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Abstract

Examining the validity or accuracy of proposed avail-

able bandwidth estimation tools remains a challenging

problem. A common approach consists of evaluating a

newly developed tool using a combination of simple ns-

type simulations and feasible experiments in situ (i.e., us-

ing parts of the actual Internet). In this paper, we argue

that this strategy tends to fall short of establishing a re-

liable “ground truth,” and we advocate an alternative in

vitro-like methodology for calibrating available bandwidth

estimation tools that has not been widely used in this con-

text. Our approach relies on performing controlled labo-

ratory experiments and using tools to visualize and ana-

lyze the relevant tool-specific traffic dynamics. We present a

case study of how two canonical available bandwidth esti-

mation tools, SPRUCE and PATHLOAD, respond to increas-

ingly more complex cross traffic and network path condi-

tions. We expose measurement bias and algorithmic omis-

sions that lead to poor tool calibration. As a result of this

evaluation, we designed a calibrated available bandwidth

estimation tool called YAZ that builds on the insights of

PATHLOAD. We show that in head to head comparisons

with SPRUCE and PATHLOAD, YAZ is significantly and con-

sistently more accurate with respect to ground truth, and

reports results more quickly with a small number of probes.

1. Introduction

Calibration strategies for Internet measurement tools are

essential for detecting inaccuracy in the underlying data,

and misconceptions or errors in their analysis [20]. In this

paper, we propose and investigate a set of calibration tech-

niques that can greatly increase our confidence in the va-

lidity and accuracy of end-to-end available bandwidth es-

timation tools (ABETs). Echoing the same sentiment as

expressed in [20], tool calibration is not meant to achieve

perfection. Rather, it is to aid in our understanding of the

tools and their applicability by producing results that are

close to the “ground truth.” Calibration may also illuminate

the circumstances under which the tools may give inaccu-

rate results.

There are two conventional and complementary aspects

to calibration: comparison with a known standard, and (if

necessary) adjustment to match a known standard. The first

notion encompasses the task of comparing the output of a

measurement tool with “ground truth”—a known quantity

like the reading of an accurate and precise device. For

ABETs, this activity involves comparison with measure-

ments of available bandwidth (AB) that have been obtained

through, e.g., packet traces with timestamps of sufficient

quality. The second facet of calibration involves changing

some feature of a measurement tool so its output matches

a standard as closely as possible. In the context of ABETs,

this aspect of calibration may involve adjusting parameters

of a given algorithm, or the algorithm itself.

Traditional approaches for calibrating and validating

ABETs almost always employ two basic strategies. One is

the use of simple ns-type simulations, and the second con-

sists of small-scale experiments in the “wild,” i.e., largely

uncontrolled tests that use parts of the live Internet. Ns-

type simulations are attractive since they have the advantage

of simplified implementations and complete experimental

control. However, by definition they are an abstraction

of networking reality [10] which may render their results

largely irrelevant in situations when the details of live sys-

tem and protocol implementations or traffic conditions have

little in common with their simulation-based counterparts.

In contrast, experiments that use parts of the live Internet

encounter networking systems, protocols and traffic condi-

tions (depending on the part of the Internet to which they are

confined) similar to what would be expected in other parts

of the network. However, experiments run in the wide area

are largely uncontrolled and typically lack the necessary

instrumentation for establishing a reliable standard against

which results can be compared and understood. While net-

working researchers have been generally aware of the pros

and cons of these two strategies, the lack of realism in ns-



type simulations and the lack of control and instrumentation

in the wide area cast serious doubts on these predominant

approaches to ABET calibration and validation, and high-

light the need for improved calibration strategies.

In this paper, we investigate an alternative ABET cali-

bration strategy based on conducting experiments in a lab-

oratory setting that is amenable to establishing the “ground

truth” for a great variety of Internet-like scenarios. This

setting should include, wherever possible, the use of ac-

tual hardware found on end-to-end paths in the Internet

(e.g., routers, switches, etc.), the use of various versions

of the full TCP/IP protocol stack, workload generators ca-

pable of exercising systems over a range of realistic con-

ditions, and measurement devices that provide a level of

accuracy suitable for establishing ground truth. By advo-

cating such an in vitro-like experimental environment, we

combine the advantages of ns-type simulations (i.e., com-

plete control and full instrumentation) with those offered

by experiments in the wide area (i.e., more realistic network

systems, protocols and traffic dynamics). Laboratory-based

calibration techniques are established in other scientific dis-

ciplines such as chemistry and biology but they have not

seen widespread application to network measurement tools.

While the focus of this paper is on a calibration strategy

in the context of ABETs, our future plans include investi-

gating generalizations to our approach to additional active

measurement-based tools that attempt to infer network in-

ternal characteristics.

Estimating the AB along a network path is a topic that

has received considerable attention in recent years [6, 7, 12,

13, 15, 18, 19, 22, 23, 27]. Informally, end-to-end available

bandwidth (AB) is defined as the minimum spare capacity

on an end-to-end path between a sender and receiver. To

calibrate and validate ABETs, a detailed understanding of

realistic queuing effects experienced by individual packets

as they compete and interact with other packets is essential,

and requires fine-grained, time-synchronized measurements

of packets as they arrive at and subsequently depart from the

different routers along the network path.

Using an openly available laboratory testbed [4], we ap-

ply our calibration strategy through a series of experiments

to two ABETs, SPRUCE [27] and PATHLOAD [13], which

we consider to be canonical representatives of two basic

methods for ABE. We analyze the detailed arrival and de-

parture measurements available in our testbed using mul-

tiple tools and show why and how both tools are prone to

measurement bias and errors over a range of increasingly

complex cross traffic and network path conditions. With

the insights gained from analyzing the detailed arrival and

departure measurements, we designed a calibrated ABET,

called YAZ, that builds on the basic insights of Pathload.

Through an additional set of laboratory-based calibration

tests, we show that (1) YAZ compares well with respect to

known measures of AB, (2) it is significantly more accurate

than both SPRUCE and PATHLOAD, while remaining much

less intrusive than PATHLOAD, and (3) it produces available

bandwidth estimates faster than the other tools. Full details

and results of our study are found in [25].

2. Background and Related Work

Dynamic estimation of end-to-end available bandwidth

(spare capacity) has important potential for network capac-

ity planning and network overlay monitoring and manage-

ment. Active measurement tools for estimating or inferring

AB are designed to send precisely crafted packet pairs or

streams and—by measuring perturbations of the pairs or

streams as observed at a receiver—to infer the bandwidth

available along a given end-to-end path. While the devel-

opment of fast and accurate ABETs is an active area of re-

search (see for example [6, 7, 12, 13, 15, 18, 19, 22, 23, 27]),

two recent tools, PATHLOAD [13] and SPRUCE [27], repre-

sent the two most common strategies for probing and two

appealing methods for AB inference. Thus, these tools are

the focus of our ABET calibration study. A study related to

ours, but with a focus on evaluating ABETs in the context of

high-speed links is found in [23]. Additional contrasts are

that our focus is calibration (and thus the mechanisms that

lead to performance differences between tools), not simply

a head-to-head comparison of ABETs, that we use a much

more varied range of cross traffic, and that our experimen-

tal environment is openly available. Furthermore, we used

significantly more precise measurements than router SNMP

counters and we created a new highly accurate and low-

impact ABET as a result of this work.

End-to-end AB is informally defined as the minimum

spare capacity on an end-to-end path over a given time in-

terval. The link with smallest AB is referred to as the tight

link, while the link with minimum capacity along a path

is referred to as the narrow link. These definitions avoid

the ambiguous term bottleneck link [13]. They also help to

avoid any implicit assumption that the tight link is neces-

sarily the narrow link. Existing tools for measuring AB as-

sume, for simplification, a relatively homogeneous environ-

ment. First, they assume FIFO queuing at routers. Second,

they assume that cross traffic is fluid (cross traffic packets

are infinitely small). Finally, cross traffic intensity is as-

sumed to be stationary over the measurement period.

SPRUCE estimates AB by sending packet pairs spaced

back-to-back according to the capacity C of the tight link1.

Assuming fluid cross traffic, the amount by which the

packet pairs are expanded by the tight link is proportional

to the volume of cross traffic. If gin is the spacing of back-

to-back probe packets on the tight link and gout the spacing

1With SPRUCE, the tight link and narrow link are assumed to be the

same. Strauss et al. claim that the estimates may still be meaningful even

when this condition is not satisfied [27].



measured at the receiver, the AB is calculated as:

A = C

(

1−
gout −gin

gin

)

. (1)

SPRUCE sends, by default, 100 packet pairs at Poisson-

modulated intervals, and reports the average A over those

samples.

PATHLOAD attempts to create short-lived congestion

conditions in order to measure AB. It detects congestion

through trends in one-way probe packet delays. Specifi-

cally, an increasing one-way delay (OWD) trend is equiva-

lent to saying that there is an increasing inter-packet spacing

trend, and an average increase in spacings causes the over-

all probe rate measured at the receiver (rout) to be less than

that introduced at the sender (rin). Such a decrease is taken

as evidence that the end-to-end AB is less than the probe

stream rate. This relationship can be expressed as follows:

rin

rout

=
{

≤ 1 rin ≤ A

> 1 rin > A
(2)

PATHLOAD takes N measurements with probe streams

of length K packets, iteratively adapting its send rate to de-

termine whether or not there is an OWD trend. These N

streams are referred to as a fleet. Each stream within a fleet

is separated by an amount of time designed to allow the path

to quiesce. By default, N is set to 12 and K to 100. Details

of the metrics that PATHLOAD uses to infer OWD trends are

found in [13].

3. Calibration Framework

Comparison with a standard and subsequent adjustment

of an ABET’s algorithm or parameters are complementary

activities. The basic task of comparing the output of an

ABET with the actual AB over a time interval requires rel-

atively simple measurements. However, to gain insight into

how an ABET arrives at a particular estimate we require

measurements and analysis suited to the probes produced

by an ABET and the reported measurements. We also re-

quire appropriate test environments to evaluate ABET ac-

curacy over a range of controlled conditions and to expose

algorithmic or parametric assumptions that may need ad-

justment.

As part of our framework, we offer a set of issues to

consider for ABET calibration:

1. There are performance and predictability limitations

imposed by the operating system (OS) and hardware

(e.g., workstations with standard network interface

cards) running the measurement tools. Two key con-

siderations are whether probe packet streams (specifi-

cally spacing between packets) can be generated with

sufficient fidelity, and if timestamp accuracy (and in

some cases, synchronization) is sufficient.

2. Assumptions about and/or abstract models for the be-

havior of routers and switches are the foundation for

inference methods used to interpret active measure-

ments. The diversity of the implementation details of

those systems can limit the effectiveness of the infer-

ence methods.

3. Probes and response packets generated during mea-

surement impose a load on the network which can

change the conditions on the path of interest and po-

tentially skew results.

4. The heterogeneity and burstiness of traffic can extend

beyond the operating bounds of the tool.

5. Many active probe tools require specification of a set

of parameters before they are used. A tool’s effective-

ness can be limited by its sensitivity to configuration

parameters.

The first two issues imply that certain assumptions, while

valid in simulation, may lead to unexpected behavior when

an ABET is deployed in live Internet environments. The

second two issues imply that fully instrumented environ-

ments are key for understanding the impact and reported

measurements of ABETs. The final issue identified above

suggests that tool calibration should be performed in a con-

trolled, yet, as far as possible, realistic environment.

3.1. Calibration Strategy

To address the above issues, we advocate the use of

laboratory-based testbeds for calibrating ABETs. Such en-

vironments provide an important set of capabilities not of-

fered by standard simulation [17] or in situ settings such as

PlanetLab [3], including repeatability, transparency, and the

use of actual systems and implementations of actual proto-

cols. The essence of our calibration strategy for this study

consists of the following.

1. Design appropriate test environments where a standard

can be established over a range of increasingly com-

plex, repeatable test conditions. Essential to this first

step is the availability of hardware that provides mea-

surements with a level of accuracy greater than the

ABET. Such accuracy is typically not available for in

situ studies.

2. For the setups defined in the first step, identify relevant

test suites for assessing issues such as host system ca-

pabilities, loading effects, and network system behav-

ior over a range of expected conditions. Real systems

are generally required to study such issues.

3. The evaluation of data collected in the testbed should

be aided by flexible analysis and visualization tech-



niques that provide insight into relevant traffic dynam-

ics and, ultimately, the available bandwidth process

that the ABET attempting to measure or infer.

Availability of open lab-based environments that deploy

general-purpose workstations and network systems is on the

rise [1, 2, 4]. Although similar environments have been used

successfully in recent studies [16, 23], they are not openly

available to external researchers, and have seen little use for

calibration of ABETs. A possible concern in this regard

is the ability to conduct tests with “representative” traffic

conditions in a lab environment. However, tools such as [8,

11, 24] have addressed this problem to some extent.

3.2. Calibration Measurements and Analysis

The interactions of ABET measurement probe packets

with cross traffic in the different routers along the end-to-

end path occurs on time scales that are typically in the

range of tens to hundreds of microseconds. To gain in-

sight into ABET behavior, we capture time-synchronized

packet headers before and after interaction between probes

and cross traffic at a congested queue. From these measure-

ments, we can compare how packet streams intended by an

ABET differ from the stream actually produced. From the

arrival measurements, we can construct a true measure of

AB over a given time interval as a standard by which to

judge an ABET.

To analyze the probe arrival (ingress) and departure

(egress) measurements, we use a scatter or phase plot repre-

sentation [26]. To construct the phase plot, we consider the

time delay between consecutive probe packets as they ar-

rive at the router (Ingress_Spacing = si) as the x dimension

on the plot and consider the spacing of the same packets as

they exit the router (Egress_Spacing = se) as the y dimen-

sion. From these measurements, there are three possibilities

for the ratio sr = se/si. If sr = 1 then spacing remained un-

changed by the router. If sr > 1 then other packets enqueued

between the two packets causing expansion. If sr < 1 then

the first packet was delayed because of a queue that has

diminished by the time the second packet arrives, causing

compression.

Figure 1 depicts how we use phase plots for ABET cal-

ibration. The ingress dimension of the plot should reveal

any differences between spacings that are intended by the

ABET, and the spacings actually produced. This provides

the ability to assess bias introduced into the measurement

process by imprecise commodity hardware and operating

systems. The egress dimension of the plot shows the spac-

ings on which inferences are made by the receiver after in-

teraction with cross traffic, though they may differ from the

spacings actually measured by the receiver. Note that while

some ABETs do not make inferences directly from these

spacings (e.g., PATHLOAD), they play a key role in what an
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Figure 1. Application of phase plots to avail­
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Figure 2. Experimental testbed.

ABET infers. Therefore, these spacings enable calibration

of both the inference method as well as providing a baseline

for calibrating the receiving host.

4. Calibration Experiments

The objective of our calibration study of PATHLOAD and

SPRUCE was to examine the tools under a number of in-

creasingly more complex traffic and path conditions to un-

derstand where they work well and where they work poorly.

In each experiment we evaluate the tool’s ability to report

AB within a range of 10% of the tight link capacity. This

threshold is chosen as an arbitrary reference point in the

sense that a threshold would typically be chosen based on

specific requirements of a target application. We required

that estimates be consistently within this window of accu-

racy for a series of estimates reported by an ABET over the

duration of an experiment. Without the property of consis-

tent accuracy, ABETs are unlikely to be used in applica-

tions such as in re-optimization of an overlay network.

4.1. Testbed Setup

Our primary testbed configuration consisted of variations

on a dumbbell-like topology with an OC-3 narrow link as

depicted in Figure 2. We used a total of six setups, includ-

ing three traffic scenarios: constant bit-rate (CBR) traffic

of 50 Mb/s (UDP traffic with uniformly spaced 1500 byte

packets), 19 long-lived TCP flows in a single direction, 19

long-lived TCP flows in each direction, and three variants



of a setup using web-like traffic with file sizes drawn from

a heavy-tailed distribution to produce self-similar traffic. In

all cases, the direction of interest was left to right in the fig-

ure (i.e., CBR, single direction long-lived TCP connections,

and web-like traffic traveled left to right). Cross traffic was

generated by hosts running Harpoon [24] (web-like traffic)

or Iperf [28] (infinite source and constant bit-rate traffic)2.

We used an Adtech SX-14 hardware propagation delay em-

ulator configured to add a delay of 10 milliseconds in each

direction for all experiments.

To create increasingly more complex path conditions, we

considered the following three topological setups.

Topology 1 (narrow and tight link are the same, ho-

mogeneous RTT): Probe traffic was configured to cross the

GE link directly connecting routers at hops A and C. No

cross traffic was routed across this link. CBR and long-

lived TCP connection traffic crossed the Cisco 12000 at hop

B, while web traffic was configured to use the two Cisco

7200’s and the Cisco 12000 at hop B, but not the direct link

to hop C. Our decision to route probe traffic direction from

hop A to hop C caused the tight link and narrow link to be

identical in the CBR, long-lived TCP source, and basic web-

like traffic scenarios. When using web-like cross traffic in

this setup, we configured Harpoon to produce an average of

50 Mb/s.

Topology 2 (narrow and tight link are not the same,

homogeneous RTT): Using web-like cross traffic, we

routed probe traffic across a Fast Ethernet link between hops

A and B, but configured cross traffic not to use this link. In

this experiment, we also configured the cross traffic sources

to produce approximately 100 Mb/s of traffic on the OC-3

link between hops D and E, causing the Fast Ethernet link

to be the narrow link, but the OC-3 to be the tight link3.

Topology 3 (narrow and tight link are not the same,

heterogeneous RTT): Using again web-like cross traffic,

we configured our Linux traffic generation hosts with Net-

Path [5] to emulate round-trip times of 20, 50, 80 and 110

milliseconds. We also attached additional hosts at hops A,

C, and D to generate cross traffic that traveled across all

links between hops A and C (sharing the link with probe

traffic) or the OC-12 link between hops C and D.

Critical to our calibration methodology was the ability

to take high accuracy measurements in our test environ-

ment. To do this we attached optical splitters and Endace

DAG 3.5 packet capture cards (affording timestamping ac-

2Our traffic generator hosts were identically configured workstations

running either Linux 2.4 and FreeBSD 5.3. The workstations had 2 GHz

Intel Pentium 4 processors, 2 GB of RAM and Intel Pro/1000 cards (with

interrupt coalescence disabled). Each system was dual-homed, so that all

management traffic was on a network separate from the one depicted in

Figure 2. Probe traffic systems were identical to the traffic generators and

ran FreeBSD 5.3.
3We verified in each experiment that, over each tool measurement in-

terval, the tight link was always the OC-3 link.

curacy on the order of single microseconds [9]4) to monitor

the links between hops C and D, and hops D and E. We

used these monitoring points to create phase plots and mea-

sure utilization on the tight OC-3 link. This configuration

gave us ground truth measurements well beyond the coarse-

grained SNMP measurements used in prior in situ studies

of ABETs.

4.2. ABET Calibration: Comparison

The calibration framework described in § 3 directs our

evaluation process. We begin by assessing the capabilities

of the end hosts running the ABETs. Sources of potential

bias introduced by end hosts include OS context switches

and other system capability/OS effects such as network

adapter interrupt coalescence [13, 14, 21]. Our interest is

not in untangling the details of each source of host system

bias, rather it is in understanding the overall impact.

In our experiments below, we considered topology 1 and

collected traces from a single PATHLOAD fleet (1200 probe

packets of 1309 bytes), and a series of 12 SPRUCE runs

(1200 packet pairs, each packet of length 1500 bytes) with

constant bit rate cross traffic of 50 Mb/s flowing across the

narrow link during each test. If the host systems emitted

packets without bias, we would expect ingress spacings for

both tools to be tightly clustered around the intended value

of 80 microseconds.

The phase plots for these experiments shown in Figure 3

immediately expose two potential sources of measurement

bias. First, it is easy to see that for each ABET there is

a wide range of interpacket spacings on ingress which can

be attributed to the sending host. Second, it is also evident

that an effect of the CBR cross traffic is to cause a respac-

ing of probe packets on egress to either back-to-back (70

microseconds for PATHLOAD packets, 80 microseconds for

SPRUCE packets) or with one cross traffic packet interposed

(150 microseconds for PATHLOAD, 160 microseconds for

SPRUCE). Closer examination reveals that packets spaced

farther apart by the ABET are more likely to experience ex-

pansion by a cross traffic packet than to be transmitted back-

to-back on the tight link. This can be seen in Figure 3(a)

by the perceptible shift to the right in the upper cluster of

points. A similar shift exists in Figure 3(b). Finally, we

note that points below the diagonal line in Figure 3(a) rep-

resent evidence for compression in PATHLOAD streams5.

To further explore the problem of bias imposed by probe

senders, we collected several thousand packet spacing mea-

4As a consistency and calibration check, we also captured traces using

Endace DAG 3.8 cards, which employ a higher frequency clock, and have

somewhat different architectural features than the DAG 3.5. The result-

ing phase plots were consistent with those produced using the DAG 3.5.

Experiments described below employ the DAG 3.5 cards unless otherwise

specified.
5We quantify the prevalence of compression in [25]. In general, about

20% of PATHLOAD streams experience compression.



surements from SPRUCE and PATHLOAD and compared

each spacing with the spacing measured at the DAG monitor

between hops C and D. Figure 4(a) shows a representative

histogram of differences between the spacing measured us-

ing gettimeofday() at PATHLOAD6. From these mea-

surements, we conclude that while the magnitude of indi-

vidual errors can be quite significant, the mean deviation is

close to zero.
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PATHLOAD fleet (1200 probe packets of

length 1309 bytes).
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(b) Phase plot produced from 12 SPRUCE

runs (1200 packets pairs, packets of length

1500 bytes).

Figure 3. Phase plots of PATHLOAD and SPRUCE

streams. Grid lines are separated by 20 mi­
croseconds for each plot. CBR cross traffic
of 50 Mb/s, with uniform UDP packets of 1500

bytes (not shown in plots) causes bimodal
output spacing distribution of probe traffic.
Target input spacing for each tool is 80 mi­

croseconds. Note the slightly different scale
for each plot.

Next, we examined the measurements at the receiv-

ing application. PATHLOAD timestamps outgoing/incoming

packets using the gettimeofday() operating system

call. SPRUCE timestamps outgoing packets using the

6We modified SPRUCE and PATHLOAD to log these timestamps.

gettimeofday() system call and incoming packets re-

ceive timestamps in the OS interrupt handler. Timestamps

used for both these tools are of microsecond precision

(though not necessarily microsecond accuracy). Comparing

timestamps measured upon packet receive with timestamps

measured at the DAG monitor between hops D and E (i.e.,

the egress spacings of Fig. 3 compared with application-

measured receive spacings), we obtain a result similar to the

sender. Figure 4(b) shows a representative histogram of dif-

ferences in packet spacings measured at the probe receiver

versus the same spacings measured at the DAG monitor.

The magnitude of error is smaller than that on the sender

and the mean deviation is close to zero.

As a final calibration check, and to test whether these

results were unique to the hardware and OS configura-

tion used, we attached a DAG 4 (Gigabit Ethernet) moni-

tor directly to the Intel Pro/1000 on a Linux 2.4 worksta-

tion and collected additional measurements using SPRUCE.

A histogram of differences between spacings measured at

SPRUCE and spacings measured at the DAG 4 is shown in

Figure 4(c). Again, the mean deviation is close to zero.

Packet receive errors on the Linux 2.4 system (not shown)

are also close to zero mean. Table 1 summarizes these re-

sults. Even though the averaged behavior of probe streams

tends toward the intended value, bias on individual probes

can still have a significant detrimental effect on the opera-

tion of PATHLOAD and SPRUCE.

4.3. ABET Calibration: Algorithmic Adjustment

We have found the use of phase plots to be beneficial in

our ABET calibration study. They not only helped us to

expose end-host limitations of generating precise streams

and to identify the resulting bias, but by studying the egress

spacings, we were also able to gain an expectation of what

the receiving host should have measured and realized that

considering compression events is important. In summary,

phase plot analysis resulted in the following observations:

(i) the error introduced by end hosts has approximately zero

mean when multiple measurements are taken; (ii) the rela-

tionship between input and output probe rates and AB de-

scribed in Eq. (2) invites refinements; and (iii) both com-

pression and expansion are indicative of congestion along a

measured path.

These observations lead us to propose a calibrated algo-

rithm for measuring available bandwidth. We first test how

quickly the mean deviation of measurements converges, on

average, to zero. That is, how many packets should com-

prise a stream, at minimum, in order for the error to be less

than some threshold? To answer this question, we created

a tool to send packet streams of length 100 at four target

spacings of 60, 80, 100, and 120 microseconds, in sepa-

rate experiments. We ran the tool under topology 1 with

no cross traffic to collect approximately 1000 packet stream
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(a) Distribution of error at

FreeBSD 5.3 sender with Intel

Pro/1000 GE adapter and DAG
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(b) Distribution of error at

FreeBSD 5.3 receiver with In-

tel Pro/1000 GE adapter and

DAG 3.5 between hops D and
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(c) Distribution of error at

Linux 2.4 sender with Intel

Pro/1000 GE adapter and DAG

4 attached directly to network

interface.

Figure 4. Relative frequencies of error between send or receive packet spacings and spacings mea­
sured at DAG monitor.

measurements (i.e., about 100,000 packets per experiment).

For each packet stream, we counted the number of packets

required for the mean deviation between spacings measured

at the DAG monitor and timestamps generated by the appli-

cation to be less than 1 microsecond. The distributions show

that the mean error converges to zero quite quickly and that

packet streams of at least length 20 appear to be sufficient.

However, there remain tradeoffs for ABET methodologies

using packet streams. While shorter streams may reduce the

intrusiveness of the tool, and may reduce measurement la-

tency, the averaging time scale is also reduced, theoretically

resulting in greater measurement variance.

At the base of our proposed algorithm is a version of

Equation (2), modified to consider absolute difference in av-

erage input and output spacings. The absolute difference is

used because both compression and expansion (or the com-

bination of both in a given measurement period) must be

considered as an indication of congestion. Average spac-

ings are used since we have shown that individual spacings

are subject to significant error. In the formulation below,

we consider the average difference in input and output spac-

ings as an indication of whether the input rate was above the

available bandwidth along the path (analogous to Eq. (2)):

|gin −gout | =
{

≤ ζ∗gin rin ≤ A

> ζ∗gin rin > A.
(3)

The value ζ is a threshold parameter used to determine how

far apart the average send and receive spacings can be while

still considering the input stream to be below the level of

spare capacity along the measurement path.

Like PATHLOAD, our algorithm for finding the available

bandwidth is iterative. First, we set the target send spacing

to be some minimum value (effectively setting the maxi-

mum AB measurable), then proceed as follows.

1. Send probe stream, measuring gin and gout at send and

receive hosts, respectively.

2. If the absolute difference in average input and output

spacings is above the ζ threshold of the input spacing

(Eq. 3), increase gtarget by
|gin−gout |

2
, wait a configurable

amount of time, and go to previous step.

3. Otherwise, update an exponentially-weighted moving

average (EWMA) (with parameter α) with the estimate

rin. Report the updated EWMA as the estimate of AB.

We consider the above algorithm to be a “calibrated

Pathload” and have implemented it in a tool called YAZ.

The source code for YAZ will be available to the research

community for evaluation.

4.4. Experimental Evaluation

We compared the accuracy of PATHLOAD, SPRUCE, and

YAZ using the different scenarios described in § 4.1. For the

CBR and long-lived TCP source experiments, we continu-

ously collected AB estimates from each tool for 10 minutes,

discarding the first 30 seconds and last 30 seconds. For the

web traffic setups, we continuously collected AB estimates

from each tool for 30 minutes, also discarding the first 30

seconds and last 30 seconds. For the comparisons below,

we compute the actual available bandwidth using the DAG

monitor between hops D and E for the exact interval over

which a tool produces an estimate. For each experiment,

we consider the fraction of estimates that fall within a range

of 10% of the tight link capacity. Since our tight link is OC-

3 (149.76 Mb/s before Cisco HDLC overhead), this window

is ≈ 15 Mb/s.

For all experiments, YAZ was configured with α = 0.3
in its exponentially-weighted moving average (this setting

produced minimum mean squared error over all experi-

ments) and the threshold parameter ζ was set to be equiv-

alent to a rate of 1 Mb/s, which we found to be a robust



setting over our topologies and traffic scenarios7. We set

YAZ’s stream length to 50 packets. For SPRUCE, we use

149.76 Mb/s as the tight link capacity in Equation (1) for

all experiments except for the second web-like traffic sce-

nario, in which we set it to 97.5 Mb/s (the narrow link is

Fast Ethernet) and use the default value of 100 samples to

compute an estimate of AB. For PATHLOAD, we used de-

fault parameters, and in the initial comparison with YAZ,

we set the stream length to 50 packets, while leaving the

number of streams per fleet at the default value of 12. We

report the midpoint of PATHLOAD’s estimation range as the

AB estimate8. Additional details of our results are in [25].

Results for all the experiments are shown in Figure 5.

The results for constant bitrate traffic in topology 1 (Fig-

ure 5(a)) show that both YAZ and PATHLOAD perform with

similar accuracy, coming quite close to the true AB. How-

ever, fewer than 60% of SPRUCE estimates are within the

10% acceptance range.

The two long-lived TCP traffic scenarios in topology 1,

in some ways, create the most pathological cross traffic con-

ditions due to the frequent traffic oscillations on the tight

link. Figure 5(b) plots results for the setup with TCP flows

in a single direction. The YAZ estimates are fully within the

10% threshold, while more than 90% of PATHLOAD’s esti-

mates are within this bound. Only about 20% of SPRUCE

estimates fall within the acceptable range. For the bi-

directional long-lived TCP flows, YAZ and PATHLOAD per-

form similarly, with approximately 90% of estimates falling

within the 10% acceptance range. Again, very few esti-

mates produced by SPRUCE fall within the 10% range.

For the web-like cross traffic in topology 1 experiment

(Figure 5(c)), approximately 75% of estimates produced by

YAZ are within the acceptance range compared to about

50% of PATHLOAD estimates and about 40% of SPRUCE

estimates. We also ran PATHLOAD in this setup again, set-

ting the stream length to be 100 packets (the default in the

PATHLOAD source code). Figure 5(e) shows the result of

this experiment, comparing the YAZ and SPRUCE results

from Figure 5(d). We see that the accuracy of PATHLOAD

improves by about 15%.

The results for the case of web-like cross traffic in topol-

ogy 2 are shown in Figure 5(f). In this setup, PATHLOAD

underperforms both YAZ and SPRUCE, with about 65%

of YAZ estimates and about 55% of SPRUCE estimates

falling within the 10% threshold, but only about 40% of

PATHLOAD estimates falling within this range. A closer

look at the PATHLOAD results revealed that it took longer

on average to converge on an estimation range, and con-

vergence times were more variable than in any other setup.

7Although it is an important calibration task, we omit a detailed analy-

sis of the sensitivity of YAZ to its parameters due to space limitations.
8Using the midpoint of its estimation range is, in general, favorable to

PATHLOAD [25].

Since AB is a moving target, these increased convergence

times led to poor estimates. Finally, Figure 5(g) shows re-

sults for the web-like cross traffic in topology 3. In this

setup, about 80% of YAZ estimates are within the accep-

tance range, compared with about 50% for PATHLOAD and

40% for SPRUCE.

Lastly, we compare estimation latency, the average num-

ber of probes emitted per estimate, and the number of es-

timates produced during the first web-like traffic scenario.

Table 2 summarizes these results, which are qualitatively

similar for other traffic scenarios. We see that YAZ pro-

duces estimates more quickly, thus producing many more

estimates over the duration of the experiment. PATHLOAD

and YAZ operate in an iterative fashion, and we see from the

table that YAZ, on average, requires fewer cycles to arrive

at an estimate.

Considering tool parameters and the mean number of

iterations, we arrive at the mean number of packets re-

quired for each estimate. For much higher accuracy, YAZ

uses packets roughly of the same order of magnitude as

SPRUCE, but at least an order of magnitude fewer packets

than PATHLOAD. If PATHLOAD and SPRUCE represent a

tradeoff between measurement accuracy and overhead, our

results for YAZ suggest that this tradeoff is not fundamental.

Table 1. Summary of errors between packet
spacings measured at application send and
receive, and DAG monitors. All values are

in microseconds. Negative values indicate
that a larger spacing was measured at DAG
monitor than in the application.

DAG 3.5/3.8 (OC-3/12) DAG 4 (GE)

FreeBSD 5.3 Linux 2.4

Send Error Receive Error Send Error

Min -93.00 -20.00 -24.00

Median -2.00 0.00 -2.00

Mean -1.54 0.15 -0.61

Max 100.00 18.00 23.00

Table 2. Comparison of number of estimates
produced, latency, number of packets emitted

per iteration (PATHLOAD and YAZ), and average
number of packets emitted per estimate for
each ABET for web­like traffic in topology 1.

Estimates Latency Iterations Mean Pkts

Produced µ (σ) per Estimate per

(seconds) µ (σ) Estimate

PATHLOAD 96 17.7 (3.8) 8.4 (4.8) 10080

(K = 100)

PATHLOAD 97 17.6 (3.8) 8.8 (4.2) 5280

(K = 50)

SPRUCE 156 10.9 (0.9) NA 200

YAZ 446 3.8 (1.5) 6.1 (8.8) 366
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(a) Constant bit rate cross traffic of 50 Mb/s

(topology 1).
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(b) Long-lived TCP sources in one direction

(left to right in Figure 2) (Topology 1).
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(c) Long-lived TCP sources in two directions

(Topology 1).
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(d) Web-like cross traffic produced by Har-

poon with average rate of 50 Mb/s (Topology

1).
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(e) Comparison of YAZ, PATHLOAD, and

SPRUCE, for web-like traffic when PATHLOAD

is configured for streams of length 100 (Topol-

ogy 1). (YAZ and SPRUCE curves are same as

in Figure 5(d).)
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(f) Web-like traffic with narrow link (Fast Eth-

ernet) and tight link (OC-3) as distinct physical

links (Topology 2).
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(g) Web-like traffic with additional points of

cross traffic and a diversity of round-trip times

(Topology 3).

Figure 5. Comparison of available bandwidth estimation accuracy between YAZ, PATHLOAD, and
SPRUCE for six cross traffic scenarios. True available bandwidth is computed using DAG traces over

the same interval on which a tool estimation is performed. Dashed vertical line at x = 0.1 indicates
10% desired accuracy threshold.



5. Summary and Conclusions

The primary objective of this paper is to highlight cali-

bration as a key component in the design, development and

rigorous testing of available bandwidth measurement tools.

We advocate the use of controlled laboratory experiments

as a means for partially overcoming the limitations that are

inherent in standard ns-type simulations. While in vitro-like

testing is unlikely to fully replace experiments in situ, it of-

fers complete control, full instrumentation and repeatability

which are all critical to tool calibration. We note that the

laboratory setups used in our study are available for use by

other researchers [4].

We propose a framework for the calibration of ABETs.

Our case study exposes potential biases and inaccuracies in

ABE due to the use of commodity systems for high fidelity

measurement and/or inaccurate assumptions about network

system behavior and traffic dynamics. As a result of these

observations, we developed a calibrated Pathload-like tool

called YAZ, which is consistently more accurate than prior

ABETs. For much higher accuracy, YAZ uses packets

roughly of the same order of magnitude as SPRUCE, but at

least an order of magnitude fewer packets than PATHLOAD.

If PATHLOAD and SPRUCE represent a tradeoff between

measurement accuracy and overhead, our results for YAZ

suggest that this tradeoff is not fundamental. We believe

that YAZ is representative of the type of active measure-

ment tool that can be expected as a result of insisting on

more stringent calibration.
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