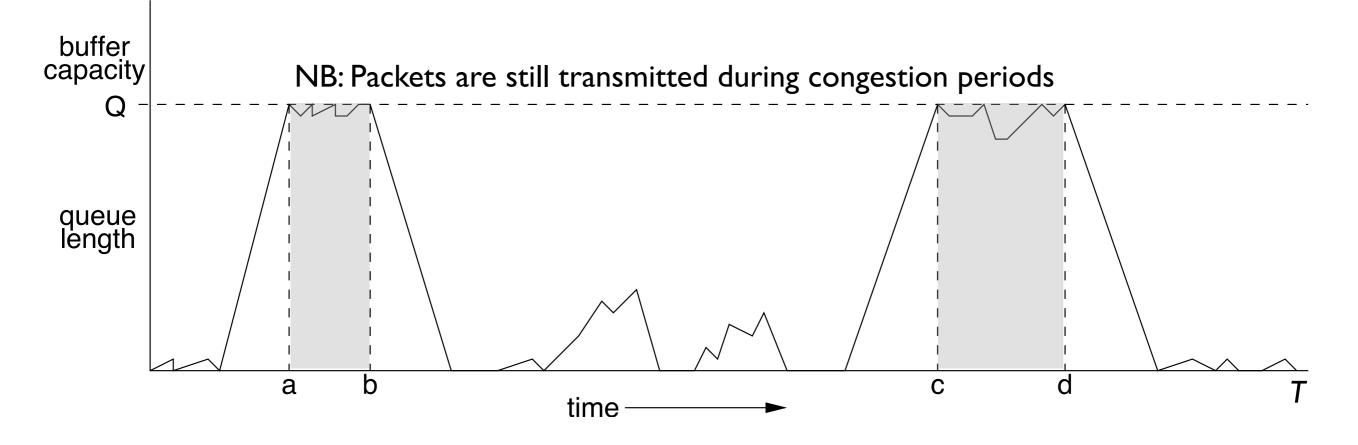
Improving Accuracy in End-to-end Packet Loss Measurement

Joel Sommers, Paul Barford, Nick Duffield,^{*} Amos Ron

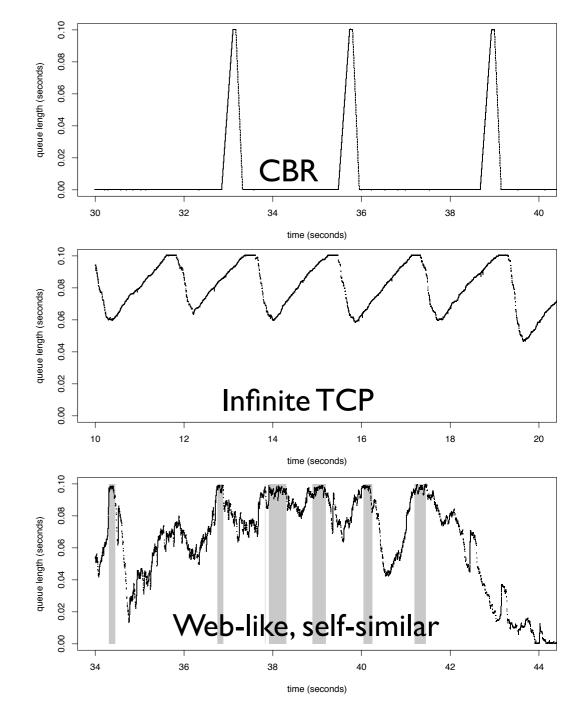

University of Wisconsin-Madison AT&T Labs-Research*

Background

- Understanding its basic characteristics is important
 - Transport protocol design, throughput modeling, overlay monitoring and optimization
- Standard ways to measure packet loss
 - Passive (SNMP, tcpdump)
 - Active (ping, Poisson modulated probes)

Loss characteristics of interest

loss episode frequency (fraction of time queue is congested): ((b-a) + (d-c)) / T mean loss episode duration: ((b-a) + (d-c)) / 2



Focus of our study

- How well does traditional Poisson sampling work?
 - What are its limitations? What can be done better?
- Design new sampling process
 - Theory and heuristics
- Controlled laboratory evaluation
 - Compare with Poisson sampling

How well does traditional Poisson sampling work?

- Evaluate frequency and duration estimates
 - Controlled laboratory setting
 - Three kinds of cross traffic
 - Probe rates and packet sizes as [ZPDS01]
 - Experiment duration (15 min) should allow frequency estimates to be close to true frequency

Evaluation of traditional Poisson sampling

• CBR

• Frequency estimate off by 40% Duration estimate off by 85%

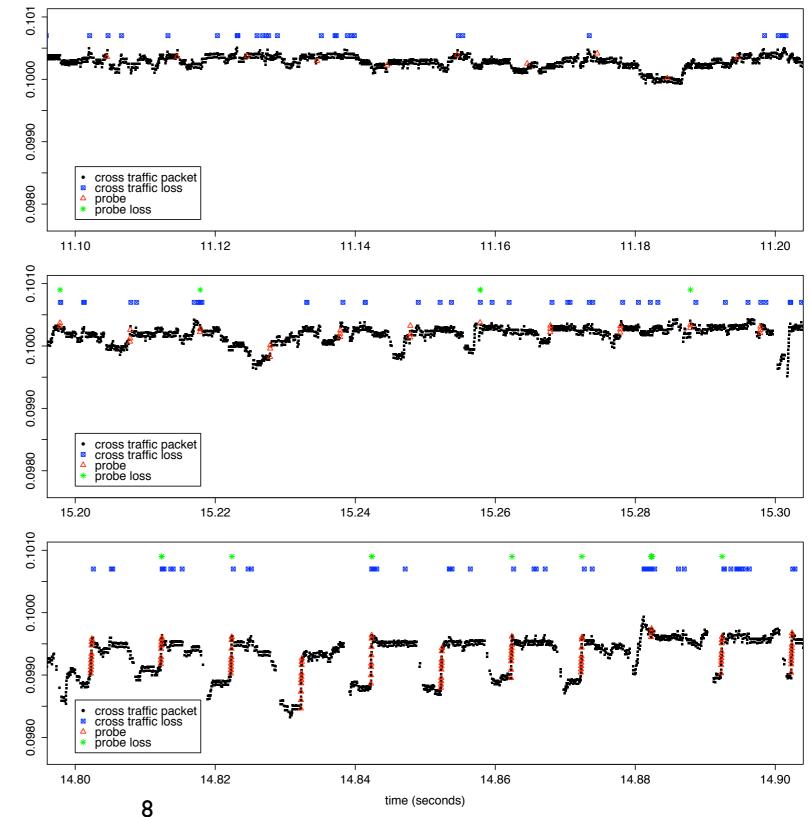
• Infinite TCP

- Very poor frequency estimates Duration estimates are 0
- Web-like (table to right)

	frequency	duration (sec)
true values	0.0093	0.136
Poisson (10 Hz)	0.0014	0.000
Poisson (20 Hz)	0.0012	0.022

Lessons and hypotheses

 Poisson sampling is relatively ineffective for estimating congestion frequency and duration


• Single packet probes often do not experience loss episodes

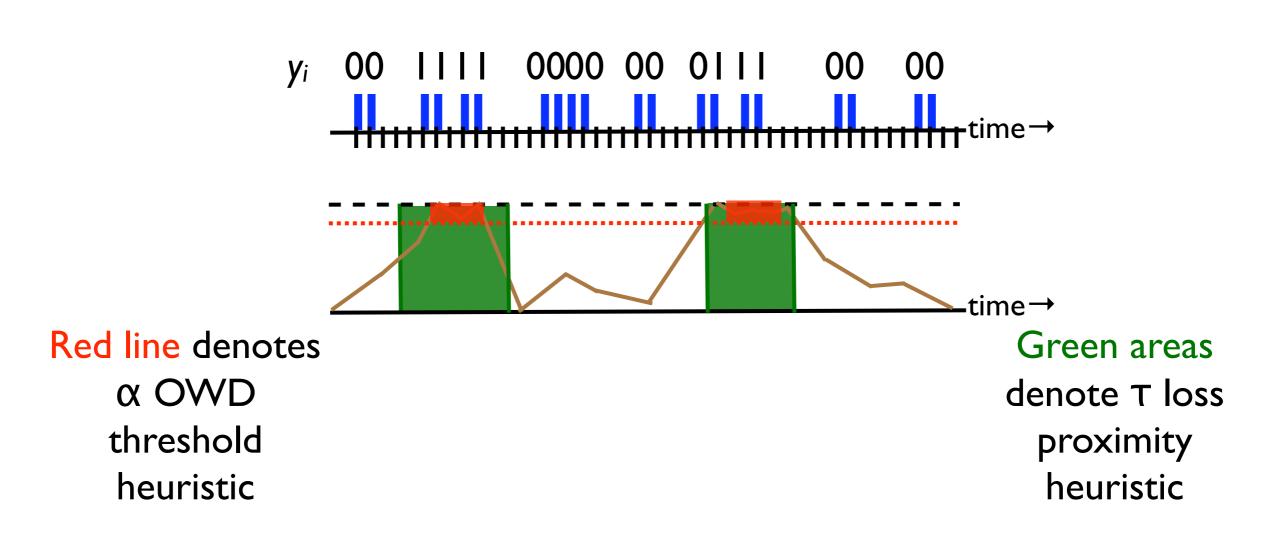
- use loss and delay correlation heuristics
 - create sampling process to improve duration estimates

Multi-packet probes

- Single packet miss congestion episodes
- Probes with a few packets are more likely to see congestion episodes
- Too many probes distort measurements

Probe process model

- At the sender
 - Send two multi-packet (3) probes in succession, initiated with probability r at discrete time slot i
 - Individual probe gives instantaneous measure of congestion
 - Probe pairs used to determine congestion dynamics
- At the receiver
 - Record time slots as congested (1) or uncongested (0), using actual packet loss and one-way delay heuristics
 - y_i records congestion as two-digit binary number
 - Yi denotes true congestion along the path


Key assumptions

- Assume probes don't lie ... usually
 - If there is truly congestion (Y_i) , the probes see the effect
 - If y_i is incorrect, assume it is a false negative ($y_i = 00$)
 - y_i equals Y_i with probability p_k, which is independent of i and depends only on the number k of I-digits in Y_i
- For basic algorithm, assume
 - $p_{\{01,10\}} = p_{\{11\}}$ for consistent estimation of duration
 - $p_{\{01,10\}} = p_{\{11\}} = 1$ for consistent and unbiased frequency estimation

One-way delay and congestion heuristics

- Improve single probe measurement of congestion
 - Probes within T seconds of true loss \Rightarrow congestion
 - Probes with OWD \geq (I- α) OWDmax \Rightarrow congestion
- Observations from sensitivity experiments
 - Relationship between larger parameter value and more congestion inferred
 - Tradeoff between probe rate and parameter settings

New probe model example

Estimating congestion frequency

$$\hat{F} = \sum_{i} z_i / M$$

- z_i is a random variable whose value is the first digit of y_i
- *M* is the total number of probe pairs
- Estimator is unbiased, and under mild conditions, consistent

Estimating congestion duration (1)

- Assume we have knowledge of the path at all possible time slots in our discretization
 - For k=1,2,..., there were exactly jk congestion episodes of length k
 - Congestion occurred over total of A time slots, $A = \sum k j_k$
 - Total number of congestion episodes is $B = \sum j_k$
 - Average duration D of a congestion episode is therefore D := A/B

Estimating congestion duration (2)

Note that there are B time slots i for which $Y_i = 01$, and also B time slots i for which $Y_i = 10$

Note also that there are exactly A+B time slots *i* for which $Y_i \neq 00$

Define $R:=\#\{i:y_i \in \{01, 10, 11\}\}$ and $S:=\#\{i:y_i \in \{01, 10\}\}$

We arrive at
$$E(R)/E(S) = \frac{p_2(A-B) + 2p_1B}{2p_1B}$$

Assuming $p_{\{01,10\}} = p_{\{11\}}$, the estimator for the mean congestion duration is therefore

$$\hat{D} := 2 \times \frac{R}{S} - 1$$

Validation of output

- Monitor results in real-time to check whether assumptions have been violated and to increase confidence in results
 - Probability of $y_i = 01$ is assumed to be same as $y_i = 10$ monitor these rates of occurrence
 - $p_{\{01,10\}} = p_{\{11\}}$ for consistent estimation of duration
 - $p_{\{01,10\}} = p_{\{11\}} = 1$ for consistent and unbiased frequency estimation

Laboratory results summary

- Implemented new sampling model in a tool called badabing
- Experiments in a controlled testbed using a range of probe rates and range of thresholds for inferring congestion
 - Estimates are often within 25% of actual congestion frequency and duration values; many within 10%
 - A significant improvement over traditional Poisson sampling for both frequency and duration estimation

badabing evaluation (CBR, single episode type)

	loss frequency		loss duration	
r	true	badabing	true	badabing
0.1	0.0069	0.0016	0.068	0.054
0.3	0.0069	0.0065	0.068	0.073
0.5	0.0069	0.0060	0.068	0.051
0.7	0.0069	0.0070	0.068	0.051
0.9	0.0069	0.0078	0.068	0.053

badabing evaluation (web-like, self-similar traffic)

	loss frequency		loss duration	
r	true	badabing	true	badabing
0.1	0.0044	0.0017	0.060	0.071
0.3	0.0011	0.0011	0.113	0.143
0.5	0.0114	0.0117	0.079	0.074
0.7	0.0043	0.0039	0.071	0.076
0.9	0.0031	0.0038	0.073	0.062

Comparing badabing with Poisson probes

- With same probe stream rate for Poisson and badabing
 - Constant bit rate cross traffic
 - Both frequency and duration estimates are within 7% for badabing;
 Frequency estimate off by 40% and duration estimate off by 85% for Poisson
 - Web-like cross traffic
 - Badabing correctly estimates frequency and duration estimate is within 25%;
 Each estimate derived from Poisson-modulated probes is at least 80% off

Summary

- Simple Poisson sampling is relatively ineffective for measuring congestion frequency and duration
- Badabing provides more accurate estimation of congestion frequency and duration
 - Estimator performance depends only on total number of probes sent, not on sending rate
 - Simple validation methods for measurement output
 - Accuracy improvements (and basic assumptions) validated in a laboratory testbed

the end

http://wail.cs.wisc.edu/