
On the Structure and Characteristics of User Agent String
Jeff Kline

comScore, Inc.
jkline@comscore.com

Aaron Cahn
comScore, Inc.

acahn@comscore.com

Paul Barford
University of Wisconsin-Madison

comScore, Inc.
pb@cs.wisc.edu

Joel Sommers
Colgate University

jsommers@colgate.edu

ABSTRACT
User agent (UA) strings transmitted during HTTP transactions
convey client system configuration details to ensure that content
returned by a server is appropriate for the requesting host. As
such, analysis of UA strings and their structure offers a unique per-
spective on active client systems in the Internet and when tracked
longitudinally, offers a perspective on the nature of system and
configuration dynamics. In this paper, we describe our study of
UA string characteristics. Our work is based on analyzing a unique
corpus of over 1B UA strings collected over a period of 2 years by
comScore. We begin by analyzing the general characteristics of
UA strings, focusing on the most prevalent strings and dynamic
behaviors. We identify the top 10 most popular User Agents, which
account for 26% of total daily volume. These strings describe the
expected instances of popular platforms such as Microsoft, Apple
and Google. We then report on the characteristics of low-volume
UA strings, which has important implications for unique device
identification. We show that this class of user agent generates the
overwhelming majority of traffic, with between 2M and 10M in-
stances observed each day. We show that the distribution of UA
strings has temporal dependence and we show the distribution
measured depends on the type of content served. Finally, we report
on two large-scale UA anomalies characterized by web browsers
sending false and misleading UAs in their web requests.

CCS CONCEPTS
• Information systems→ Web log analysis; Traffic analysis;
Data mining; • Software and its engineering→ Context specific
languages;

KEYWORDS
User Agent Strings, Character Entropy Matrix, Internet Measure-
ment

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IMC ’17, November 1–3, 2017, London, United Kingdom
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5118-8/17/11. . . $15.00
https://doi.org/10.1145/3131365.3131406

ACM Reference Format:
Jeff Kline, Aaron Cahn, Paul Barford, and Joel Sommers. 2017. On the Struc-
ture and Characteristics of User Agent String. In Proceedings of IMC ’17,
London, United Kingdom, November 1–3, 2017, 7 pages.
https://doi.org/10.1145/3131365.3131406

1 INTRODUCTION
The diversity of client system configurations (defined in terms of
hardware, operating system and applications that access content)
in the Internet presents significant challenges for application and
content service providers. The key challenge is that content must
be delivered in formats that are specifically designed for different
types of clients in order to provide the best user experience. Con-
tent providers often have complex regression test environments
to ensure their pages render and behave correctly on different plat-
forms [9, 20]. However, the primary mechanism for ensuring that
content is delivered in the optimal format is the user agent string
(UA), which is transmitted by clients as part of a request for content.

UAs are used by a variety of Internet applications (e.g., web,
crawlers, mobile apps, etc.) for content negotiation, but we restrict
our focus in this paper to their use in the web1. The basic format
for a web UA is “one or more product identifiers, each followed by
zero or more comments” in a format like product[/version] [22].
The intent of the UA is to provide sufficient detail about a client
system to enable a server to transmit content in the appropriate
format and for debugging interoperability problems [18, 22]. As has
been observed in prior studies (e.g., [11]), however, UAs themselves
are a compelling source of information about client systems in the
Internet writ large.

In this paper, we describe our study of UA characteristics. The
goal of our work is to provide a new perspective on UAs that will be
useful for content service providers and other entities that utilize
UAs, to provide a perspective to the research community on Inter-
net client diversity and dynamics, and to provide a perspective that
can inform other potential uses of UAs such as client fingerprint-
ing [11, 12]. Our work is based on analyzing a unique corpus of
over 1B UA strings collected over a period of 2 years by comScore2.
Data collection at comScore is enabled by the placement of tags
on partner web pages that are activated when clients access those
pages. Prior studies (e.g. [8]) have found that comScore tags are
among the most prevalent third-party tag deployments across the
Internet. UAs are captured by comScore servers on tag activation.
1Technically, applications such as web browsers are the user agents. In this paper, our
use of the term UA refers to user agent strings transmitted by web browsers.
2We plan to make a subset of this data available to the community on publication.

https://doi.org/10.1145/3131365.3131406
https://doi.org/10.1145/3131365.3131406

IMC ’17, November 1–3, 2017, London, United Kingdom Jeff Kline, Aaron Cahn, Paul Barford, and Joel Sommers

To conduct our study, we built a UA processing and analysis in-
frastructure. Similar to other studies of large data sets, our process-
ing infrastructure is primarily Hadoop-based. The unique aspect of
our work includes developing a UA parsing capability that is robust
to both standard measurement errors (corrupted characters, etc.)
and non-standard UA formats. Categorization and volume counts of
historical UAs relied on an archive of UA descriptors that comScore
maintains.

Our analysis begins by considering the basic characteristics of
our UA data from both time-series and entropy-based perspectives.
We find that UAs collected for our study exhibit variability on
multiple time scales. On daily time scales, our analysis indicates
how users shift between devices over the course of a day, and
between weekdays and the weekend. On longer timescales, we see
clear indications of occasional hardware and software updates. The
entropy-based representation provides a characterwise measure of
the diversity within the space of UA strings over time. Based on
this representation, we find that there is structure within the space
of strings and show that changes within the UAs distribution tend
to be step-wise, not smooth.

The next step in our analysis considers characteristics of both
high- and low-volume strings. We find that the most prevalent UAs
comprise only 26% of all traffic.We also find that the rank-frequency
distribution of UAs exhibits a power-law-like structure. Finally, we
observe O(1M) unique UAs on a daily basis. We describe sources
of diversity within the UA space and show that the prevalance
of mobile browser apps and developer error are also contributing
factors.

The final aspect of our analysis considers anomalous character-
istics of strings. We report on two instances where high-volume
UA strings are inaccurate or unexpected in significant ways. For
example, we find evidence of various anomalous events in our data
including spurious appearances of a large volume (O(100M)/day) of
outdated UAs, which we diagnose as a software misconfiguration.

In summary, the primary contribution of this paper is in charac-
terizing UA strings. Our results on multiscale UA dynamics have
implications for content providers. Our result on the power law-
like UA prevalence combined with our results showing that many
factors have an impact on the distribution of UAs suggests that
simple, UA-based device fingerprinting methods are unlikely to be
effective. Finally, our results regarding unwanted behaviors support
the notion of efforts related to identifying invalid traffic based on
UAs [10]. To the best of our knowledge, ours is the first study to
consider UA characteristics broadly.

2 DATA
The data we analyze has been collected by comScore, an Internet
measurement company who partners with publishers, brands, ad
networks and others for the purpose of reporting on online audi-
ence behaviors. comScore acquires its data by providing each of its
partners with a block of customized JavaScript code. Each partner
then embeds this code within the content it serves. For example, if
the partner is a publisher, the publisher deploys comScore’s code on
each of its web pages. If the partner is a brand running an ad cam-
paign, the code is delivered alongside the ad campaign’s creative
content (e.g. an image with an embeded link).

When executed by a web browser, this code instructs the browser
to make an HTTP request to comScore’s measurement domain
which, in turn, logs each request. The data comScore collects in-
cludes the cookie, referrer, UA, a timestamp, and other information
pertinent to comScore’s business. comScore has clear and strict
guidelines concerning the use and the protection of personally-
identifiable information.

The daily volume of HTTP requests ingested by comScore is
O(50B). Since its mission concerns reporting about online behaviors,
comScore also maintains several repositories of high-level histor-
ical information about the traffic it observes. These repositories
include high-level summary information about UAs. comScore also
maintains a code-base that categorizes user agents by manufacturer,
device type, browser type and so on.

Our data processing systems are a hybrid combination of Apache
Hadoop MapReduce tasks and Greenplum (a variant of Postgres)
SQL queries.

3 GENERAL CHARACTERISTICS
A fundamental task of web log analysis is the generation of aggre-
gated statistics over browser, device type and operating system.
Typically such statistics are derived from the UA. To help in this
effort, the HTTP standard describes general features about the
structure and information that belongs within the UA string [22,
§5.5.3]. Despite this recommendation, we report below that the
space of user agents within a typical web log are, in fact, a loosely-
structured, very dynamic and extremely diverse set of strings. In
short, using the UA as the basis for web traffic categorization is a
complex endeavor.

In this section, we focus our discussion around four challenges
faced by processes that categorize UAs: coverage of the space, ef-
fective partitioning of the space, validation of the categorization
process itself, and coping with the constant evolution of browsers,
device types and to a lesser extent, operating systems.

We begin by describing the problem of covering the space. A
consistent feature that we observe, and which we discuss in the
next section is that the rank-frequency distribution of UA strings
exhibits a power law-like structure. As a consequence, the majority
of web requests have UA strings that are unpopular. This rare-is-
typical phenomenonmeans that in order to accurately describe basic
features of Internet traffic, one must have an accurate description of
rarely-seen user agent strings. On a typical day, comScore servers
observe O(1M) distinct UA strings.

To expose some of complexity of proper categorization, we drill
down on two user agent strings that each generated about 30M
records on May 10, 2017. By volume, both ranked among the top
200 overall. The first belongs to a device that runs the Android
operating system:
Dalvik/2.1.0 (Linux; U; Android 5.1; F100A Build/LMY47D)

This User Agent’s device type is reported as F100A. Categorizing
this device as a phone, tablet, game console or by its manufacturer,
however, is simply not possible without an external reference that
can supply this information. (We believe it represents a Forsa F100
model.)

Next, the most common Facebook Mobile App user agent ob-
served on May 10 was:

On the Structure and Characteristics of User Agent String IMC ’17, November 1–3, 2017, London, United Kingdom

Mozilla/5.0 (iPhone; CPU iPhone OS 10_3_1 like Mac OS X)\
AppleWebKit/603.1.30 (KHTML, like Gecko)\
Mobile/14E304 [FBAN/FBIOS;FBAV/91.0.0.41.73;\
FBBV/57050710;FBDV/iPhone8,1;FBMD/iPhone;\
FBSN/iOS;FBSV/10.3.1;FBSS/2;FBCR/Verizon;\
FBID/phone;FBLC/en_US;FBOP/5;FBRV/0]

This string has over 250 characters and is rich with information. Its
internal structure is likewise complex: to delimit internal fields, the
string relies on underscores, commas, dots, semicolons, whitespace,
slashes and pairs of brackets and parentheses. This complexity
implies that pattern-based categorization algorithms that attempt
to parse this string must also be complex. Finally, we note that
although this UA is very detailed, it is also very popular. Thus, long
and detailed user agents do not equate to enhanced user identifia-
bility.

Next, we turn to the partitioning problem. An accurate parti-
tioning of the UA space must distinguish UAs that are close in edit
distance to each other. The issue can be illustrated using Microsoft
Edge’s user agent:
Mozilla/5.0 (Windows NT 10.0)\

AppleWebKit/537.36 (KHTML, like Gecko) \
Chrome/42.0.2311.135 Safari/537.36 Edge/12.10136

This string agrees with Google Chrome’s user agent up to the suffix,
Edge/12.10136. Despite Edge and Chrome having distinct code-
bases and histories, they are surprisingly close to each other in the
user agent space.

This observation shows that ad-hoc rules are a necessary com-
ponent of UA categorization, which generally confounds validation
of the categorization process. More generally, the requirement for
ad-hoc rules implies that accurate partitioning is an intrinsically
complex task. As further evidence of this, we note that the internal
ruleset used by comScore is several thousand lines long. Publicly
visible evidence of this complexity can be found in various online
resources, e.g., see [2, 3, 5, 6].

Some portions of the UA string tend to be more diverse than
others, and these regions of diversity are evidence of structure. To
expose this structure, and to isolate features that exist in time, we
introduce a representation of the UA space that we call a character
entropy matrix. Two examples of this representation appear in
Figure 1. Each row of the character entropy matrix summarizes
one day of data. Within each row, the jth column displays the
empirical entropy of the jth character of UAs observed on that day.
For an intuitive sense of what is being represented by the matrix,
the first several characters of many user agents are either Mozilla
or Dalvik. Thus, the first few columns of the character entropy
matrix have low entropy as indicated by the red stripe along the
extreme left sides of each image. More generally, this representation
can identify regions within any population of UAs that are either
unusually diverse or uniform. The utility of this matrix is that it
effectively quantifies diversity in both space (i.e. by character) and
in time with a simple and comprehensible algorithm.

The dynamic nature of the UA space means that generating
Internet traffic with a realistic profile of UA’s is challenging. As was
shown in [25], the Athena botnet administrative portal provides
functionality that allows the controller to customize the distribution
of user agents used by the botnet. A feature common to traffic that
is generated by malware is that it has a distribution of UAs that is

Figure 1: The character entropy matrices are displayed for
Android and iOS UAs. The data shown spans 16months, Jan-
uary 1 2016 corresponds to row 0. The vertical strip of low
entropy on the left of each image is the result of many UAs
starting with either Mozilla or Dalvik. For a sense of scale,
this image summarizes several trillion web requests.

skewed towards either out-dated browsers or has subfields within
the user agent list populated with a limited set of strings. However,
in the next section we show that outdated browser versions and
inconsistent information within the UA string are, in fact, common
and benign features of traffic. Consequently, detection of malicious
activity cannot rely entirely on these attributes.

4 DETAILED RESULTS
In this section, we present details of our UA analysis, including char-
acteristics over time, prevalence of different strings, and analysis
of anomalous UAs.

4.1 Analysis of the UA distribution in time
The population of UAs changes over time in two distinct ways. First,
the continual introduction of new devices, browsers, and version
updates implies that the set of UAs increases over time. Meanwhile,
old devices and obsolete browsers fall into disuse and eventually
vanish from the active population. We quantify this churn over
time with the following analysis. We cast the top 10k UAs seen
each Wednesday as a set3. We then measure the Jaccard similarity
of sets belonging to consecutive Wednesdays to create a time series.
Figure 2 shows the resulting time series that spans 70 consecutive
weeks starting January 2016. We evaluate the total variation of the
time series to quantify the stability of the Jaccard similarity metric.

The total variation of the 10 most prevalent UAs is large while
the total variation of the top 1000 is a local minimum. This suggests
the following heuristic: from week-to-week, the top 1000 UAs have
Jaccard similarity of about 0.7. The set of top 10 and 100 UAs varies
more widely from week to week, which can be explained as follows.
Each week, several spots among the top 10 UAs are occupied by
variants of the Chrome UA. Chrome has a frequent update cycle
and its default configuration aggressively updates itself. Whenever
a new version of Chrome is released, the spots occupied by Chrome

3Traffic volume during a typical week is maximal on Wednesdays.

IMC ’17, November 1–3, 2017, London, United Kingdom Jeff Kline, Aaron Cahn, Paul Barford, and Joel Sommers

at the top are replaced with newer versions, and the top browsers
fall out of favor.

Android devices generate a large fraction of Internet traffic and
the Android space is very diverse. Yet the Android space does
not contribute much to the overall churn of the top 100 UAs. Our
explanation is that since the Android space is so fragmented, few
individual Android UAs accumulate enough volume to be among
the top 100 yet they occupy many positions in higher aggregates.

Figure 2: We quantify the churn of the UA population by
casting the top UAs seen each Wednesday as a set and mea-
suring the Jaccard similarity of consecutive Wednesdays.
The resulting timeseries for the top 10, 100, 1k and 10k UAs
spanning 70 weeks starting January 2016 are shown above.
The total variation of these timeseries has a local minimum
at 1000 which supports the heuristic that week-over-week
Jaccard similarity of the top 1000 UAs is about 0.7.

The second way that the UA distribution changes over time is
due to the fact that user habits throughout the day and week are
not uniform. Figure 3 is based on publisher traffic and it splits the
traffic into several broad categories. The weekly view (top plot)
shows data acquired in Sept 2015 while the hourly view (bottom
plot) spans 48 hours starting on Wednesday May 10, 2017. The
proportion of iPhone traffic varies dramatically, rising from 7% on
Monday to 27% on Sunday. The hourly time series shows iPhone
traffic doubling from about 7% at 8:00UTC to 14% at 23:00UTC. This
supports the notion that evening and weekend browsing habits
differ from mid-week workday habits. It also suggests that one’s
susceptibility to being identified based solely on browser attributes
depends on the time-of-day and day-of-week.

We find that an accurate view of the distribution of UAs is not a
simple function of scale or reach but also a function of the role one
has on the Internet. As mentioned earlier, comScore measures traf-
fic that is associated with publishers, advertisers and ad networks.
Each data type provides a distinct perspective on the Internet. Col-
lectively, each group sees a broad swath of Internet traffic with
typical daily volume between 5B and 20B records.

Using this set of data, we try to answer the question, What
was the most common browser? To simplify the results, we limit
our focus to Microsoft Edge’s rank by volume within each class.
Microsoft Edge is consistently among the 10 most popular browser
versions and, in contrast to Chrome and Firefox, its version history

Figure 3: The browser distribution depends on day and time.
This is visible in the above time series that show data span-
ning oneweek in Sept 2015 (top) and the 48-hours starting on
May 10, 2017 (bottom). The fraction of iPhone traffic on the
weekend shown was nearly four times larger than it was on
weekdays. The hourly view shows that iPhone traffic varied
between 9% (May 10 08:00UTC) and 18% (May 11 02:00UTC).

does not fragment over version updates. The data for this report
was observed on May 10, 2017.

Microsoft Edge was the the top-ranked UA within ad campaign
data with over 300M records. Within Publisher data, Edge had
the 6th largest volume with 400M records while within Ad Net
data, Edge ranks 8th overall with 80M records. This shows that
the UA distribution is not stable across data type—even when the
measurements have both scale and reach.

To elaborate on this point, a web server that delivers billions
of advertisements may be serving mostly to mobile apps. Social
media companies such as Facebook and Twitter have dedicated apps
that influence users’ behavior. Ad block usage may correlate with
browser choice. Even comparisons across similar publishers can be
skewed by current events, content type and audience demographics.

To summarize, answering a straightforward question about browser
dominance does not have a straightforward answer. Additionally,
this question cannot be adequately addressed simply by aggregating
over more data having wider reach.

4.2 Analysis of UA prevalence
A current list of the most prevalent UAs are shown in Table 1.
Broadly speaking, this list is stable over time and includes Mi-
crosoft Edge, Microsoft Internet Explorer, Google Chrome, iPhone
Safari and Firefox. Notably absent from this list is Android, despite
Android devices having a larger market share than iPhone. In fact,
the top Android-based UA ranks 48th overall. The cause of this
discrepancy is fragmentation of the Android market: each manufac-
turer’s device generates a distinct user agent. There is also a great
amount of churn in this list: the top Chrome UA from early April

On the Structure and Characteristics of User Agent String IMC ’17, November 1–3, 2017, London, United Kingdom

ranks 74th in mid May. This is due to aggressive version updates
for that browser.

Every UA categorization method faces the problem of describing
enough of the UA space so that it applies to an acceptably large
fraction of Internet traffic. We call this the coverage problem. The
challenge that this presents is visible in Figure 4. This figure is
based on web log data acquired on the second Wednesdays of
Feb, Mar, Apr and May 2017. For each of these Wednesdays, every
UA is plotted against its total daily volume and the set of UAs
is then ordered by volume. The resulting line closely follows a
power-law rule, which is a signature of fat-tailed (i.e. rare-is-typical)
populations.

Figure 4: The daily distribution of user agents is well approx-
imated as a power law distribution. This figure displays four
such examples, based on on data acquired during the second
Wednesday of Feb, Mar, Apr and May 2017. The top 10 user
agents comprise about 26% of total volume. The remainder
consists of O(1M) user agents and this portion contributes
about 74% of total daily volume. This illustrates the covering
problem that is faced by user agent categorization processes.

For each of these days, the top 10 user agents comprised ap-
proximately 26% of total daily volume while the remaining set of
user agents (a set of size O(1M)) generates the other 74% of traf-
fic. Effective coverage of the space means that one has accurate
descriptions for examples within the long tail. Since the number
of distinct examples within the tail is large, accurate and complete
categorization is a complex endeavor.

As already mentioned, one source of this diversity includes
browser version updates. Another source of UA diversity comes
from fragmentation within the mobile sphere. A third source is the
combination of mobile device names with in-app browsers. On May
10, over 1.5M Android UAs that had more than 100 records issued
requests to comScore’s servers. Of these, about 500K appear to be
related to the Facebook app.

To summarize, validation of UA categorization methods is too
large a task for manual review to be effective. Also, there does not
appear to be a natural threshold below which low-volume UA’s
may be disregarded.

4.3 Analysis of anomalous UA’s
We now report on two instances where the UA is configured to in-
accurately represent the web browser. Each instance was associated
with over O(100M) requests per day.

The first concerns a feature of Microsoft’s browsers called the
Compatibility View function [4]. This function is informed by an

XML-formatted file maintained by Microsoft that essentially con-
tains domain-UA pairs. The purpose of this file is to alter the behav-
ior of Microsoft’s browsers based on the domain being visited. We
first became aware of this list while reviewing an alert raised by an
internal traffic quality monitor that was built to identify anomalies
within the distribution of user agents.

The compatibility view list is updated monthly. Its contents
includes a wide variety of publishers, government web sites, and
financial companies. As of this writing, the current XML file for
Edge4 includes about 1600 domains.

For example, the current Internet Explorer list5 shows that when
visiting the financial site, chase.com, the browser should use the
Firefox 22 token, which is represented in the file as:
Mozilla/5.0 ($PLATFORM; Trident/7.0; rv:11.0)\

like Gecko/20100101 Firefox/22.0

This UA contains the Microsoft-specific token Trident but also
contains an out-dated version of Firefox.

The second anomalous instance concerns a dramatic shift within
the UA space that occurred during 2015. In April of that year, the
daily volume of the following Android UAs suddenly increased
from O(10) records per day to O(100M) records per day:
Mozilla/5.0 (Android; U; Android 2.1; en-us;)\

AppleWebKit/525.10 (KHTML,like Gecko)

In other words, prior to April, the volume of this UAwas backscatter.
By July 2015, this UA was among the top 100 worldwide. This event
was discovered during a routine manual review of data quality.

Figure 5: The daily volume of the Android User Agent anom-
aly of summer 2015.

This User Agent belongs to a device running Android version
2.1. As documented elsewhere6, this version of Android was most
prevalent during 2010–2011. To summarize, the data showed a sud-
den large shift within the mobile space towards a browser version
that was four years out of date. Figure 5 documents the total daily
volume of this event.

This event was visible from the perspectives of publisher, brand
and ad network. Additionally, no single publisher, ad campaign or
other entity appeared to be a target of this traffic. Since comScore
also collects browser cookie information, we were able to follow
4http://cvlist.ie.microsoft.com/edge/desktop/1432152749/edgecompatviewlist.xml
5http://cvlist.ie.microsoft.com/IE11/1426178821/iecompatviewlist.xml
6https://en.wikipedia.org/wiki/Android_version_history

chase.com

IMC ’17, November 1–3, 2017, London, United Kingdom Jeff Kline, Aaron Cahn, Paul Barford, and Joel Sommers

Length Edit User agent
Dist

109 0 Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133 Safari/537.36
128 31 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.79 Safari/537.36\

Edge/14.14393
68 58 Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko
110 3 Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133 Safari/537.36
137 65 Mozilla/5.0 (iPhone; CPU iPhone OS 10_3_1 like Mac OS X) AppleWebKit/603.1.30 (KHTML, like Gecko) \

Version/10.0 Mobile/14E304 Safari/602.1
Table 1: The five most prevalent user agents seen on May 3 2017. The string length reports character count. The edit distance
reports the Levenshtein distance from the top-ranked User Agent. The top-ranked user agent from a month prior (April 5)
ranked 74th on May 3 and is not displayed.

the evolution of several cookies as they transitioned from a current
browser to the anomalous one and back again. This allowed for a
partial diagnosis of the the cause: the event appeared to be mostly
related to the Facebook app running on Samsung devices. Based
on this, we conjecture that a software misconfiguration released
in April 2015 by one of Samsung, Google or Facebook was the
underlying cause. Amore precise diagnosis was not attempted since
the event, despite its large scale and obvious inaccuracy, appeared
benign.

5 RELATEDWORK
The HTTP User-Agent string has been used in a number of prior
studies to estimate browser version populations, operating sys-
tem version prevalence, and device populations, particularly mo-
bile handheld devices, e.g., [13, 15, 19, 24]. These prior studies
have noted that their population estimates have appeared to be in
line with industry estimates, e.g., provided by such companies as
netmarketshare.com. Third party services such as udger.com and
deviceatlas.com provide UA string parsing libraries and device
catalogs to help companies track various subpopulations of visitors
to their websites. Maier et al. have also used the combination of UA
string and client IP address to identify multiple devices residing be-
hind NAT devices [19]. We believe that our results can help inform
these string parsing libraries and device catalogs.

The UA string has been commonly used by servers to deliver
appropriately-sized content to mobile devices and other devices
with constrained screen sizes. This is so common that many web
application frameworks contain built-in capabilities for providing
different content variants, e.g., [1]. Some researchers have relied
on this behavior by spoofing the UA request header in order to
analyze differences in content delivered to mobile versus desktop
devices [21, 26].

RFC7231 recommends that a client should not use a UA string
with “needlessly fine-grained detail” [22] to avoid host fingerprint-
ing, and prior studies have evaluated the potential for the UA string
to be used to identify users [7, 11, 27]. Yen et al. found that 60–70%
of users could be identified through the UA string [27], similar to
findings by Eckersley [11]. Our results complement and enhance
those of [27] in the following ways: (1) the long tail in observed UAs
that we see suggests users may be identified through the UA as the
earlier work showed, but (2) our analysis of the time-varying nature
of observed UAs suggests that anonymity sets evolve rapidly over

hours of the day and days of the week due to user behavior (shifting
from one device to another), software updates (e.g., rollout of a new
Chrome version), and browser behavior (e.g., Edge target-specific
behaviors).

Other studies have evaluated UA strings to detect the presence of
malware by using anomalies such as misspellings and inconsistent
information in HTTP headers (e.g., iOS and Flash) [14, 16, 23]. Kotov
and Massacci studied the source code of several exploit kits and
found that server-side malware used the UA string presented by
clients as a way to detect potentially vulnerable operating systems
and devices [17]; the exploit code would mimic an “innocent” site
if the UA indicated a non-vulnerable host.

6 SUMMARY AND CONCLUSIONS
Analysis of User Agent strings transferred during web transactions
offers a compelling perspective on understanding client systems in
the Internet. In this paper, we describe our study of UAs, which is
based on a corpus of over 1B UA strings collected over a period of
2 years by comScore. To conduct this study, we constructed a UA
parsing and analysis infrastructure that is robust to the wide variety
of strings in our data set. Our analysis of the general characteristics
of UA strings reveals that the most prevalent strings comprise
about 26% of all UAs and are composed of the expected instances of
popular platforms such as Google, Microsoft andApple.We also find
that the rank-frequency distribution of strings is consistent with a
power law. Our analysis of the UAs observed at multiple time scales
indicates dynamic characteristics that can be explained by day-to-
day user behavior and by periodic updates to hardware and software
platforms. Finally, we examine UA strings that have been identified
as anomalous or pertaining to unwanted ormalicious activity. These
UA strings reveal that there are instances of unexpected anomalies.
In on-going work, we continue to expand and drill down in our
analyses. We expect this will reveal a variety of characteristics—
especially in the long tail of the data—that will improve analysis,
test and content negotiation capabilities.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd Theophilus
Benson for their feedback. This material is based upon work sup-
ported by DHS grant BAA 11-01 and AFRL grant FA8750-12-2-0328.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not neces-
sarily reflect the views of the DHS or AFRL.

On the Structure and Characteristics of User Agent String IMC ’17, November 1–3, 2017, London, United Kingdom

REFERENCES
[1] [n. d.]. Action Pack Variants (Ruby on Rails 4.1 Release Notes). http://edgeguides.

rubyonrails.org/4_1_release_notes.html#action-pack-variants. ([n. d.]). Accessed
August 2017.

[2] [n. d.]. Panopticlick. ([n. d.]). https://panopticlick.eff.org/
[3] [n. d.]. Udger. ([n. d.]). https://udger.com/resources/ua-list
[4] [n. d.]. Understanding the compatibility view list. https://msdn.microsoft.com/

en-us/library/gg622935(v=vs.85).aspx. ([n. d.]). Accessed August 2017.
[5] [n. d.]. UserAgentString. ([n. d.]). http://www.useragentstring.com/pages/

useragentstring.php
[6] [n. d.]. WhatIsMyBrowser.com. ([n. d.]). https://www.whatismybrowser.com/

developers/tools/user-agent-parser/browse
[7] Károly Boda, Ádám Máté Földes, Gábor György Gulyás, and Sándor Imre. 2011.

User tracking on the web via cross-browser fingerprinting. In Nordic Conference
on Secure IT Systems. 31–46.

[8] Aaron Cahn, Scott Alfeld, Paul Barford, and S. Muthukrishnan. 2016. An Empirical
Study ofWeb Cookies. In Proceedings of the 25th International Conference onWorld
Wide Web (WWW ’16). International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, Switzerland, 891–901. https://doi.
org/10.1145/2872427.2882991

[9] Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. 2010. Webdiff:
Automated identification of cross-browser issues in web applications. In IEEE
International Conference on Software Maintenance (ICSM). 1–10.

[10] Media Ratings Council. [n. d.]. Invalid Traffic Detection and Filtration Guidelines
Addendum. ([n. d.]). http://mediaratingcouncil.org/101515_IVT%20Addendum%
20FINAL%20(Version%201.0).pdf

[11] Peter Eckersley. 2010. How unique is your web browser?. In International Sym-
posium on Privacy Enhancing Technologies Symposium. 1–18.

[12] EF Foundation. [n. d.]. Panopticlick. ([n. d.]). https://panopticlick.eff.org/
[13] Aaron Gember, Ashok Anand, and Aditya Akella. 2011. A comparative study of

handheld and non-handheld traffic in campus Wi-Fi networks. In International
Conference on Passive and Active Network Measurement. 173–183.

[14] Martin Grill and Martin Rehák. 2014. Malware detection using HTTP user-agent
discrepancy identification. In Information Forensics and Security (WIFS), 2014 IEEE
International Workshop on. 221–226.

[15] Sunghwan Ihm and Vivek S Pai. 2011. Towards understanding modern web traffic.
In Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement
conference. 295–312.

[16] Nizar Kheir. 2013. Analyzing HTTP user agent anomalies for malware detection.
In Data Privacy Management and Autonomous Spontaneous Security. 187–200.

[17] Vadim Kotov and Fabio Massacci. 2013. Anatomy of exploit kits. In International
Symposium on Engineering Secure Software and Systems. 181–196.

[18] Balachander Krishnamurthy. 2001. Web protocols and practice: HTTP/1.1, Network-
ing protocols, caching, and traffic measurement. Addison-Wesley Professional.

[19] Gregor Maier, Fabian Schneider, and Anja Feldmann. 2010. A first look at mobile
hand-held device traffic. In International Conference on Passive and Active Network
Measurement. 161–170.

[20] Ali Mesbah and Mukul R Prasad. 2011. Automated cross-browser compatibility
testing. In Proceedings of the 33rd International Conference on Software Engineering.
561–570.

[21] Jitu Padhye and Henrik Frystyk Nielsen. 2012. A comparison of SPDY and HTTP
performance. Technical Report MSR-TR-2012-102.

[22] J. Reschke and R. Fielding. 2014. RFC 7231: Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content. http://tools.ietf.org/html/rfc7231. (June
2014).

[23] Christian Rossow, Christian J Dietrich, Herbert Bos, Lorenzo Cavallaro, Maarten
Van Steen, Felix C Freiling, and Norbert Pohlmann. 2011. Sandnet: Network
traffic analysis of malicious software. In Proceedings of the First Workshop on
Building Analysis Datasets and Gathering Experience Returns for Security. 78–88.

[24] Fabian Schneider, Bernhard Ager, Gregor Maier, Anja Feldmann, and Steve Uh-
lig. 2012. Pitfalls in HTTP traffic measurements and analysis. In International
Conference on Passive and Active Network Measurement. 242–251.

[25] Kevin Springborn and Paul Barford. 2013. Impression Fraud in On-line Advertis-
ing via Pay-Per-View Networks. In USENIX Security. 211–226.

[26] Paul J Timmins, Sean McCormick, Emmanuel Agu, and Craig E Wills. 2006. Char-
acteristics of mobile web content. In Hot Topics in Web Systems and Technologies,
2006. HOTWEB’06. 1st IEEE Workshop on. 1–10.

[27] Ting-Fang Yen, Yinglian Xie, Fang Yu, Roger Peng Yu, and Martin Abadi. 2012.
Host Fingerprinting and Tracking on the Web: Privacy and Security Implications.
In NDSS.

http://edgeguides.rubyonrails.org/4_1_release_notes.html#action-pack-variants
http://edgeguides.rubyonrails.org/4_1_release_notes.html#action-pack-variants
https://panopticlick.eff.org/
https://udger.com/resources/ua-list
https://msdn.microsoft.com/en-us/library/gg622935(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/gg622935(v=vs.85).aspx
http://www.useragentstring.com/pages/useragentstring.php
http://www.useragentstring.com/pages/useragentstring.php
https://www.whatismybrowser.com/developers/tools/user-agent-parser/browse
https://www.whatismybrowser.com/developers/tools/user-agent-parser/browse
https://doi.org/10.1145/2872427.2882991
https://doi.org/10.1145/2872427.2882991
http://mediaratingcouncil.org/101515_IVT%20Addendum%20FINAL%20(Version%201.0).pdf
http://mediaratingcouncil.org/101515_IVT%20Addendum%20FINAL%20(Version%201.0).pdf
https://panopticlick.eff.org/
http://tools.ietf.org/html/rfc7231

	Abstract
	1 Introduction
	2 Data
	3 General Characteristics
	4 Detailed Results
	4.1 Analysis of the UA distribution in time
	4.2 Analysis of UA prevalence
	4.3 Analysis of anomalous UA's

	5 Related Work
	6 Summary and Conclusions
	Acknowledgments
	References

