
Electronic Commerce On the World-Wide Web:
Performance and Availability

David Finkel, Robert E. Kinicki, Mikhail Mikhailov, Aditya Raghavendra
Department of Computer Science
Worcester Polytechnic Institute

Worcester, MA 01609 USA
dfinkel@cs.wpi.edu

Sharon Cunningham, Yuriy Elkin, Arthur Lin, Mark Quinlivan,
Joel Sommers, Bob Wescott

Stratus Computer, Inc.
55 Fairbanks Boulevard

Marlboro, MA 01752 USA

Abstract

This paper describes a continuation of an effort to study
the relationship among performance, security, and
availability in a Web-based electronic commerce system.
In the first phase of the study, we examined the
relationship between performance and security, and
characterized the performance costs of various encryption
approaches.

In the second phase of the project, we built a three-tier
testbed electronic commerce system, using a cluster of
servers at each tier. We characterize the performance of
the system under different configurations and under
different workloads. We demonstrate the performance
advantages of a clustered design, and also discuss the
improvements in availability provided by clustering.

The paper also discusses some implementation issues, and
describes changes in implementation between the first and
second phases of the project, and the effect of those
changes on performance.

Keywords: World-Wide Web, Electronic Commerce,
Clustering, Performance

1. Introduction

This paper describes the results of a the second phase of a
joint research effort undertaken by Stratus Computer, Inc.
[1] and researchers from the Computer Science
Department of Worcester Polytechnic Institute. The first
phase of this project was described in [2]. The goals of
the first phase were to construct an Web electronic
commerce site, and to measure the performance
implications of using encryption to create a secure site. A
testbed electronic commerce Web site was constructed,
implementing a simulated stock brokerage application.

The goals of the second phase were to understand the
relationship among the requirements of security,
performance, and availability. Again, a stock brokerage
application was implemented. As in the first phase, we
built a three-tiered application: Web server, application
server, and database server. In this phase, we added
clusters of servers for each tier, as shown in Figure 1.
The goal of the clustering was to improve performance
and to improve availability [3]. Performance was
improved by having the machines in a cluster share the
workload. Availability was improved by having
machines in one cluster monitor the machines in another
cluster. When a server failure was detected, work that
had been submitted to the failed server was re-submitted
to a different server in the cluster.

We tested the performance of our system by measuring
the number of transactions per second that could be
sustained by the system for different numbers of clients
and different cluster configurations.

2. Operation of the Testbed System

The testbed system operated as follows. A client driver
program, running on Pentium PCs running the Linux
operating system, generated transaction requests typical
of transactions submitted by a user of a stock brokerage
Web site. Different scripts of transactions were used to
simulate different levels of user load.

The requests from the client driver were received by one
of the Web servers. A Web server application, written
using the Netscape Server API (NSAPI) [4], provided the
necessary processing. The Web server forwarded the
client request to one of the application servers; if the
Web server did not receive a reply before a timeout
expired, it would re-submit the client request to a different
application server.

The application server applied business rules to the
request, and submitted an appropriate database request to
a database server. When the application server received a
reply from the database server, it constructed a response
in the form of an HTML page, and returned that response
to the Web server , which then returned the response to
the client.

The communications between the client machines and the
Web server was encrypted by public key encryption,
using SSL (Secure Socket Layer). The communications
between the Web servers and the applications servers, and
between the application servers and the database servers,
used TCP/IP sockets, and was encrypted using private key
encryption with the IDEA cipher [5].

3. Results

The principal goal of this phase of the project was to
understand the scalability of our system architecture: that
is, how performance would be affected by the use of
multiple servers for each tier of our system. We
performed extensive tests measuring the response time
and the number of transactions per second for different
levels of intensity of requests, and different server
configurations.

Figure 2 gives an overview of the results of our testing.
The figure shows the maximum throughput achieved in
our testing under different testbed configurations.
Throughput is measured in transactions per second. The
default configuration had one Web server, one application
server, and one database server. During the testing, the
configuration was modified to include from one to four
Web servers (1 WS to 4 WS), and then finally to four
Web servers and two database servers (4WS, 2DBS). We
see a nearly linear increase in throughput as the number of
Web servers is increased, showing that our system design
provides good scalability over the range of workloads
tested. In addition, since we see an increase in
performance when we change the configuration from four
Web servers and one database server (4WS) to four Web
servers and two database servers (4WS, 2DBS), we see

that, in this configuration, the Web servers are not a
bottleneck.

Figures 3 and 4 provide a more detailed look at our
performance results. Both figures present graphs of the
number of transactions per second vs. the offered load, for
several system configurations. The configurations are as
described for Figure 2. The offered load is the total
number of threads executing on client machines that are
sending requests to the Web servers; this is meant to
represent varying the number of users connected to the
Web site. For each configuration, we increased the
offered load until the number of transactions per second
leveled off, indicating that we had saturated the electronic
commerce system.

The two graphs represent different transaction mixes; that
is, the clients were programmed to submit different mixes
of transaction requests to the Web server. Figure 3 is
labeled “Simple Transaction Mix”, and this mix did not
place a heavy load on the database server of the system.
The transactions in this mix required that the database
server consult at most a few records in the database.
Figure 4 did place a heavy load on the database server.
One of its transactions required retrieving the records for
all the securities stored in the database.

We can see the difference between the two transaction
mixes by examining Figures 3 and 4. In Figure 3, we see
a significant increase in performance as we add Web
servers to the configuration. In addition, we see very little
increase in performance when we add a second database
server to the configuration. These results indicate that the
Web servers are the bottleneck in these configurations.
As we add more Web servers, we relieve the bottleneck,
and performance increases until the new configuration is
saturated. Adding a database server does not improve
performance significantly, because the database is not the
bottleneck device. The Web servers are still limiting the
performance of the system.

The situation is significantly different in Figure 4. There,
the workload on the database server is more significant,

and as a result the Web servers are no longer the
bottleneck device. Although performance increases as we
add Web servers, the performance increase is less than in
Figure 3. This difference is due to the fact the Web server
is no longer the bottleneck, and other components of the
system are limiting performance. Finally, when we add a
second database server, we see a more significant
performance increase than we saw in Figure 3, indicating
that the database server is now a more significant
bottleneck than in Figure 3.

We also note that our system running the Complex
Transaction Mix in Figure 4 achieves significantly higher
throughput than with the Simple Transaction Mix of
Figure 3. Both the transactions per second for a given
offered load, and the maximum transactions per second
achieved for a given configuration are higher for Figure 4
than for Figure 3. This result is again due to the different
nature of the workloads in these two cases. Since the
Simple Transaction Mix places most of its load on the
Web servers, the performance in this case is limited by
the performance of the Web servers. In the Complex
Transaction Mix, the load is more evenly shared by the
different tiers of the system (Web server, application
server, database server), and so there is a greater degree of
concurrency in the system, and a greater throughput of
transactions.

We close this section with some observations about the
implementation of our system, and some of the lessons we
learned.

We needed to write our own programs to run on the Web
servers. After a request was received by the Web server,
our programs had to manage the communications with the
application server. In the first phase of this project (see
[2]), this programming was done using the Common
Gateway Interface (CGI), with programs written in C.
With CGI programs, a new process is started to handle
each transaction. As a result, there is significant overhead
for starting and stopping processes. In addition, since
each CGI program was a new process, each one had to
open a new socket to communicate with the application
server, another significant source of overhead.

Based on what we learned in the first phase, in this second
phase we changed the approach to programming on the
Web server. We wrote our Web server programs using
the Netscape Server API. We again wrote our programs
in C, but used libraries provided by Netscape (see [4]).
As a result, our programs ran in the Web server’s process
space, and so no starting and stopping of processes was
necessary. In addition, we were able to create a pool of
socket connections to the application servers when our
Web server started running, and so we did not have to
create connections for each transaction. A comparison of
the Web server performance in phase one and phase two
show a significant improvement in the throughput of the

Web servers in phase two resulting from our change in
programming approach.

The disadvantage of using the Web server API for
programming is that the resulting programs are not
portable. If we ever decided to change to a different Web
server, we would have to completely re-write our Web
server programs.

4. Conclusions and Future Work

Our testbed system demonstrates the value of the cluster
approach to organizing the servers in our Web-based
electronic system. We evaluated the performance of the
systems under different configurations and different
transaction workloads. We identified bottlenecks in our
system, and showed that providing additional servers to
the bottleneck component led to a significant
improvement in performance.

We also demonstrated the usefulness of clustering in
providing increased reliability. Through the use of
timeouts and re-submission of timed-out transactions, our
system can withstand failures in any of the components
where there are multiple servers. Naturally, performance
would degrade after such a failure. Further testing is
required to quantify the effect on performance.

In addition, future work includes testing the availability of
our system under a variety of failure situations, using an
availability testing process described in [6].

References

1. Stratus Computer, Inc., http://www.stratus.com/, 1998.

2. Bob Kinicki, David Finkel, Mikhail Mikhailov, Joel
Sommers, Sharon Cunningham, Yuriy Elkin, Ranga
Gopalan, Mark Quinlivan, “Electronic Commerce
Performance Study”, Proceedings of Euromedia ’98,
1998, 26 - 34.

3. Gregory F. Pfister, In Search of Clusters, Second
Edition, (Saddle River, NJ: Prentice-Hall, 1998).

4. Tony Beveridge and Paul McGlashan, High
Performance ISAPI/NSAPI Web Programming,
(Scottsdale, Arizona: The Coriolis Group, 1997).

5. Schneier, Bruce, Applied Cryptography, 2nd Ed.,
Wiley, New York, 1996.

6. Bob Wescott, “Availability”, Stratus Technical Report,
Stratus Computer, Inc., 1998.

Figure 2: Maximum Throughput under
Heavy Load

35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125

1 WS 2 WS 3 WS 4 WS 4WS, 2DBS

Testbed Configuration

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

Figure 3: Simple Transaction Mix

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93

Offered Load

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

1WS

2WS

3WS

4WS

4WS, 2DBS

Figure 4: Complex Transaction Mix

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116

Offered Load

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

1WS

2WS

3WS

4WS

4WS, 2DBS

