
Educating the Next Generation of Spammers

Joel Sommers
Colgate University
Hamilton, NY, USA

jsommers@colgate.edu

ABSTRACT

Compelling experiences in introductory courses make a key differ-
ence in whether non-majors develop an interest in computer sci-
ence, possibly even converting them into undergraduate majors or
minors. In this paper we advocate integrated hands-on laboratory
style activities to provide such pivotal experiences. In the lab activ-
ities we describe, students do not engage in programming, yet they
learn to think computationally by engaging in computational activ-
ities. The course in which these labs are implemented is oriented
around three aspects of the the internet’s underside: its techno-
scientific underpinnings, environmental and energy problems and
promise brought on by its rapid growth, and security threats asso-
ciated with its use. We describe the goals and content of the lab
activities, as well as various challenges encountered through their
implementation. We also discuss student responses and future di-
rections.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]: Com-
puter science education; C.2.5 [Local and Wide-Area Networks]:
Internet (e.g., TCP/IP)

General Terms

Experimentation, Measurement

Keywords

Non-Majors, Computational Thinking, Active Learning, Problem-
based Learning

1. INTRODUCTION
Introductory courses play a pivotal role in whether students de-

velop an interest for continuing to take courses within a discipline,
especially non-majors with no prior experience. Early student ex-
periences can invigorate an existing interest, open up a new one, or,
alas, cause a student to seek intellectual stimulation elsewhere. De-
partments in institutions with core curriculum requirements (e.g.,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’10, March 10–13, 2010, Milwaukee, Wisconsin, USA.
Copyright 2010 ACM 978-1-60558-885-8/10/03 ...$10.00.

liberal arts colleges) are often presented with golden opportunities
each semester: through curiosity, the fate of scheduling, or acts of
serendipity, students enter our classrooms. While they are there
ostensibly to fulfill a requirement, the favorable circumstance pre-
sented to us is simply that they are there. In computer science these
opportunities are not insignificant [11, 22].

In this paper, we describe a course for non-majors that was de-
signed to introduce students to scientific practices from the perspec-
tive of computer science. The course is oriented around the internet
(the author’s own research area), and follows a theme of exploring
undersides of the internet: the technical and scientific underpin-
nings of the modern internet; environmental problems and social
challenges brought on by the internet’s rapid growth as well as
promising efforts to mitigate these problems; and the many security
challenges facing the internet— botnets, denial of service attacks,
worms, viruses, spam, etc.—as well as the responses by the sci-
entific and operations community to try to address these threats. In
this context, students learn what sorts of questions can be addressed
through scientific means, the nature of scientific inquiry and de-
bate, and how scientific practices actually work on the ground. A
primary method by which this is accomplished is through in-class
laboratory sessions. Through these activities, students learn about
computer science by doing it. Indeed, the key goal for these ses-
sions is for students to learn to approach problem solving from a
computational perspective [14, 23].

One of the main challenges with teaching and learning computer
science, especially with non-majors (and the potentially computer-
phobic) is that much of our subject matter is rather abstract. The
first time the term “packet” is introduced to students, there is visi-
ble consternation: the internet is modern magic to most students. It
can be hard to picture a packet, or a path that a packet might take
through the internet, or what the internet looks like (indeed, char-
acterizing the topology of the internet has been a source of com-
pelling research questions for some time). In-class laboratory exer-
cises provide a way to complement the conceptual knowledge that
students gain through readings, discussion, and lecture. Lab ex-
ercises also provide a focal point for addressing issues like scien-
tific methodology, designing an experiment, measurement instru-
ment quality and data quality, data gathering, hypothesis testing,
and many other issues that come up when performing experiments
or when thinking about the process of science.

In his book Representing and Intervening, the philosopher of sci-
ence Ian Hacking introduces the concept of scientific realism. He
relates an anecdote of a physicist friend who describes an exper-
iment in which the friend “sprays” electrons on an object. Lead-
ing up to this description, Hacking discusses whether an electron
is “real” or merely a convenient theoretical construction. He then
states: “So far as I’m concerned, if you can spray them then they’re

real” [16]. His point aptly describes why hands-on exercises are
critical for students in introductory computer science courses: until
students can do something with their knowledge, that knowledge
remains lifeless and somehow unreal.

An important design decision for the labs is that there is no direct
programming involved. Instead, students work in pseudocode and
bring other resources to bear (e.g., a combination of net-accessible
and custom software tools provided to the students) when inves-
tigating particular phenomena and when attempting to formulate
questions and hypotheses. As such, our approach differs from more
conventional CS0-style courses that emphasize aspects of computer
literacy or that introduce students to a selection of topics in com-
puter science through simple programming, e.g., in javascript.

While our hands-on approach presents interesting learning op-
portunities, there are some key challenges as well. In particular,
there are logistical challenges involved in designing substantive
laboratory activities that can be accomplished within the confines
of a standard 50 minute class period. Moreover, set up of labora-
tory hardware and software demands technical resources, system
administration expertise, and time. Even for a class of modest size,
the setup overhead costs can be significant. Our goal is to release
our tools and materials to the community so that others may take
advantage of and build upon our approach.

As part of our effort we have developed several laboratory ac-
tivities, six of which are described in this paper. Qualitative data
have been collected thus far on student experiences and whether
students feel that the lab exercises contribute to their understand-
ing of course material. We are encouraged by the fact that student
feedback has been overwhelmingly positive. Indeed, several stu-
dents have since enrolled in other computer science courses. We
believe, moreover, that our course structure could serve as a model
for institutions with similar curricular requirements.

The rest of this paper is organized as follows. In Section 2 we
describe the laboratory activities and discuss challenges associated
with their implementation. We follow in Section 3 by describing
student experiences and feedback. Section 4 presents work related
to ours. We conclude and consider future directions in Section 5.

2. AN OVERVIEW OF THE LABS
While each lab is designed to enable students to gain hands-

on experience with concepts and ideas from readings, lecture, and
class discussion, there are also a number of learning goals that tran-
scend any particular lab. These goals are aligned with the larger
context of the course, which is to introduce students to the methods
and practices of science through a particular disciplinary lens. In
particular, one goal is for students to gain experience in carefully
collecting and analyzing data. Moreover, since many kinds of in-
ternet data tend to be noisy, a related goal is for students to learn
to assess data quality and the validity of a measurement. Such an
ability can be challenging to attain, as it can require deep domain
knowledge and/or a full understanding of a measurement tool and
the assumptions built into it. Our position is that although non-
majors are not likely to fully grasp all the issues at stake (indeed,
these are difficult for any non-expert to understand), they are capa-
ble of learning enough to appreciate the importance of evaluating
the quality of an experiment’s outcome. Through this, it is hoped
that they will learn to see science not as a black box that yields an-
swers, but as an imperfect yet powerful process by which to under-
stand the world. A goal that follows from the problem of evaluating
measurement data is for students to be able to analyze the design of
an experiment and to suggest ways in which an experiment might
be improved given limitations of the instruments or data at hand,
or a refinement of the question of interest. Finally, we note that al-

though our labs are designed within a particular academic context,
we view our approach as well as the specific content of the labs to
be more widely applicable.

For each lab, students work in pairs. In some of the labs, there
are numbers, symbols, and equations. Having students work in
pairs helps to ease the problem of confronting these scary crea-
tures. After performing the hands-on part of each lab, students
work through a number of synthesis-type questions which essen-
tially ask students to make sense of what they did in the lab activity
and to connect ideas from class with the labwork. Sometimes these
questions were completed as part of the lab activity, sometimes they
were assigned as homework problems, and in a few instances these
questions appeared as exam questions.

2.1 Brief laboratory descriptions

2.1.1 What does the internet look like?

One of the basic definitions of the internet that is introduced
early in this course is that the internet is a network of networks.
This is to say that the internet is composed of many separate, ad-
ministratively independent networks. The collection of these net-
works and the connections among them are what forms the inter-
net. In this lab, students use the well-worn internet measurement
tool traceroute (more specifically, the paris-traceroute
variant [7]) to learn more about the topology of the internet and how
the internet routing algorithms result in specific paths that packets
take through the internet.

Students choose two separate remote hosts, one in the US, and
one outside of the US, and use the traceroute tool to each of
these destinations. The non-US destination must be a looking glass
traceroute server [4] so that students can evaluate two direc-
tions of a route. They then analyze the data from traceroute,
as well as gather some additional data based on the traceroute
output, such as the estimated geographic location of each router
and the autonomous system to which each router belongs. There
are two interesting things about traceroute that students are
made aware of: first, that it is one of the only methods that the re-
search and network operations community has for discovering the
path that a packet takes through the internet; and two, that there
are many limitations and pitfalls associated with its use. While
traceroute is designed to give a hop-by-hop listing of the routers
through which a packet passes on its way from a sender to a re-
ceiver, the data produced can be very noisy, confounding interpre-
tation of the output.

For the purposes of the lab, though, the noisy data is useful.
Prior to the lab, we discuss in class some of the reasons behind
why traceroute data can produce difficult-to-interpret results.
For example students learn about packet loss, packet filtering, and
challenges presented by the fact that network providers can con-
figure routers in their networks in ways that limit the usefulness of
traceroute. Thus, one of the key learning goals for this lab is
for students to critically analyze the data at hand and to evaluate its
validity and meaning.

2.1.2 Spam, spam, spam

First, let us be clear: the lab that inspired title of this paper actu-
ally has to do with stopping spam, not facilitating its spread. One of
the main goals for this lab is for the students to learn how a modern
spam filter works, and more generally to learn to think algorithmi-
cally about how something like a spam filter can be implemented
in a computer. Interestingly, some students think that since they do
not receive much spam in their email inbox, it is no longer a se-

rious problem. In reality, over 90% of all email on the internet is
unsolicited bulk mail. Clearly, spam continues to be a significant
problem.

The main activity in this lab is for students to learn how a widely
used spam filtering engine called SpamAssassin [3] works. At
the heart of SpamAssassin is a large set of rules that are matched
against every incoming email to a mail server. These rules test
various parts of an email for known characteristics of spam, or
for characteristics that suggest that an email is not spam. These
rules contain scores that collectively contribute to an email’s over-
all score. A simple threshold is used to classify an email as spam
or not. Another key algorithmic component of SpamAssassin is
a machine learning algorithm that enables the system to adapt to
evolving trends in features of spam and to be tuned to the kinds of
email that a given user receives. Thus, students also learn some of
the basic ideas behind statistical classification.

For better or worse, the best way to learn the basics of how
SpamAssassin works is by creating and sending spam. As part of
this lab, students had to construct spam within certain parameters
to sell counterfeit watches and prescription painkillers. Their spam
was relayed through an anonymous remailer (with built-in checks
on the destination address so that students could only send spam
to designated addresses) and passed through SpamAssassin. It is
important to note that all the spam generated by the students was
processed within a (nearly) closed network in order to minimize
the possibility of their spam escaping into the rest of campus and
the internet. Their goals were to create some messages that would
be tagged as spam by SpamAssassin, and some that would not be
tagged, and more importantly to investigate why in each case.

2.1.3 Web performance prediction

Use of a web browser has become second nature to students.
Indeed, students entering college today have hardly known a time
when the web did not hold the position as the central resource for
information. Although they may be comfortable using the web,
many students are acutely aware of how shallow their knowledge
is about how the web functions. When something happens that is
unexpected — a web page takes a long time to load or does not load
at all — the limits of their knowledge become all too apparent.

The ability to make predictions is fundamental to science. Lead-
ing up to this lab, students learn about web protocols, general con-
cepts about underlying transport protocols, and the basics of how
web pages are constructed. With that knowledge, their task in this
lab is to try to evaluate the factors behind what causes some web-
sites to load quickly and others to load more slowly. The end goal
of their evaluation is to try to build a prediction model for web per-
formance.

The main tool the students use for gathering data to evaluate per-
formance and build a model is the firebug extension [5] to the fire-
fox web browser. Firebug provides the ability to measure how long
different elements of a web page take to download, and how long
the entire page takes to download and display. These measurements
can be displayed in real time as a page is loaded, making them quite
visually compelling for students learning how the web functions.
(Note that students are shown how to disable caching in order to
evaluate effects due to the network and remote server.)

To build their prediction model, students can use the data col-
lected from firebug, as well as simple round-trip delay measure-
ments using ping and topology measurements using traceroute.
Students can also make use of measurement tools available from
the Measurement Lab [1] in order to test network performance be-
tween their computer and a measurement lab host near a target web-
site (if one is available). Tools are provided to create simple 2D

scatter plots of different combinations of their data; these scatter
plots form the basis for their predictions. For some website selec-
tions, a clear set of clusters arises in the scatter plot. For others, the
patterns are less obvious. In any case, a learning goal of building
this model is for students to recognize that they can develop a hy-
pothesis for why a given site (or cluster) exhibits the performance
it does, and using the tools at hand to test their conjecture.

2.1.4 Estimating personal power consumption

Electronic devices of all kinds pervade modern existence. Many
students regularly use laptops, smartphones, gaming consoles, and
various other devices, each of which consumes some amount of
electricity. Although some students are keenly aware of their power
consumption footprint (even though they might not be able to quan-
tify it), others are not. This lab consists of two parallel components.
In one, students keep a journal of their use of high-tech devices over
several days. They log how long they use each device and record
some basic information about the device itself. The second compo-
nent begins partway through the time during which students keep
their journal. They are asked to bring a variety of devices into class
in order to measure their power consumption. At the end of their
journalling, they use the measurements taken in class along with
their journal entries to form an estimate of their average daily con-
sumption of power due to high-tech devices.

The power measurements are taken using handheld digital multi-
meters which have the capability to download the measurements to
a computer for graphing. The devices brought into class are mea-
sured under different usage scenarios, e.g., while playing an inten-
sive game, watching a video, or allowing the system to remain idle.
Server-class systems are also brought into class for measurement in
order for students to see the kinds of computers that run commonly
used cloud services and to motivate the massive amount of power
used by internet services and infrastructure.

Once the journalling period is over and an average daily power
consumption is computed, students are asked to quantify the amount
of power in terms of the number of pounds of coal that would need
to be burned in order to support their power needs. For some, mak-
ing this calculation results in a rather disturbing image, but helps
to achieve a goal of bringing an awareness to students that may or
may not have been there previously.

2.1.5 Breaking simple ciphers

One of the key security technologies behind why the internet has
been successfully harnessed by the business world is cryptography.
While students can clearly grasp why cryptography is important and
what it generally accomplishes, the details of how different cryp-
tographic ciphers work can be challenging to grasp, especially for
the math-phobic. Our position is that focussing on the mathemati-
cal details in a course designed for non-majors can be counterpro-
ductive. On the other hand, working with relatively simple ciphers
can help to provide a concrete context for students to understand
the terms and basic process of encryption and decryption. Thus, in
this lab students learn how simple cryptographic ciphers work, and
attempt to decode two ciphertexts given knowledge of the cipher
used to encrypt each of them but without knowledge of the keys.

Two ciphertexts are used. One is encrypted using a monoalpha-
betic subsititution cipher, the second is encrypted using a Vigenere
cipher. Prior to the lab session, cryptanalysis of these basic ciphers
is discussed in class and students discover ways in which they can
be broken. Breaking the Vigenere cipher is the more difficult one
of the two. To solve this challenging problem, students are led to
consider the fact that if they can estimate the length of the key, then
breaking the ciphertext boils down to the simple task of breaking

a series of Caesar ciphers. A standard method for estimating key
length is provided as a reference, thus enabling students to break
the code.

A web page with some javascript is used to enable students to
evaluate letter frequencies and to specify how letters are to be sub-
stituted (in the case of the monoalphabetic substitution cipher). The
page also enables students to reorganize the ciphertext into a speci-
fied number of columns and to perform frequency analysis on each
column (these features are useful for breaking the Vigenere cipher).

2.1.6 Scanners and intrusion detection

There are few people who have never experienced having their
computer infected with a virus, worm, or other form of malware.
For many, such an event motivates questions such as: Why doesn’t

operating system vendor X produce a better product? Why is my

computer a target of hackers? Why is malware so pervasive? and
What can I do next time so that my computer doesn’t get hosed?

In this lab, students initially play the role of trying to identify vul-
nerabilities in networked-computers and to understand some of the
causes and implications of those potential problems. To do that,
they use the Nessus [2] and Nmap [12] tools to scan a set of hosts
in a closed, relatively small network, that are known to have vul-
nerabilities. Using these tools, they are able to discover the set of
vulnerabilities that exist in the (mini-)network, and the basic impli-
cations of those vulnerabilities.

They then switch roles and try to identify ways in which to miti-
gate the threats posed by the vulnerabilities that they’ve identified.
A simple and standard defense mechanism that students learn about
is a firewall. Through the exercise, students learn how a firewall
might be configured to mitigate a vulnerability. Perhaps more im-
portantly, they learn about various shortcomings of firewalls and
why they are an ineffective means of defense against a large class
of attacks.

One of the goals for this lab is for students to experience first-
hand how easy it is for a remote attacker to gain information about
a potential target. The motivation for using such powerful and po-
tentially dangerous tools is two-fold: first, to help students recog-
nize the importance of open exchange of information, even if that
information could be used for harm, and second to encourage them
to configure their own machines in responsible ways.

2.2 Challenges Faced
Of the various challenges posed by instituting in-class labs, prob-

ably the most significant is the time constraint. Executing a mean-
ingful laboratory exercise within the confines of a standard 50 minute
class period has proved difficult. Indeed, students have also recog-
nized and commented on this problem. While we expect that some
of the time constraint problems will be resolved as the labs are re-
fined and revised over time, we also expect that there will con-
tinue to be a fundamental tension between providing meaningful
and thought-provoking problems to grapple with and overwhelm-
ing students with too much to try to accomplish in the time allotted.

For each of these labs, we have spent quite a bit of time setting
up or creating tools that are accessible to the students through a
standard web browser. While there are many tools that advanced
students might be expected to use to accomplish various tasks, our
goal was to provide a familiar environment from which to base stu-
dent activities. Another key logistical challenge has been setting up
the laboratory infrastructure, including an isolated network, various
servers, student accounts, honeypot machines for vulnerability test-
ing, and the like. Our hope is to generalize and package our con-
figurations where possible so that others can more easily set labs
up.

3. EVALUATION
Thus far, qualitative feedback that has been collected from stu-

dents has been overwhelmingly positive. By these measures, the
labs have been very successful and the students have responded
very positively to them both in terms of actually enjoying them and
feeling like the lab activities contributed to their knowledge base.
Below, we provide a representative selection of comments provided
by students in response to the following prompt: Please comment

on how the in-class lab exercises contributed to your learning in

this course.

• I really liked the labs. They weren’t overly stress-
ful or long, but they did help me to understand the
material better because it was a hands on experi-
ence with the tools [we] talked about in class.

• I think the labs helped my understanding of the
course material because it was a more hands on
approach rather than just reading about it.

• The labs definitely helped me understand the ma-
terial. I learn better when I see things in actions
and can see how they work so the labs really helped
me.

• Yes...very much so....Although more time should
be given in class for lab completion. Maybe make
them a 2-day process...

• We actually learn things, instead of watching a
teacher flaunt their knowledge.

Finally, although we do not yet have long-term data, our initial
experience also suggests that our approach has been instrumental in
drawing in students to take further computer science courses, a not
insignificant motivation behind our efforts. Approximately 15% of
students who have taken this course have subsequently enrolled in
a programming-based introductory course. Given the fact that stu-
dents were enrolled in the course described in this paper ostensibly
to fulfill a requirement, we view this as a highly encouraging de-
velopment.

4. RELATED WORK
There have been many innovative efforts over the years to de-

velop compelling ways to introduce non-majors to computer sci-
ence. Naturally, our use of in-class laboratory exercises builds on
these prior efforts. Moreover, we draw inspiration from problem-
based approaches that do not use programming.

More specifically, although the process of design for a non-major’s
course described in [15] is directed toward a course in which stu-
dents do programming, their general approach is applicable. In par-
ticular, the aspects of topical relevance and choice of a compelling
context, and of making the classroom experience a social experi-
ence have been underlying goals throughout the development of
our laboratory activities. Similarly, our effort is comparable to [19]
in which a course for non-majors is designed explicitly around the
internet. Indeed, it should not be surprising that many others have
noted that the internet, network security, and related areas provide a
compelling frame of reference for introductory courses [13,17,18].

The problem-based nature of our laboratory activities organized
around current events has similarities to the course described by
Astrachan [6]. The focus in [6] is for students to ponder larger
computational issues rather than focussing on details that they are
likely to forget. We believe that an approach that includes meaning-
ful activities in which students can grapple with different problems

in a tangible way can help to create a bridge between low-level
details on the one hand, and implications on the other.

While it is widely held that students learn best by doing, how and
exactly what students should do in an introductory course for non-
majors has been the subject of much debate. Many introductory
approaches favor a programming-based experience, but others ad-
vocate a non-programming-based approach; recent examples may
be found in [10,20,21]. While a programming-based approach may
certainly be appropriate for certain institutions, it may not be for
others that have unique curricular constraints, e.g., in some liberal
arts colleges [8, 9, 24].

5. CONCLUSIONS AND FUTURE WORK
In this paper we describe in-class lab activities created for a

course for non-majors. The labwork is designed to enable students
to grapple with scientific problems in the context of different as-
pects of the internet, and to provide them with tangible experiences
with what are often rather abstract entities. While we contend that
hands-on labwork can provide an effective complement to other
classroom activities, there are two significant challenges that we
have faced with this approach: time and setup costs.

In the future, we hope to develop open courseware materials to
assist others wishing to adopt such activities. We also intend to
investigate ways in which our approach could be scaled to large
classes. Finally, a question we will consider is whether a course
like ours for non-majors could be developed entirely around hands-
on experiences, and how such a course might be orchestrated.

6. REFERENCES
[1] Measurement lab.

http://www.measurementlab.net/.

[2] Nessus. http://www.nessus.com/.

[3] SpamAssassin.
http://spamassassin.apache.org/.

[4] traceroute.org. http://www.traceroute.org/.

[5] Firebug: web development evolved.
http://getfirebug.com/, 2009.

[6] O. Astrachan. Pander to ponder. In SIGCSE ’09:

Proceedings of the 40th ACM technical symposium on

Computer science education, pages 192–196, March 2009.

[7] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger,
T. Friedman, M. Latapy, C. Magnien, and R. Teixeira.
Avoiding traceroute anomalies with Paris traceroute. In IMC

’06: Proceedings of the 6th ACM SIGCOMM conference on

Internet measurement, pages 153–158, October 2006.

[8] A. Brady, P. Cutter, and K. Schultz. Benefits of a CS0 course
in liberal arts colleges. Journal of Computing in Small

Colleges, 20(1):90–97, 2004.

[9] C.D. Cliburn. A CS0 course for the liberal arts. In SIGCSE

’06: Proceedings of the 37th SIGCSE technical symposium

on Computer science education, pages 77–81, 2006.

[10] T. J. Cortina. An Introduction to Computer Science for
Non-majors Using Principles of Computation. In SIGCSE

’07: Proceedings of the 38th SIGCSE technical symposium

on Computer science education, pages 218–222, Covington,
Kentucky, USA, March 2007.

[11] A. L. Foster. Student interest in computer science plummets.
The Chronicle of Higher Education, 51(38):A31, May 27,
2005.

[12] Fyodor. Nmap. http://www.nmap.org/.

[13] C. Gurwitz. The Internet as a motivating theme in a
math/computer core course for nonmajors. In SIGCSE ’98:

Proceedings of the twenty-ninth SIGCSE technical

symposium on Computer science education, pages 68–72,
1998.

[14] M. Guzdial. Paving the Way for Computational Thinking.
Communications of the ACM, 51(8):25–27, August 2008.

[15] M. Guzdial and A. Forte. Design process for a non-majors
computing course. In SIGCSE ’05: Proceedings of the 36th

SIGCSE technical symposium on Computer science

education, pages 361–365, 2005.

[16] I. Hacking. Representing and Intervening. Cambridge
University Press, 1983.

[17] A. M. Holland-Minkley. Cyberattacks: A Lab-Based
Introduction to Computer Security. In SIGITE ’06:

Proceedings of the 7th conference on Information technology

education, pages 39–45, Minneapolis, MN, USA, October
2006.

[18] C.D. Knuckles. A net-centric curricular focus. Journal of

Computing in Small Colleges, 17(6):75–81, 2002.

[19] S. Kurkovsky. Making computing attractive for non-majors:
a course design. Journal of Computing in Small Colleges,
22(3):90–97, 2007.

[20] J. Marks, W. Freeman, and H. Leitner. Teaching applied
computing without programming: a case-based introductory
course for general education. SIGCSE Bulletin, 33(1):80–84,
2001.

[21] S. Pollard and J. Forbes. Hands-on labs without computers.
In SIGCSE ’03: Proceedings of the 34th SIGCSE technical

symposium on Computer science education, pages 296–300,
2003.

[22] J. Vegso. Low Interest in CS and CE Among Incoming
Freshmen.
http://www.cra.org/wp/index.php?p=104,
February 6 2007.

[23] J.M. Wing. Viewpoint—Computational Thinking.
Communications of the ACM, 49(3):33–35, 2006.

[24] B. Zimmerman. Content and laboratories of a computing
science course for non-majors in the 21st century. Journal of

Computing in Small Colleges, 19(5):68–77, 2004.

http://www.measurementlab.net/
http://www.nessus.com/
http://spamassassin.apache.org/
http://www.traceroute.org/
http://getfirebug.com/
http://www.nmap.org/
http://www.cra.org/wp/index.php?p=104

	Introduction
	An Overview of the Labs
	Brief laboratory descriptions
	What does the internet look like?
	Spam, spam, spam
	Web performance prediction
	Estimating personal power consumption
	Breaking simple ciphers
	Scanners and intrusion detection

	Challenges Faced

	Evaluation
	Related Work
	Conclusions and Future Work
	References

