x', c)\) and an updated \(y'\) of \(Y\) (and vice versa)

So an arrow \(r: X \times C \rightarrow Y \times C\) and vice versa.

\[
\begin{array}{c}
X \times C \\
\downarrow r \\
Y \times C \\
\downarrow l \\
X \times C
\end{array}
\]

Now \((x', c', y')\) is (re)synchronized. Think \(y'\) as a **Put** of \((x', y)\)... Some equations are expected because:

if \(l\) applied to \((y', c')\) then the result should be \((x', c')\)
Example (from H,P,W)

The data in states \(x, y\) might initially be the following

\[
\begin{align*}
x &: \\
\text{Schubert} & 1797-1828 & \text{Schubert} & \text{Austria} \\
\text{Schumann} & 1810-1856 & \text{Schumann} & \text{Germany}
\end{align*}
\]

with initial complement, “hidden data” (a \(C\) state):

\[
\begin{align*}
\text{c} &: \\
1797-1828 & \text{Austria} \\
1810-1856 & \text{Germany}
\end{align*}
\]

An edit to \(x\) gives new \(X\) state \(x'\):

\[
\begin{align*}
x' &: \\
\text{Schubert} & 1797-1828 \\
\text{Schumann} & 1810-1856 \\
\text{Monteverdi} & 1567-1643
\end{align*}
\]

then applying \(r(x', c)\) results in new \(C\) and \(Y\) states:

\[
\begin{align*}
\text{c'} &: \\
1797-1828 & \text{Austria} \\
1810-1856 & \text{Germany} \\
1567-1643 & \text{?country}
\end{align*}
\]

\[
\begin{align*}
\text{y'} &: \\
\text{Schubert} & \text{Austria} \\
\text{Schumann} & \text{Germany} \\
\text{Monteverdi} & \text{?country}
\end{align*}
\]
Symmetric lenses

Let \mathbf{C} be a category with finite limits.

For objects X, Y in \mathbf{C}, an rl lens from X to Y is denoted $L = (X, Y, C, r, l)$ with C an object of “complements” and morphisms

$$r : X \times C \to Y \times C \quad \text{and} \quad l : Y \times C \to X \times C$$

satisfying the equations:

$$\pi_X lr = \pi_X : X \times C \to X \quad \pi_C lr = \pi_C r : X \times C \to C \quad \text{(PutRL)}$$
$$\pi_Y rl = \pi_Y : Y \times C \to Y \quad \pi_C rl = \pi_C l : Y \times C \to C \quad \text{(PutLR)}$$

HPW require an element $m : 1 \to C$ where m is for “missing” (called pc-symmetric below)
Symmetric lenses decompose

Remark
For an RL lens \(L = (X, Y, C, r, l) \) in \(C \), the equations \(rlr = r \) and \(lrl = l \) hold.

Suppose that \(L = (X, Y, C, r, l) \) is an rl lens in \(C \).
Let \(e : S_L \rightarrow X \times Y \times C \) be an equalizer of \(r_{\pi_0,2} \) and \(\pi_{1,2} \).
If \(C = \text{set} \),
\[S_L = \{ (x, y, c) | r(x, c) = (y, c) \} = \{ (x, y, c) | l(y, c) = (x, c) \} \]
Elements of \(S_L \) are the “synchronized triples”
Symmetric lenses decompose

For L, S_L as above:

Proposition

There is a span

$$L_I : X \leftarrow S_L \rightarrow Y : L_r$$

in ALens_w from X to Y with Gets defined by $g_I = \pi_X e, g_r = \pi_Y e$.

The Put. p_I for L_I (p_r similar) is defined by

$$X \times S_L \xrightarrow{1_X \times 1_C} X \times X \times Y \times C \xrightarrow{\pi_{0,3}} X \times C \xrightarrow{1_X \times r} S_L$$

(The set formula for p_I is $p_I(x', (x, y, c)) = (x', r(x', c))$.)

Denote the span (L_I, L_r) by $A(L)$

Recalling $U_w : \text{ALens}_w \rightarrow \mathbf{C}$, define $\text{SLens}_w = \text{Sp}(U_w)$
Symmetric lenses compose

For rl lenses \(L_1 = (X, Y, C_1, r_1, l_1) \) and \(L_2 = (X, Y, C_2, r_2, l_2) \):

\(L_1 \sim L_2 \) if there exists a well-behaved asymmetric lens \(L = (C_1, C_2, t, p) \) with \(t \) a split epi and respecting \(L_1, L_2 \) operations, which means:

\[
\begin{align*}
 r_2(X \times t) &= (Y \times t)r_1 \\
 l_2(Y \times t) &= (X \times t)l_1
\end{align*}
\]

and

\[
\begin{align*}
 r_1(X \times p) &= (Y \times p)(r_2 \times C_1) \\
 l_1(Y \times p) &= (X \times p)(l_2 \times C_1).
\end{align*}
\]

\(\sim \) generates equivalence relation on rl lenses \(X \) to \(Y \) denoted \(\equiv_{rl} \)

\(\equiv_{rl} \) class of \(L \) denoted \([L]_{rl} \).
Symmetric lenses compose

\[L = (X, Y, C, r, l), \quad M = (Y, Z, C', r', l') \text{ rl lenses} \]

Their *rl-composite lens* is \(ML = (X, Z, C'', r'', l'', m'') \)

where \(C'' = C \times C' \) and

\[r'' = \langle \pi_{0,2}, \pi_1 \rangle (r' \times 1_C) \langle \pi_{0,2}, \pi_1 \rangle (r \times 1_{C'}) \quad (l'' \text{ similar}) \]

Proposition

For rl lenses \(L_1, L_2 \) from \(X \) to \(Y \) and \(M_1, M_2 \) from \(Y \) to \(Z \) in \(C \), if \(L_1 \equiv_{rl} L_2 \) and \(M_1 \equiv_{rl} M_2 \) then \(M_1 L_1 \equiv_{rl} M_2 L_2 \).

RLLens has objects of \(C \); arrows \(X \) to \(Y \) are \(\equiv_{rl} \) classes

Proposition

There is an identity on objects functor

\[
A : \text{RLLens} \longrightarrow \text{SLens}_w
\]

defined by \(A([L]_{rl}) = [A(L)]_{U_w} \).
Symmetric lenses from asymmetric

Going the other way... From span of wb asymmetric lenses $L = (S, X, G_X, P_X)$, $M = (S, Y, G_Y, P_Y)$, construct rl lens $S(L, M) = (X, Y, S, r, l)$ where (in set)

$$r(x', (x, y, c)) = (G_Y P_X(x', (x, y, c)), P_X(x', (x, y, c))) \ (l \text{ similar})$$

Proposition

Denote $AS(L, M)$ by $L_l : X \leftarrow S_L \rightarrow Y : L_r$. There is iso span morphism $g : S \rightarrow S_L$, so $AS(L, M) \equiv_{U_w} (L, M)$,
Categories of symmetric lenses

Proposition
If \(L : X \leftarrow S \rightarrow Y : M, L' : X \leftarrow S' \rightarrow Y : M' \) are \(\equiv_{U_w} \) equivalent spans of well behaved asymmetric lenses then
\[S(L, M) \equiv_{rl} S(L', M') \] and \(S([(L, M)]_{U_w}) = [S(L, M)]_{rl} \) defines functor \(S : SLens_w \rightarrow RLLens \).

Theorem
\(SLens_w \) is a retraction of \(RLLens \) via \(A \) and \(S \).
Hofmann, Pierce and Wagner introduced an equivalence relation we denote \equiv_{pc} on their pc-symmetric lenses from X to Y

\equiv_{pc} allows well-defined composition of pc-symmetric lenses giving pcLens

Starting from rl lenses, suitably adding points so that \equiv_{Uw} can be compared, we can show that \equiv_{pc} is in fact coarser than \equiv_{Uw}
Symmetric delta lenses (Diskin et al. 2011/12)

For symmetric version of d-lens, again use morphisms for updates:

Let \textbf{X} and \textbf{Y} be small categories.

Given a delta or update $x : X \rightarrow X'$ in \textbf{X} from state X where X synchronized with Y by “correspondence” $r : X \leftrightarrow Y$, symmetric d-lens should deliver an update $y : Y \rightarrow Y'$ in \textbf{B} and, as for rl-lenses, a re-synchronization $r' : X' \leftrightarrow Y'$:

\[
\begin{array}{c}
X & \xleftarrow{r} & Y \\
\downarrow x & & \downarrow y \\
X' & \xleftarrow{r'} & Y'
\end{array}
\]
Symmetric delta lenses

A symmetric delta lens (fb-lens) from \(X \) to \(Y \) is \(L = (\delta_X, \delta_Y, f, b) \) with a span of sets

\[
\delta_X : |X| \leftarrow R_{XY} \rightarrow |Y| : \delta_Y
\]

(elements of \(R_{XY} \) called corrs are denoted \(R : X \leftrightarrow Y \)) and forward and backward propagation operations

\[
f : Arr(X) \times |X| R_{XY} \rightarrow Arr(Y) \times |Y| R_{XY}
\]

\[
b : Arr(X) \times |X| R_{XY} \leftarrow Arr(Y) \times |Y| R_{XY}
\]
satisfying obvious equations, so that
Symmetric delta lenses

display instances of propagation operations as:

\[
\begin{array}{ccc}
X & \xleftarrow{R} & Y \\
\downarrow x & & \downarrow y \\
X' & \xleftarrow{R'} & Y'
\end{array}
\quad
\begin{array}{ccc}
X & \xleftarrow{R} & Y \\
\downarrow x & & \downarrow y \\
X' & \xleftarrow{R'} & Y'
\end{array}
\]

where \(f(x, R) = (y, R') \) and \(b(y, R) = (x, R') \)...

we have propagation respects identities: \(R : X \leftrightarrow Y \) implies
\(f(\text{id}_X, R) = (\text{id}_Y, R) \) and \(b(\text{id}_Y, R) = (\text{id}_X, R) \)
and composition in \(X \) and \(Y \):
\(f(x'x, R) = f(x', \pi_1(f(x, R))) \), similarly for \(b \).
Composite symmetric delta lenses

For fb-lenses
\[L = (\delta^R_X, \delta^R_Y, f^R, b^R), \quad L' = (\delta^S_Y, \delta^S_C, f^S, b^S) \] and \(T_{XZ} \) the pullback in

\[\begin{array}{c}
\delta_1 \\
\delta^R_Y \\
\delta^S_Y
\end{array} \xrightarrow{T_{XZ}} \begin{array}{c}
\delta_2 \\
| \mathcal{Y} | \\
\delta^S_C
\end{array} \]

The composite fb-lens \(L'L = (\delta_X, \delta_Z, f, b) \) has
\[\delta_X = \delta^R_X \delta_1, \quad \delta_Z = \delta^S_Z \delta_2 \] and
\[f(x, (R, S)) = (z, (R', S')) \] where \(f^R(x, R) = (y, R'), f^S(y, S) = (z, S') \)

\(b \) similarly
Back and forth

Let

\[L = (G_L, P_L), \quad K = (G_K, P_K) \]

a span of d-lenses with

\[G_L : V \leftarrow S \rightarrow W : G_K \]

Construction: \[M_{L,K} = (\delta_V, \delta_W, f, b) \]

an fb-lens:

- the corrs are \(R_{V,W} = |S| \)
- \(\delta_V S = G_L S \) and \(\delta_W S = G_K S \)
- for \(v : V \rightarrow V', \ S : V \leftrightarrow W \) set \(f(v, S) = (w, S') \)
 where \(w = G_K(P_L(S, v)) \), \(S' \) codomain \(P_L(S, v) \);
- \(b \) is defined analogously.
Back and forth

Let $M = (\delta_V, \delta_W, f, b)$ an fb-lens V to W, corrs R_V, W

Construction: span of d-lenses $L_M : V \leftarrow S \rightarrow W : K_M$

First the head category S:

- objects are R_V, W, the corrs of M
- morphisms from R to R',

$$\{(v, w) | d_0 v = \delta_V(R), d_1 v = \delta_V(R'), d_0 w = \delta_W(R), d_1 v = \delta_W(R')\}$$

i.e. (v, w) a formal square:

\[
\begin{array}{ccc}
V & \overset{R}{\leftarrow} & W \\
\downarrow v & & \downarrow w \\
V' & \overset{R'}{\leftarrow} & W'
\end{array}
\]

- Composition inherited from V and W:

$$(v', w')(v, w) = (v'v, w'w) \text{ if } (v, w) \in S(R, R'), (v', w') \in S(R', R'')$$
Back and forth

L_M is defined as (G_L, P_L) where

1. $G_L : S \rightarrow V$ has $G_L(R) = \delta_V(R)$, $G_L(v, w) = v$
2. $P_L : \left| (G_L, 1_V) \right| \rightarrow \left| S^2 \right|$ has $P_L(R, v) = (v, w)$

where $f(v, R) = (w, R')$

$K_M = (G_K, P_K)$ is similar.

The two constructions are closely related.
One composite is actually the identity:

Proposition

For any fb-lens M, we have

\[M = M_{L_M, K_M} \]
Two equivalence relations (1)

First: An equivalence relation on spans of d-lenses \(X\) to \(Y\):

\[
\begin{align*}
X & \xleftarrow{(G_L,P_L)} S \xrightarrow{(G_R,P_R)} Y \quad \text{and} \\
X & \xleftarrow{(G'_L,P'_L)} S' \xrightarrow{(G'_R,P'_R)} Y
\end{align*}
\]

Say functor \(\Phi : S \rightarrow S'\) satisfies conditions (E) if:

1. \(G'_L \Phi = G_L\) and \(G'_R \Phi = G_R\),
2. \(\Phi\) surjective on objects and
3. whenever \(\Phi S = S'\) we have both
 \[
 P'_L(S', G'_L S' \xrightarrow{\alpha} X) = \Phi P_L(S, G_L S \xrightarrow{\alpha} X) \quad \text{and} \\
P'_R(S', G'_R S' \xrightarrow{\beta} Y) = \Phi P_R(S, G_R S \xrightarrow{\beta} Y).
 \]

Thus

1. says \(\Phi\) a cell between \(X\) to \(Y\) spans
2. expresses a compatibility with Puts.
3. But, \(\Phi\) need not be a lens
Two equivalence relations (1)

Definition
≡_{Sp} the equiv rel’n on spans of d-lenses X to Y generated by Φ satisfying (E).

Lemma
(1) Composite of d-lens span cells satisfying (E) satisfies (E).
(2) Suppose S, S', S'' heads of d-lens spans X to Y and Φ, Φ' satisfy(E) in the cat pullback:

```
  Ψ   T   Ψ'
S ← S' ← S''
  Φ   Φ'
```

Then T the head of d-lens span X to Y; Ψ and Ψ' satisfy (E).

Corollary
Zig-zag of span cells satisfying (E) from span of cells satisfying (E). Reducing proof of ≡_{Sp} to a single span
Second: An equivalence relation on fb-lenses from X to Y.

Definition

$L = (\delta_X, \delta_Y, f, b)$ and $L' = (\delta'_X, \delta'_Y, f', b')$ fb-lenses, corrs R_{XY}, R'_{XY}. Define $L \equiv_{fb} L'$ iff exists relation $\sigma \subseteq R_{XY} \times R'_{XY}$ with:

1. σ compatible w δ’s: $R \sigma R'$ implies $\delta_X R = \delta'_X R'$ and for δ_Y
2. σ projections surjective.
3. $R \sigma R'$ then $f(x, R) = (y, S)$, $f'(x, R') = (y', S')$ implies $y = y'$, $S \sigma S'$
4. corresponding condition for b

Condition 3. says one X update from related corrs delivers same Y update and related corrs.
Two equivalence relations (2)

Remark
\[\equiv_{\text{fb}} \text{ generated by zig-zags of certain surjections, } \]
\[\text{but any such zig-zag reducible to single span of such} \]

Proposition
Suppose \(M \equiv_{\text{fb}} M' \) are fb-lenses \(X \) to \(Y \) equivalent by generating
surjection. Then \((L_M, K_M) \equiv_{\text{Sp}} (L_{M'}, K_{M'})\) as spans of d-lenses

Proposition
Suppose \((L, K) \equiv_{\text{Sp}} (L', K')\) equivalent d-lenses spans by
generating \(\Phi \). Then \(M_{L,K} \equiv_{\text{fb}} M'_{L',K'}\) as fb-lenses.
Two equivalence relations (2)

Cutting to the chase...

Both \equiv_{Sp} and \equiv_{fb} are compatible with composites
Their equivalence classes are arrows of categories denoted $SpDLens$ and $fbDLens$
Define functors

$$S : SpDLens \rightarrow fbDLens$$
$$A : fbDLens \rightarrow SpDLens$$

with actions (up to equivalence):

$$L, K \mapsto M_{L,K} \quad M \mapsto L_M, K_M$$

Proposition

The functors A and S are an isomorphism of categories.

Proof from $M = M_{L_M,K_M}$ noted above and showing

$$L, K \equiv_{Sp} L_{M_{L,K}}, K_{M_{L,K}}$$

So once again, symmetric lenses arise from spans of asymmetric lenses
Some further points/questions

- RLLens is a non-full subcategory of fbDLens
- What corresponds to SpCLens?
- What corresponds to the inclusion of “Edit lenses”?
- Properties of fbDLens?
- Should a two-dimensional structure be considered?
Conclusion

- Sketch Data Model expressive syntax, semantics
- View update problem gets universal solution
- Asymmetric lenses provide solutions to the view update problem in several contexts
- Symmetric lenses describe model synchronization processes also in various contexts
- Symmetric lenses arise via spans of asymmetric lenses and often arise from cospans

- Some urls:
 - www.mta.ca/~rrosebru
 - www.comp.mq.edu.au/~mike/
Thanks!