
Balancing Accuracy and Efficiency in TCP Flow Simulation

Joel Sommers
Department of Computer Science

Colgate University

Hamilton, NY, USA

jsommers@colgate.edu

YeonJu Mok
Department of Computer Science

Colgate University

Hamilton, NY, USA

ymok@colgate.edu

Abstract—Efficient and accurate network simulation tech-
niques are critical for evaluating protocols and systems at

scale. For example, the magnitude of modern data center
deployments requires the use of fast simulation techniques
in order to evaluate newly proposed algorithms and system
architectures. Unfortunately, efficient simulation can come at
the cost of accuracy and realism. In this work-in-progress
paper, we examine specific limitations of existing closed-form
models of TCP throughput, which are commonly used to
simulate aggregate performance of TCP flows. We evaluate
two models in particular, comparing predictions of the models
with actual performance measured using the Mininet platform.
We find that the open-loop nature of these models and
sensitivity to different parameters contributes to significant
inaccuracies, which may in turn lead to incorrect conclusions
when using such models as the basis for simulation. We describe
our ongoing work on a new method for scalable TCP flow
simulation that is based on ideas from XCP. Our proposed
technique is highly efficient, incorporates network feedback in
a closed-loop manner, and in our initial experiments shows
appreciable improvement in accuracy over prior models.

I. INTRODUCTION

Network simulation platforms are critical elements in the
effective evaluation of new protocols, network architectures,
and applications. Simulation is especially important for
protocols and applications designed for deployment in very
large scale environments. In such settings, it is important
for the simulation system to be highly efficient in order
to be able to effectively evaluate a range of scenarios in a
timely manner. Moreover, it is important for the simulation
system to be accurate, in order for the results gleaned
from simulation to be meaningfully predictive of expected
performance in a live deployment.

In simulators designed to evaluate large-scale scenarios
such as in data center networking studies, closed-form or
fluid-flow models of TCP throughput and delay are com-
monly used to imitate the behavior of TCP flows, e.g., see
[1], [2]. Closed-form models vary in complexity from the
simple and widely-used model developed by Mathis et al. [3]
(abbreviated as MSMO97), which only considers the conges-
tion avoidance phase of TCP, to more complex models that
consider various phases of TCP, e.g., the model by Cardwell
et al. [4] (abbreviated as CSA00). Other simulation systems
use fluid-flow models (e.g. [5]), which simulate flows in an

aggregated, abstract manner. The key advantage of these
simulation methods is their efficiency, which is achieved
mainly because detailed packet-level behaviors are ignored.
Indeed, several recent studies in data center networking have
used fluid-flow models, simply because no other method
is as scalable. On the other hand, packet-level simulation
systems like ns-3 [6] offer more fine-grained simulation, but
are typically too slow for large-scale simulations because of
the detail at which the simulation takes place.

In this work-in-progress paper, we examine the tradeoff
between speed and accuracy in simulation of TCP flows.
Specifically, we examine limitations of two closed-form
models of TCP throughput behavior in the context of the
fs flow-level simulator [7]. We compare predictions of the
models with actual performance measured using the Mininet
platform [8]. We find that three key factors lead to signifi-
cant inaccuracies in the results generated from simulations
that rely on these models, which could lead to incorrect
conclusions. Specifically, we find that (1) the open-loop
nature of these models is a significant factor in simulation
scenarios in which there is network congestion, (2) similar
to findings of other researchers [9], the models are sensitive
to parameter settings, which can lead to errors, and (3)
the models assume a much lower frequency of packet loss
recovery through retransmission timeouts (as opposed to
through “fast recovery”), which leads to errors in estimation
of flow durations.

We describe our ongoing work on a new method for ef-
ficient and scalable discrete-event flow-level simulation that
accommodates closed-loop feedback from the network, and
as a consequence offers significant accuracy improvements
in congested network scenarios. Our approach is based on
the ideas of the eXplicit Control Protocol (XCP) [10], in
which routers provide explicit feedback to sending nodes in
order to modulate sending rates and efficiently share network
bandwidth. Our technique achieves a balance between effi-
ciency and accuracy by modeling the effects of a TCP flow
through modeling its AIMD nature in a closed-loop manner
rather than the detailed operation of TCP, as is done with
packet-level simulation.



A. Background and Related Work

The design of network simulation platforms involves
tradeoffs between detailedness, efficiency, scalability, and
faithfulness to the way that real systems operate. On one
end of the spectrum, packet-level simulators such as ns-
3 [6] make explicit decisions to simulate detailed packet-
level network behaviors at the cost of being able to scale to
very large networks. Although these systems can be made
to execute simulation scenarios reasonably quickly (e.g.,
through parallelization), they have inherent scalability and
efficiency problems because of the low level of abstraction
(the packet) at which they operate.

In contrast, flow-level simulators attempt to model higher-
level abstractions—network flows between two endpoints.
Since they are not geared to simulate packet-level interac-
tions, they cannot accurately replicate some network behav-
iors. They can, however, scale much better than packet-based
simulators and still accurately reflect aggregate network
behavior. One approach in flow-level simulation has been
based on fluid-flow modeling [5]. This approach has been
used extensively in large-scale network studies such as data
center experiments, see e.g., [1], [2]. Although fluid-flow
simulations can be made to operate in a closed-loop manner,
Liu et al. observed that in congested network scenarios
the computational overheads of fluid-flow simulation can
be greater than packet-level simulation [11]. Thus, they
are typically used in an open-loop manner to realize their
potential performance benefits.

Another flow-level simulation approach is based on using
analytic models of TCP performance[3], [4]. This approach
also leads to highly scalable simulation, but the results de-
rived from these platforms are dependent on the accuracy of
the underlying TCP models used. Moreover, flows simulated
using both (typical) fluid-flow and closed-form models are
non-reactive to network conditions, unlike real TCP imple-
mentations. To compensate for this issue, the authors in [12]
use the MSMO97 model in a piece-wise manner in order
to use network feedback. In [9], the authors examine the
accuracy of Mathis-like TCP models, comparing live traces
with what the model would predict. They find significant
inaccuracies, specifically with respect to sensitivity to loss
and delay.

II. LIMITS OF CLOSED-FORM TCP MODELS

In this section, we describe experiments we carried out to
better understand the limits and sensitivities of closed-form
TCP throughput models.

A. Experiments

Our approach was to set up identical environments in
the fs simulator, which has capabilities to use either the
MSMO97 model or the CSA00 model, and in the Mininet
emulator [8]. In each environment, we created a simple
“dumbbell”-like topology, with a shared bottleneck link

connecting traffic sources and traffic sinks. We used the
Harpoon traffic generator [13] in Mininet to generate “real”
traffic and the Harpoon-like traffic generation capabilities
in fs to create similar conditions in the simulator. We used
identical configurations in each environment to create an
Internet-like mixture of flow sizes drawn from a heavy-tailed
(Pareto) distribution. All experiments lasted for 900 (wall-
clock, in the case of Mininet, or simulated, in the case of
fs) seconds.

We used a set of configurations to emulate a range of
round-trip times and loss conditions on the bottleneck link.
We used three one-way propagation delay settings of 25,
50, and 100 milliseconds, resulting in round-trip times of
approximately 50, 100, and 200 milliseconds. We used
three different “imposed” loss rates on the bottleneck link
(i.e., the bottleneck queue was configured to randomly drop
some proportion of packets) of 0.5%, 1% and 5%. In each
setting, we used two different TCP receive-window values
(16KB and 1MB) to emulate both a mix of congestion-
window and receive-window-limited flows. In Mininet, we
ran experiments using two different settings of the TCP
congestion control algorithm: NewReno and CUBIC. In
total, our experiment setup resulted in 36 separate scenarios
in the Mininet environment and 27 separate scenarios in the
fs environment.

In each setting, we collected measurements for each TCP
flow, including its start and end times, as well as counters of
bytes, packets, and active flows per second. fs can be easily
configured to collected these measurements; in Mininet, we
used CAIDA’s CoralReef toolset to collect the same data.

B. Results

We now discuss results from our experiments, focusing on
comparisons of flow completion time in comparable Mininet
and fs experiments. We also examined scaling behavior and
other metrics, but due to space constraints we do not discuss
results from those analyses in this paper.

At a high level, our results show that there are significant
differences between flow completion times measured in
Mininet as compared with fs, which, again, relies on TCP
throughput models to drive its flow-level simulation. First,
similar to observations made by the authors in [9], we find
that results derived from the TCP models are more sensitive
to changes in round-trip time (delay) than loss, at least for
modest and, arguably, realistic levels of packet loss.

Second, we find that flows in Mininet exhibit much higher
variability in completion time. In many ways, this result
should not be surprising: since closed-form TCP models are
deterministic and, by their very nature, cannot incorporate
network feedback, they should exhibit no variability what-
soever. On the other hand, our results suggest that while
the simplicity and efficiency of these models makes them
appealing for use in simulation, results derived from their
use may be limited in scope. To illustrate this particular



result, we show in Figure 1 scatterplots of flow size versus
flow completion time for fs and Mininet in three separate
scenarios (notice that the axes in the plots are log-log scale).
The top plot shows results using a 100 millisecond round-
trip time with 0.5% loss rate on the bottleneck link, and
with fs using the MSMO97 model. The middle plot shows
results using the CSA00 model with a 100 millisecond RTT,
a loss rate of 1% on the bottleneck link, and a TCP receive
window of 16 KB. The bottom plot shows results with the
CSA00 model with a 50 millisecond RTT and a loss rate
of 0.5% on the bottleneck link, and a receive window of 1
MB. Note that the MSMO97 model does not consider the
TCP receive window; in all three experiments, the receive
window configured for TCP in Mininet is 1MB.

From the plots in Figure 1, we observe that with the
MSMO97 model (top plot), durations of short flows are
significantly underestimated and that the flow durations are,
overall, a poor match for measurements collected using
Mininet. Recall that the MSMO97 model only considers
the congestion-avoidance phase of TCP and that short flows
using real TCP implementations spend most or all of their
lifetime in the slow-start phase. For the plots using the
CSA00 model (middle and bottom plots), we observe that
while the estimation is improved, especially for short flows,
the model generally overestimates flow durations. Since
the plot is drawn on log-log scale, the inaccuracies are
significant. In results with longer RTT and higher loss,
we observe that the CSA00 model can also underestimate

flow completion times in a significant way. Our hypothesis
for why this underestimation occurs is that in higher loss
and delay situations the model underestimates the frequency
of loss recovery through retransmission timeout (RTO).
Measurements we have collected provide some support for
this hypothesis, and in our ongoing work we are continuing
to examine this issue. We also note that work by Flach et al.

to examine traces collected in the live Internet shows that
loss recovery through RTO occurs in the Internet much more
frequently than commonly assumed [14]. While differences
in a model of TCP behavior from an actual implementa-
tion (e.g., acking behavior, etc.) may explain some of the
differences we observed between Mininet and fs, we argue
that since models cannot accommodate network feedback
(e.g., packet loss and queuing delay) “tweaking” the model
by including additional parameters is not likely to lead to
better accuracy. We further argue that an approach such as
that by [12] to incorporate network feedback into an existing
TCP throughput model is not likely to significantly improve
accuracy because of weaknesses inherent in existing analytic
models.

III. PROPOSED FLOW GENERATION APPROACH

Results from the previous section motivate a new ap-
proach for flow-level simulation of TCP. The goals of our on-
going work are to develop a technique that (1) is closed loop,

103 104 105 106 107

Flow size (bytes)

10−5

10−4

10−3

10−2

10−1

100

101

F
lo

w
d
u
ra

tio
n

(s
e
co

n
d
s)

mn.reno.16384.100ms.0.5

fs.msmo97.100ms.0.005

103 104 105 106 107

Flow size (bytes)

100

101

F
lo

w
d
u
ra

tio
n

(s
e
co

n
d
s)

mn.reno.16384.100ms.1.0

fs.csa00.16KB.100ms.0.01

102 103 104 105 106 107

Flow size (bytes)

100

101

F
lo

w
d
u
ra

tio
n

(s
e
co

n
d
s)

mn.reno.1048576.50ms.0.5

fs.csa00.1MB.50ms.0.005

Figure 1. Scatterplots (log-log scale) of flow completion time versus flow
size for fs using the MSMO97 model (top) and fs using the CSA00 model
(middle and bottom) in three separate network configurations.



thus permitting accurate simulation of congested network
scenarios, (2) enables use of arbitrary flow sizes, allowing
empirically measured flow sizes from live environments to
be used, and (3) is highly efficient and thus able to scale to
large scenarios. We argue that no existing approach satisfies
these requirements: packet-level simulators cannot scale to
the degree necessary, fluid-flow simulation cannot easily
accommodate arbitrary flow sizes, closed-form TCP models
are not accurate enough, and neither fluid-flow (in its most
efficient form) nor closed-form models are closed-loop.

Our proposed approach is based on ideas used in the
eXplicit Control Protocol (XCP) [10]. Specifically, routers
and switching nodes in the network explicitly convey infor-
mation back to senders about how to modulate their emitted
traffic stream so as to efficiently and fairly share end-to-end
bandwidth. The main motivation for implementing an XCP-
like design is that centralizing the congestion control logic
and using explicit feedback at routers offers efficiency gains
over implementing TCP-like logic at individual flow end-
points since XCP maintains no per-flow state. Also, the XCP
algorithm separately considers efficiency and fairness, thus
enabling a simulation environment to implement bandwidth
sharing that mimics the way TCP works (i.e., to implement
TCP’s bias against long RTT flows). The sender algorithm
is simple, and lends itself to scalable flow-based simulation.

We have implemented an initial version of our XCP-like
algorithm in the fs simulator. Our preliminary results show
that the technique leads to significantly improved accuracy
in congested scenarios over using closed-form TCP models.
Furthermore, while there is some performance degradation
with our new approach, our initial evaluations show that the
difference in number of simulation events—which directly
relates to simulation performance—is less than 10%. The
original version of fs used a particular technique for handling
congestion and queuing at routers (in some ways, similar to
[12]) which caused an increase in simulation events. Thus
our new technique appears, so far, to yield far better accuracy
at little performance cost. Our current efforts are focused on
refining our implementation, and evaluating it over a broad
set of network scenarios.

ACKNOWLEDGMENTS

Thanks to Martin Liu (Colgate ’16) and Jack Sneeringer
(Colgate ’16) for their comments and assistance on this
work. Thanks also to the anonymous reviewers for their
helpful comments.

This material is based upon work supported by the
National Science Foundation under grant CNS-1054985.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, “Hedera: Dynamic flow scheduling for data center
networks,” in Proceedings of USENIX NSDI ’10, 2010.

[2] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter,
“PAST: scalable Ethernet for data centers,” in Proceedings
of ACM CoNeXT ’12, 2012.

[3] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The Macro-
scopic Behavior of the TCP Congestion Avoidance Algo-
rithm,” ACM SIGCOMM Computer Communication Review,
vol. 27, no. 3, p. 82, 1997.

[4] N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP
Latency,” in Proceedings of IEEE INFOCOM ’00, Tel Aviv,
Israel, March 2000.

[5] V. Misra, W.-B. Gong, and D. Towsley, “Fluid-based analysis
of a network of AQM routers supporting TCP flows with an
application to RED,” in ACM SIGCOMM Computer Commu-
nication Review, vol. 30, no. 4, 2000.

[6] “The ns-3 network simulator,” http://www.nsnam.org, 2014.

[7] J. Sommers, R. Bowden, B. Eriksson, P. Barford,
M. Roughan, and N. Duffield, “Efficient network-wide
flow record generation,” in Proceedings of INFOCOM ’11,
April 2011.

[8] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McK-
eown, “Reproducible network experiments using container-
based emulation,” in Proceedings of ACM CoNeXT ’12, 2012.

[9] R. G. Clegg, J. T. Araújo, R. Landa, E. Mykoniati, D. Grif-
fin, and M. Rio, “On the relationship between fundamental
measurements in TCP flows,” in IEEE ICC, June 2013.

[10] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for
high bandwidth-delay product networks,” in ACM SIGCOMM
Computer Communication Review, vol. 32, no. 4, 2002.

[11] B. Liu, D. R. Figueiredo, Y. Guo, J. Kurose, and D. Towsley,
“A study of networks simulation efficiency: Fluid simulation
vs. packet-level simulation,” in Proceedings of IEEE INFO-
COM ’01, 2001.

[12] T. Li, N. Van Vorst, and J. Liu, “A rate-based tcp traffic model
to accelerate network simulation,” Simulation, vol. 89, no. 4,
2013.

[13] J. Sommers and P. Barford, “Self-Configuring Network Traf-
fic Generation,” in Proceedings of ACM Internet Measurement
Conference, October 2004.

[14] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell,
Y. Cheng, A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan,
“Reducing web latency: the virtue of gentle aggression,” in
Proceedings of the ACM SIGCOMM ’13, 2013.


