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Abstract— Service level agreements (SLAs) specify perfor-
mance guarantees made by service providers, typically in terms
of packet loss, delay, delay variation, and network availability.
While many tools have been developed to measure individual
aspects of network performance, there has been little work to
directly address the issue of SLA compliance monitoring in
an operational setting where accuracy, parsimony, and other
related issues are of vital importance. This paper takes the
following steps toward addressing this problem: (1) we introduce
an architectural framework for integrating multiple discrete-
time active measurement algorithms, an architecture that we
call multi-objective monitoring; and (2) we introduce a new
active measurement methodology to monitor the packet loss rate
along a network path for determining compliance with specified
performance targets which significantly improves accuracy over
existing techniques. We present a prototype implementation of
our monitoring framework, and demonstrate how a unified probe
stream can consume lower overall bandwidth than if individual
streams are used to measure different path properties. We
demonstrate the accuracy and convergence properties of our
new loss rate monitoring methodology in a controlled laboratory
environment using a range of background traffic scenarios and
examine its accuracy improvements over existing techniques.

I. INTRODUCTION

IP networks have become indispensible to businesses, gov-

ernments, and individuals, worldwide. Reflecting this impor-

tance, it is increasingly common for service providers to offer

transport-level performance guarantees using metrics such as

packet loss, delay, and network network availability as part of

their service level agreements (SLAs) [1]–[4]. Meeting agreed-

upon performance targets results in the collection of revenue

for the service provider, whereas not meeting these objectives

can result in credits and loss of revenue to the customer.

Accurate network monitoring for the purpose of detecting

compliance with performance goals is therefore critical to both

parties.

The problem of monitoring compliance with agreed-upon

performance metrics is a key challenge of SLA engineering.

A provider must design SLAs that can be accurately and

efficiently monitored, while at the same time minimizing

the possibility of non-compliance. For example, guaranteeing

a very low loss rate might be possible only if loss rates

can be estimated in a lightweight way with sufficiently high

confidence. While passive measurements (e.g., SNMP MIB

counters) may provide adequate accuracy for a metric such as

loss on a link-by-link basis, they are insufficient for estimating

the actual performance experienced by customer traffic (e.g.,

due to dynamic routing changes or hardware failures). Thus,

although there are situations where active measurements may

be too heavyweight or may yield inaccurate results [5]–[7],

they nonetheless remain a key mechanism for SLA compliance

monitoring.

In this paper, we address the following question: can SLA

compliance be accurately monitored with a single lightweight

probe stream? There have been a number of active measure-

ment tools and methodologies proposed over the years to

estimate transport-level performance characteristics. Even so,

there has been little work to directly address the problem of

SLA compliance monitoring. In this context, measurement tool

accuracy, parsimony, ability to report confidence bounds, and

ability to quickly adapt to changing network conditions are of

great importance.

The first contribution of this work is the introduction of a

framework for integrating multiple discrete time-based active

measurement algorithms. Modules for estimating individual

path characteristics interact with a central probe scheduler such

that a given probe may be used for multiple purposes. The

result is a unified probe stream that can consume lower overall

bandwidth than if individual streams are used. Moreover,

each module operates independently, thus preserving desirable

statistical and accuracy properties for each estimation method.

We describe the implementation of our framework in a tool

called SLAM (SLA Monitor).

The second contribution of this paper is the introduction

of a new active measurement methodology for estimating

end-to-end packet loss rate. Starting from the geometric

probe methodology described in [7], we develop a heuristic

technique for estimating packet loss rate along a path that

significantly improves accuracy over existing approaches. We

implement this new methodology as a SLAM module.

We demonstrate the properties of SLAM in a controlled

laboratory environment using a range of background traffic

scenarios. We compare SLAM’s loss estimation accuracy with

both Poisson and periodic streams of the same rate, and exam-

ine the convergence and robustness of SLAM loss estimates.

Our experiments reveal that SLAM estimates the end-to-end

loss rate with high accuracy and with good confidence bounds.

For example, in a scenario using self-similar background

traffic, the true loss rate over a 15 minute period is 0.08%

and the SLAM estimate is 0.07%. In contrast, Poisson and

periodic methods for estimating loss rate have errors of more

than two orders of magnitude.



II. RELATED WORK

While many details of SLAs are considered proprietary,

general aspects and structure of SLAs are discussed in [1],

[8]. Performance guarantees associated with SLAs range from

network path availability, to transport-related metrics such

as packet loss, to application-specific metrics such as web

response times and voice stream quality. Such guarantees may

be based on various statistics of the given metric, such as the

mean, median, or a high quantile such as the 95th percentile,

computed over various time scales. Examples of the types of

performance assurances offered by commercial providers are

available online [2]–[4].

To ensure that SLA performance targets are met with

high probability, service providers collect measurements either

passively within the network, by injecting measurement probes

into the network, or by using a combination of both [9]–

[12]. While active measurement-based compliance monitoring

has received some attention in the past, e.g., [9], there has

been little validation in realistic environments where a reliable

basis for comparison can be established. Furthermore, practical

issues such as balancing the impact of measurement tools on

the network with estimation accuracy have seen less atten-

tion. Our work also takes an active measurement approach,

introducing a framework for simultaneous, or multi-objective,

measurement of transport-level performance metrics which

can reduce the overall impact of the measurement process.

We further differentiate our work through validation in a

controlled, realistic testbed.

There has been a great deal of work on the problem of

measuring end-to-end packet loss, e.g., [13]–[20]. While there

has been limited work addressing the accuracy of common

measurement approaches, exceptions are found in [5]–[7]. The

issue of accuracy clearly has serious implications for SLA

compliance monitoring.

III. MULTI-OBJECTIVE PROBING

In this section, we introduce an architectural framework for

integrating multiple discrete-time active measurement algo-

rithms in a single probe scheduler to provide simultaneous

estimation different network path properties.

Consider an ISP that wishes to monitor packet loss using

the algorithm of [7], and simultaneously monitor packet delay

and delay variation. Assume that the packet delay and delay

variation algorithms operate in discrete time. A typical ap-

proach is to use three separate probe streams for monitoring

these properties. However, since these algorithms operate in

discrete time we may take advantage of the fact that they

may send probes at the same time slot. We can accommodate

such requests by tagging probes according to the estimator to

which they apply. The effect is that a single probe packet may

be used for multiple estimation objectives, thereby reducing

overall impact of measurement traffic on the network. This is

the intuition behind multi-objective probing.

The basic architecture of our multi-objective probe sched-

uler is depicted in Figure 1. The central component of the

architecture is a scheduler operating in discrete time that
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Fig. 1. Multi-objective probe scheduler architecture. Algorithmic modules
interact with a generic discrete-time probe scheduler to perform estimation of
delay, delay variation, loss characteristics, or other properties of interest.

provides callback and probe scheduling mechanisms. Indepen-

dent probe modules interact with the scheduler to implement

particular estimation algorithms, e.g., BADABING [7]. Our

probe scheduler design allows for logical separation among

multiple, simultaneously operating measurement methods and

for optimizations of network bandwidth. We implemented this

architecture in a tool called SLAM (SLA Monitor). SLAM

sends UDP packets in a one-way manner between a sender

and receiver. The scheduler consists of about 1,500 lines of

C++.

Two important implementation decisions were made in the

SLAM probe sender. First, the scheduler must accommodate

estimation techniques that use multi-packet probes, such as

BADABING [7] which uses them to obtain an improved esti-

mate of instantaneous congestion. Second, the scheduler must

arbitrate among probe modules that may use different packet

sizes. At present, the smallest packet size scheduled to be sent

at a given time slot is used.

For example, suppose three packets of size 600 bytes have

been scheduled to be sent at time slot i for loss estimation

and that one packet of size 100 bytes has also been scheduled

for the same time slot i for delay estimation. When time slot

i arrives, the scheduler will send a sequence of three packets

of sizes 100, 600, and 600 bytes. The first packet will tagged

for delay estimation, and all three packets will be tagged for

loss estimation. At the receiver (assuming these packets are

not lost in transit), the delay estimator module will receive

one packet of size 100 bytes, and the loss estimator module

will receive three packets of sizes 100, 600, and 600 bytes.

We discuss implications of these implementation decisions in

Section V.

IV. PACKET LOSS RATE MONITORING METHODOLOGY

We now describe the basic assumptions and method for

estimating packet loss rate along an end-to-end path. Our

objective is to develop an accurate, robust estimator based on

a discrete-time probe process to be implemented as a module

of SLAM.

The methodology described in [7] was shown to yield accu-

rate estimates of congestion event frequency (F̂ ) and duration

(D̂) along an end-to-end path. It was noted that the primary

difficulty in estimating end-to-end packet loss rate (number

of lost packets divided by total number of packets over a



given time interval)—the loss performance metric specified

in SLAs—is that it is unclear how to measure demand along

the path, particularly during congestion periods. Therefore, we

propose the following heuristic approach.

Starting from the geometric probe stream in [7], which

initiates a probe pair at a given time slot with probability ploss,

we measure the loss rate l̂ of the probes during congestion

episodes. Since the estimation techniques in [7] do not directly

identify individual congestion episodes we take an empirical

approach, treating consecutive probes in which at least one

packet is lost as indication of a congestion episode. As in [7],

we assume that the end-to-end loss rate L is stationary and

ergodic. Given an estimate of the frequency of congestion F̂ ,

we estimate the end-to-end loss rate as

L̂ = F̂ l̂.

The key assumption of this heuristic is that we treat the

probe stream as a marker flow, namely, that the loss rate

observed by this flow has a meaningful relationship to other

flows along the path. As a basis for this assumption, we

note that the probes in [7] consist of multiple packets (3 by

default), which has some similarity to a TCP stream where

delayed ACKs cause a sender to release two very closely-

spaced packets. While we do not claim that the probe stream

is, in general, the same as a TCP stream, our results below

demonstrate that such an assumption may be reasonable in this

context.

Finally, we note that using previous work which analyzed

the variance of the frequency estimator, we can similarly derive

confidence intervals on this loss rate estimator (details omitted

due to space constraints) [21].

V. SLAM EVALUATION

We now describe the experimental evaluation of SLAM in

a controlled laboratory environment. In our experiments, we

fixed the SLAM loss rate module with parameter ploss = 0.3

and packet sizes of 600 bytes, unless otherwise specified.

These settings were found to give good loss characteristic

estimates [7]. We verified the results regarding the setting of

the parameter ploss but omit detailed results in this paper.

A. Testbed and Traffic Scenarios

Our laboratory testbed, depicted in Figure 2, consisted of

commodity workstation end hosts and commercial IP routing

systems configured in a dumbbell-like topology. We used

10 workstations on each side of the topology for producing

background traffic and one workstation at each side to run

SLAM. Each workstation has a Pentium 4 processor running at

2GHz or better, with at least 1 GB RAM and an Intel Pro/1000

network interface card and was configured to run either

FreeBSD 5.4 or Linux 2.6. The SLAM hosts were configured

with a default installation of FreeBSD 5.4. Background traffic

and probe traffic flowed over separate paths through a Cisco

6500 enterprise router (hop A) and was multiplexed onto a

bottleneck OC3 (155 Mb/s) link at a Cisco GSR 12000 (hop

B). Packets exited the OC3 via another Cisco GSR 12000

SLAm sender

......
OC3

GE GEGE

emulation system

NetPath delay

GE

traffic generator hosts traffic generator hosts

SLAm receiver

GE

DAG monitor systems

hop identifier

Cisco 12000
Cisco 6500

Cisco 6500

Si
Si

A B C D

Cisco 12000

Fig. 2. Laboratory testbed. Probes and cross traffic are multiplexed onto
a bottleneck OC3 (155Mb/s) link. Synchronized Endace DAG monitors are
used to collect traces for calculation of true loss and delay values.

(hop C) and passed to receiving hosts via a Cisco 6500 (hop

D). NetPath [22] is used between hops C and D to emulate

propagation delays for the background traffic hosts in the

testbed. We used a uniform distribution of delays with a mean

of 50 msec, minimum of 20 msec, and maximum of 80 msec.

The bottleneck output queue at the Cisco GSR at hop B

was configured to perform tail drop with a maximum of 624

packets of size 1500 bytes, or about 50 msec of buffer space

at 155 Mb/s. The SLAM workstations were synchronized to a

Stratum 0 NTP server configured with a TrueTime GPS card.

We used the synchronization software developed by Corell

et al. [23] to provide accurate timestamps for SLAM. All

management traffic for the systems in Figure 2 flowed over

a separate network (not pictured in the figure).

An important aspect of our testbed is the ability to establish

a reliable “ground truth” for our experiments. Optical splitters

were attached to the links between hops A and B and to the

link between hops B and C and synchronized Endace DAG 4.3

(Gigabit Ethernet) and 3.8 (OC3) passive monitoring cards

were used to capture packet traces entering and leaving the

bottleneck node. By comparing packet header information, we

were able to identify which packets were lost at the congested

output queue during experiments.

We used four background traffic scenarios in our experi-

ments. For the first scenario, we used Iperf [24] to produce

constant-bit rate (CBR) UDP traffic for creating a series of

approximately constant duration (about 65 msec) loss episodes

that were spaced randomly at exponential intervals with mean

of 10 seconds over a 10 minute period. The second scenario

consisted of 100 long-lived TCP sources run over a 10 minute

period. For the final two scenarios, we used Harpoon [25]

with a heavy-tailed file size distribution to create self-similar

traffic approximating a mix of web-like and peer-to-peer

traffic commonly seen in today’s networks. We used two

different offered loads of 60% and 75% of the bottleneck OC3.

Experiments using the self-similar traffic scenario were run for

15 minutes. For all scenarios, we discarded the first 30 and last

30 seconds of the traces. Note that the SLAM parameters used

in our experiments result in only about 0.3% of the bottleneck

OC3 consumed for measurement traffic.

B. Multi-Objective Probing Evaluation

We first evaluate the bandwidth savings that can arise due to

multi-objective probing. As we noted in Section III, if multiple

probe modules each wish to send a probe at a given time

slot, the smallest packet size of each of the modules is used.



An effect of this implementation decision is that the overall

bandwidth requirement for the multi-objective stream may be

less than the aggregate bandwidth requirement for individual

probe modules, were they to be used separately.

Assume that we wish to monitor packet loss rate using the

algorithm described in Section IV. Assume also that we wish

to send a fixed-rate periodic probe stream for monitoring, e.g.,

delay or delay variation. We set the probe packet sizes at 600

bytes for the loss probe and 100 bytes for the periodic probe.

We compare probe rates using two different parameter sets: in

parameter set A, ploss is 0.3 and the periodic probe interval is

100 milliseconds, and for parameter set B, ploss is 0.2 and the

periodic probe interval is 20 milliseconds. Table I shows the

results for these experiments. The table shows, for example,

that for parameter set A, the the loss probe stream is separately

about 345 Kb/s, and the delay probe stream is about 40 Kb/s:

a sum of 385 Kb/s. With SLAM, the probe stream is about

297 Kb/s, a savings of 23%. While the savings is parameter

dependent (as shown in the table), there are clearly obtainable

bandwidth savings.

TABLE I

EXAMPLES OF AVERAGE BANDWIDTH REQUIREMENTS FOR INDIVIDUAL

MEASUREMENT METHODS AND FOR MULTI-OBJECTIVE PROBE STREAM.

THE DISCRETIZATION INTERVAL IS SET TO 5 MILLISEC., AND PROBE

PACKET SIZES ARE 600 BYTES FOR THE LOSS PROBE AND 100 BYTES FOR

A PERIODIC PROBE STREAM. FOR PARAMETER SET A, ploss IS SET TO 0.2

AND THE PERIODIC PROBE INTERVAL IS SET TO 20 MILLISECONDS. FOR

PARAMETER SET B, ploss IS SET TO 0.3 AND THE PERIODIC PROBE

INTERVAL IS SET TO 100 MILLISECONDS. ALL VALUES ARE IN KB/S.

Parameter Loss Periodic Sum (separate SLAM Savings

set stream streams)

A 345 40 385 297 88 (23%)

B 489 8 497 474 23 (5%)

C. Loss Rate Estimation Accuracy

We now examine the accuracy of the loss rate estimates for

SLAM, comparing SLAM’s accuracy with standard Poisson-

modulated [20] and periodic streams of the same rate.

Table II compares the true loss rate measured using the

passive traces with the loss rate estimates of SLAM and the

Poisson and periodic probe streams. Values are shown for

each of the four traffic scenarios and are average loss rates

over the duration of each experiment. Note that differences in

true values are due to inherent variability in traffic sources.

We see that for all four scenarios, the Poisson and periodic

streams yield very poor estimates of the true loss rate. In

all but one case, the estimates are off by more than two

orders of magnitude—a significant relative error. In fact, the

Poisson and periodic estimates are generally close to zero—

a phenomenon consistent with earlier experiments [7] and

primarily due to the fact that single packet probes generally

yield poor indications of congestion along a path. (Note that

these accuracy improvements are consistent with experiments

described in [7].) The estimates produced by SLAM are

significantly better, with a maximum relative error in the case

of the CBR background traffic. Both SLAM loss rate estimates

for the self-similar background traffic have relative errors of

about 10% or less.

TABLE II

COMPARISON OF LOSS RATE ESTIMATION ACCURACY FOR SLAM,

POISSON, AND PERIODIC PROBE STREAMS. VALUES ARE AVERAGE LOSS

RATES OVER THE FULL EXPERIMENT DURATION.

Probe stream → SLAM Poisson periodic

Traffic scenario ↓ true estimate true estimate true estimate

CBR 0.0051 0.0073 0.0051 0.0017 0.0051 0.0017

Long-lived TCP 0.0163 0.0189 0.0163 0.0062 0.0163 0.0050

Harpoon self-similar 0.0008 0.0007 0.0017 0.0000 0.0018 0.0000

(60% load)

Harpoon self-similar 0.0049 0.0050 0.0055 0.0000 0.0060 0.0011

(75% load)

D. Robustness of Loss Estimation

Estimation accuracy over relatively long time periods (e.g.,

10 minutes) is clearly desirable from the standpoint of SLA

compliance monitoring. Also important are the dynamic prop-

erties of an active measurement estimator, i.e., how well

the method adapts to changing network conditions and how

quickly the estimator converges to the average path state. In

this section, we examine the time varying nature of the SLAM

estimates for packet loss.

Figure 3 shows the true loss rate and SLAM-estimated

loss rate over the duration of experiments using long-lived

TCP traffic (top) and self-similar traffic at 60% offered load

(bottom). As above, true loss rate estimates are shown for 10

second intervals and estimates for SLAM are shown for 30

second intervals. Results for CBR traffic are not shown but

are consistent with plots in Figure 3. The upper and lower

bars for SLAM indicate estimates of one standard deviation

above and below the mean using the variance estimates derived

from [21]. For the SLAM estimates we see the narrowing of

variance bounds as an experiment progresses, and that the true

loss rate is, with few exceptions, within these bounds. We also

see that SLAM tracks the loss rate over time quite well, with

its estimated mean closely following the true loss mean.

VI. DISCUSSION AND CONCLUSIONS

SLA monitoring is of significant interest to both customers

and providers to ensure that the network is operating within

acceptable bounds. This paper introduces a new framework

for multi-objective SLA compliance monitoring using active

measurements and introduces a new method for measuring

end-to-end packet loss rate. We implemented the probing

framework and loss rate methodology in a tool called SLAM

and evaluated the tool in a controlled laboratory setting. Our

results demonstrate the bandwidth savings that can result due

to multi-objective probing. Our results also show that SLAM

packet loss rate estimates are much more accurate than loss

rate estimates obtained through standard periodic or Poisson

probe streams, and that these standard techniques may not

provide an accurate estimate of the state of the network,

thereby preventing an accurate assessment of SLA compliance.
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Fig. 3. Comparison of true loss rate with SLAM estimates over time. True
loss rates are plotted using 10 second intervals. SLAM estimates are plotted
using 30 second intervals. Plots shown for long-lived TCP (top) and self-
similar traffic at 60% offered load (bottom) traffic scenarios. The upper and
lower bars for SLAM indicate estimates of one standard deviation above and
below the mean using the variance formulation of [21].

Furthermore, we illustrated the convergence and robustness

properties of the loss rate estimates of SLAM which make it

useful in an operational setting.

We believe that SLAM represents a significant step toward

accurate, low-impact SLA compliance monitoring using active

measurements. However, there are a number of issues that this

work does not address. First, there are several other end-to-end

properties of interest for SLA compliance monitoring such as

delay and delay variation. We intend to enhance SLAM to

estimate these characteristics in the future. Second, our focus

is on monitoring in the context of a single end-to-end path. In

a typical operational settings, however, a network consisting

of many links and paths must be monitored. In this context,

a deployment strategy must be developed to coordinate probe

streams so that links internal to the network are not carrying

“too much” measurement traffic. A detailed analysis of this

issue is a focus of future work. Next, our validation and

calibration of SLAM is performed in a controlled laboratory

environment. This setting incorporates many realistic aspects

of live networks, including commercial IP routers, commodity

workstations and a range of traffic conditions, and provides the

critical ability to compare SLAM output with “ground truth”.

Performance tests with SLAM in the live Internet are also a

subject of future work. Another key question is the following:

given a daily (or based on some other time scale) budget of

probes that may be used to monitor compliance with a SLA,

what are the considerations for optimizing the probe process?

Should the probing period be over a relatively long time scale

(e.g., the entire interval of interest), thus potentially limiting

the accuracy of estimates, or should the probing period be over

a shorter time scale, potentially improving estimation accuracy

but at the cost of not probing over the entire interval, thus

potentially missing important events? We intend to consider

this issue in future work.
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