
Harpoon
A Flow-level Traffic Generator

User manual

Joel Sommers

This manual is for the Harpoon Flow-level Traffic Generator. The following
copyright notice covers the Harpoon source code, including all documenta-
tion, images, and ancillary files.
Copyright c© 2004-2005, Joel E. Sommers. All rights reserved.

This file is part of Harpoon, a flow-level traffic generator.
Harpoon is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Harpoon is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Harpoon; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

i

Table of Contents

1 Overview of Harpoon . 1
1.1 Architecture of Harpoon . 1
1.2 Harpoon Software Components . 4

1.2.1 Building the Harpoon Software . 5

2 Basic Configuration . 7
2.1 Validating a Configuration . 7
2.2 Modifying Configuration File Addresses . 9
2.3 Starting Harpoon . 10
2.4 Modifying a Configuration to Produce Different Traffic Volumes

. 12

3 Advanced Configuration 15
3.1 Self-Configuration Tools . 15
3.2 The harpoon_flowproc tool . 15
3.3 The harpoon_conf.py tool . 16
3.4 The harpoon_reconf.py tool . 16
3.5 Configuration File Structure . 17

3.5.1 <plugin> Definitions . 17
3.5.2 Configuring Distributions . 18
3.5.3 Configuring Addresses. 20
3.5.4 Putting It All Together . 21
3.5.5 Nesting Configuration Files . 22

4 Running Harpoon . 24
4.1 The harpoon executable . 24

4.1.1 harpoon command-line parameters . 24
4.1.2 Signals Handled by Harpoon . 25
4.1.3 Harpoon Event Logging . 25
4.1.4 Environment Variables . 25

4.2 Validating a configuration file with config_validator 26
4.3 Self-configuration Tools . 26

4.3.1 harpoon_flowproc . 26
4.3.2 harpoon_conf.py. 27
4.3.3 harpoon_reconf.py . 28

ii

5 Managing harpoon . 29
5.1 Web-based Management . 29

5.1.1 Using manage_harpoon.php . 29
5.1.2 Setting up Apache and PHP . 29

5.2 Lower-level Management Interfaces . 29
5.2.1 Supported XML-RPC Methods . 29
5.2.2 Uploading Files with HTTP PUT . 31

Appendix A More Examples 33
A.1 XML Configuration Files . 33
A.2 Validation of Configuration Files . 34
A.3 Example Using Two Hosts, Unidirectional Traffic 35
A.4 Example Using Two Hosts, Bidirectional Traffic at Different Rates

. 36
A.5 Example with Three Hosts . 37

Appendix B XML Configuration Schema 40

Appendix C Creating New Traffic Generation
Modules . 43

Postscript . 45

Index . 46

Chapter 1: Overview of Harpoon 1

1 Overview of Harpoon

Harpoon is a flow-level traffic generator. It uses a set of distributional param-
eters that can be automatically extracted from Netflow traces to generate
flows that exhibit the same statistical qualities present in measured Inter-
net traces, including temporal and spatial characteristics. Harpoon can be
used to generate representative background traffic for application or protocol
testing, or for testing network switching hardware. This manual begins by
describing the architecture of Harpoon. Subsequent chapters describe how
to effectively configure, run, and manage Harpoon.

A suggested roadmap for getting up and running with Harpoon is to
read this chapter, Chapter 1 [Overview of Harpoon], page 1, followed by the
next chapter, Chapter 2 [Basic Configuration], page 7, referring as needed to
Chapter 4 [Running Harpoon], page 24 and Appendix A [More Examples],
page 33 for command-line parameter, environment variable, and specific ex-
amples. Readers wanting to use the self-configuration tools or to deploy
Harpoon in large testbeds should read the whole manual.

1.1 Architecture of Harpoon
The design objectives of Harpoon are (1) to scalably generate application-
independent network traffic at the IP flow level, and (2) to be easily param-
eterized to create traffic that is statistically identical to traffic measured at a
given vantage point in the Internet. Figure 1.1 [High-level data flow diagram
of Harpoon] depicts a high-level process flow of these objectives. We start
with the basic definition of an IP flow and use this to create a constructive
model for network traffic generation which we describe below.� �

. . .

harpoon

harpoon
. . .

processing

flow record

capture and

emulation
testbed

operational
network

self

configuration

Figure 1.1: High-level data flow diagram of Harpoon. IP flow records are
collected at a given vantage point in an operational network using standard
software like flow-tools. Key aspects of the live flows are extracted during
a self-configuration step. These parameters are used to generate traffic in
a testbed that statistically matches the temporal (diurnal) volume charac-
teristics as well as the spatial (source and destination IP address frequency)
characteristics of the live flows.
 	

Chapter 1: Overview of Harpoon 2

An IP flow is typically defined as a unidirectional series of IP packets
of a given protocol traveling between a source and a destination IP/port
pair within a certain period of time. The final condition of this statement is
somewhat ambiguous, so we pragmatically tie our definition to Cisco’s imple-
mentation of Netflow and to the tools we use to gather and analyze network
flow data. Netflow data includes source and destination AS/IP/port pairs,
packet and byte counts, flow start and end times, protocol information, and
a bitwise OR of TCP flags for all packets of a flow, in addition to other fields.
This data is exported either on timer deadlines or when certain events occur
(e.g., a TCP FIN or RST, or a cache becomes full), whichever comes first.
While this would seem to pragmatically resolve ambiguity in the definition
of a flow, specific expiration-related timing behaviors can vary (see Cisco
Netflow White Paper1). The result is that flow start time stamps are accu-
rate, while flow end time stamps are not. This inaccuracy does not impact
a user of Harpoon, but it does make a difference to the self-configuration
tools. For more details, see the Harpoon technical paper.

From this operational definition of a flow, Harpoon’s architecture begins
with the notion of unicast file transfers using either TCP or UDP. Harpoon
does not address the packet level dynamics of TCP file transfers. Rather,
it relies on the version(s) of TCP running on end hosts to transfer the re-
quested file. Modeling UDP traffic is complicated by the fact that packet
emission behaviors are largely application-specific. At present, Harpoon con-
tains three models of UDP packet transfer: a simple parameterized constant
packet rate, a fixed-interval periodic ping-pong, and an exponentially dis-
tributed ping-pong. The first source type is similar to some audio and video
streams, while the latter two types are intended to mimic the standard Net-
work Time Protocol (NTP) and Domain Name Service (DNS), respectively.
UDP traffic in today’s Internet is likely to be made up of a wider variety of
application level traffic (including voice, SQL worms, etc.) whose behavior
is not captured in our current three source-type model. Development of a
model with a more diverse set of UDP traffic sources is left for future work.

The Harpoon flow model is a two level architecture and is depicted in Fig-
ure 1.2 [Harpoon’s flow-based two level hierarchical traffic model]. We refer
to the lower level of the Harpoon model as the connection level. It is made up
of two components that have measurable distributional properties. The first
component is the size of the file transferred, and the second component is the
time interval between consecutive file transfer requests, the inter-connection
time. Harpoon makes requests for files with sizes drawn from an empirical
distribution PFileSize. Connection initiations are separated by time intervals
drawn from an empirical distribution PInterConnection.

The upper level of the Harpoon model is referred to as the session level.
Harpoon sessions are divided into either TCP or UDP types that conduct
data transfers using the respective protocol during the time that they are

1 http://www.cisco.com/univercd/cc/td/doc/cisintwk/intsolns/netflsol/

nfwhite.htm.

http://www.cisco.com/-univercd/-cc/td/-doc/-cisintwk/-intsolns/-netflsol/-nfwhite.htm
http://www.cisco.com/-univercd/-cc/td/-doc/-cisintwk/-intsolns/-netflsol/-nfwhite.htm

Chapter 1: Overview of Harpoon 3

active. The session level has two components: the number of active sessions
and the IP spatial distribution. By modulating the number of sessions that
are active at any point in time, Harpoon can match the byte, packet, and
flow volumes from the original data and realize the temporal (diurnal) traf-
fic volumes that are a common characteristic of the Internet2. The average
number of sessions of each type (TCP/UDP) that are active at any point in
a day is derived from a flow data time series for consecutive non-overlapping
intervals of length IntervalDuration seconds to create an empirical model
for PActiveSessions. Scalability is naturally achieved by dividing the number
of active sessions across any number of hosts comprising the testbed. For
each session, Harpoon picks source and destination addresses from ranges
of available addresses to make a series of file transfer requests. The ad-
dress selection is made preferentially using weights drawn from empirical
distributions PIPRangesrc

and PIPRangedest
. A series of file transfer requests

then takes place between the source and destination for IntervalDuration
seconds. When Harpoon is started, it begins with the average number of
sessions in the first interval and proceeds through consecutive intervals for
the duration of the test.

In summary, the Harpoon model is made up of a combination of five dis-
tributional models for TCP sessions: file size, inter-connection time, source
and destination IP ranges, number of active sessions. There are three dis-
tributional models for UDP sessions: constant bit-rate, periodic and expo-
nential ping-pong. Each of these distributions can be specified manually
or, in the case of TCP traffic, extracted from packet traces or Netflow data
collected at a live router. These models enable the workload generated by
Harpoon to be application independent or to be tuned to a specific applica-
tion. The models are combined in a constructive manner to create a series of
file transfer requests that results in representative flow-level network traffic.
The parameters for TCP sessions are summarized below:

Parameter
Description

PFileSize Empirical distribution of file sizes transferred.

PInterConnection

Empirical distribution of time between consecutive TCP con-
nections initiated by an IP source-destination pair.

PIPRangesrc
and PIPRangedest

Ranges of IP addresses with preferential weights set to match
the empirical frequency distributions from the original data.

PActiveSessions

The distribution of the average number of sessions (IP source-
destination pairs) active during consecutive intervals of the mea-

2 See, for example, Vern Paxson’s thesis (ftp://ftp.ee.lbl.gov/papers/vp-thesis/
dis.ps.gz).

ftp://ftp.ee.lbl.gov/-papers/vp-thesis/-dis.ps.gz
ftp://ftp.ee.lbl.gov/-papers/vp-thesis/-dis.ps.gz

Chapter 1: Overview of Harpoon 4

sured data. By modulating this distribution, Harpoon can
match the temporal byte, packet and flow volumes from the
original data.

IntervalDuration
Time granularity over which Harpoon matches average byte,
packet and flow volumes� �

is modulated to achieve

number of active sessions

source and destination addresses

are assigned to active sessions to

obtain desired spatial distribution

desired volumes

�
�
�

�
�
�

�
�
�

�
�
�

� �
� �
� �

� �
� �
� �

��
��
�

��
��
�

� �� �� �� �� �

	 		 		 		 		 	

� �� �� �� �� �

<IP source, IP dest, protocol,

to canonical five−tuple flows:

connections are analogous

sessions are analogous to

canonical three−tuples:

<IP source, IP dest, protocol>

inter−connection times

..
.

individual filessource port, dest port>

blocks represent

A B

session level

connection level

Figure 1.2: Harpoon’s flow-based two level hierarchical traffic model.
Sessions are comprised of a series of connections separated by durations
drawn from the inter-connection time distribution. Source and destination
IP address selection (A and B in the figure) is weighted to match the fre-
quency distribution of the original flow data. The number of active sessions
determines the overall average load offered by Harpoon. A heavy-tailed
empirical file size distribution and an ON/OFF transfer model generate self-
similar packet-level behavior.
 	
1.2 Harpoon Software Components
There are five programs and scripts included with Harpoon:
• harpoon, the main executable, along with traffic generation plugins for

implementing Harpoon user-level behavior using OS-supplied protocol
implementations (e.g. TCP) or another kind of packet emission pro-
cesses,

• config_validator, a utility for validating the structure of a config file.
• harpoon_flowproc, a utility for pre-processing flow records (raw Net-

flow version 5 or flow-tools format) for self-configuration, and
• harpoon_conf.py, a utility for generating configuration files for

harpoon (the self-configurator).
• harpoon_reconf.py, a utility for tuning existing configuration files to

produce desired traffic volumes.

harpoon, config_validator, and harpoon_flowproc are C++ programs.
Requirements for building Harpoon include a C++ compiler with a functional

Chapter 1: Overview of Harpoon 5

standard template library (recent versions of GCC easily satisfy this require-
ment), a POSIX threads implementation, and the eXpat XML parsing li-
brary3. The flow-tools4 library is optionally used by harpoon_flowproc.
If no installation of flow-tools is found, the harpoon_flowproc tool will
still be built, but will only be able to process wire format Netflow 5 records.

The scripts harpoon_conf.py and harpoon_reconf.py require a Python
interpreter, version 2.3 or greater5. If a suitable Python interpreter is not
found, the other tools will be built, but a warning will appear when config-
uring the software.

The traffic generation plugins exist as dynamically loadable modules (aka
shared libraries, dynamically linked libraries, bundles). For example, all
logic specific to generating TCP flow traffic is confined to the TCPPlugin
module and all logic specific for UDP constant bit-rate traffic generation is
confined to the UDPcbrPlugin module. (Appendix C [Creating New Traffic
Generation Modules], page 43 describes how to create modules to generate
any type of desired traffic.) You do not have to know how these modules
work to generate basic TCP or UDP-CBR traffic, but you should understand
the basic roles of the distributions used by different Harpoon plugins in order
to feed properly formatted configuration files to Harpoon.

Subsequent chapters describe how to use these tools to produce desired
traffic. For basic configuration using sample configuration files supplied
with the Harpoon software distribution, see Chapter 2 [Basic Configura-
tion], page 7. For more extensive discussion of configuring Harpoon us-
ing the self-configuration tools, see Chapter 3 [Advanced Configuration],
page 15. Command-line options, applicable environment variables, and sig-
nal handling for the above tools are covered in Chapter 4 [Running Harpoon],
page 24. Finally, more examples on configuring, using, and managing Har-
poon are given in Appendix A [More Examples], page 33. Note that this
manual assumes a working knowledge of UNIX-ish systems and shell com-
mands. If you need help on those basics, look elsewhere.

1.2.1 Building the Harpoon Software

Building Harpoon consists of the following steps:
1. Unpack the distribution. Using GNU tar, “tar xzvf harpoon_

distribution.tgz” will do the trick, substituting the particular file
name for “harpoon_distribution.tgz”.

2. Run ./configure in the top-level directory of the unpacked software.
This step will build appropriate make files for your system. Optionally,
you may use the --prefix flag to specify where the software is to be
installed. The installation location defaults to /usr/local/harpoon.

3 http://expat.sourceforge.net
4 http://www.splintered.net/sw/flow-tools
5 http://www.python.org

http://expat.sourceforge.net
http://www.splintered.net/sw/flow-tools
http://www.python.org

Chapter 1: Overview of Harpoon 6

3. Run make. By default, the main components of Harpoon, all plugins,
and some (presently undocumented) miscellaneous tools are built. If
available, use GNU make, since some make programs do not properly
handle some of the constructs in Harpoon’s makefiles.

4. (optional) make selfconf. Build the self configuration tool harpoon_
flowproc.

5. (optional) make doc. You’ll need the GNU texinfo tools and/or doxygen
for this to work.

6. (optional) make install. Move the appropriate components to the
installation target directory. By default, the install directory is
/usr/local/harpoon.

Harpoon is known to build and run on FreeBSD 5.1-5.4, Linux 2.2-2.6,
MacOS X 10.2-10.4, and Solaris 8-10. Harpoon does not build on Windows,
though there is an intent to eventually make that possible.

If configure does not find certain required libraries, you might try the
following syntax:

$ CPPFLAGS=-I/path-to-include-files LDFLAGS=-L/path-to-libs \
./configure

This syntax generally works to force configure to look in the right di-
rectories.

By default, harpoon is built with optimization level ‘-O2’ and with de-
bugging symbols ‘-g’. An easy way to change this is to use the above syntax
recipe:

$ CXXFLAGS="-g" ./configure
The above example will build Harpoon with debugging symbols but no

optimization. Building Harpoon without debugging symbols and a desired
level of optimization can be accomplished in a similar way.

Finally, you’ll very likely have to set LD_LIBRARY_PATH (Linux, FreeBSD
and Solaris) or DYLD_LIBRARY_PATH (MacOS X) to the directory where plu-
gin objects are installed. See Section 4.1.4 [Environment Variables], page 25
for further information.

Chapter 2: Basic Configuration 7

2 Basic Configuration

This chapter discusses simple configurations of Harpoon using the supplied
example config files (in the ‘examples’ subdirectory of the software distribu-
tion). Simple changes to the config files to accomodate local addressing and
traffic volume requirements are also discussed. The next chapter discusses
more complicated configurations of Harpoon using your own flow records. It
is assumed here that you have successfully built Harpoon (See Section 1.2.1
[Building the Harpoon Software], page 5).

Example configurations are found in the ‘examples’ subdirectory. There
are two TCP traffic configuration examples provided:

‘tcp_client.xml’ and ‘tcp_server.xml’
A very simple setup for illustrative purposes only.

‘tcp_client_ex2.xml’ and ‘tcp_server_ex2.xml’
A TCP client/server pair with inter-connection times generated
from exponential distribution with mean 1 second and file sizes
generated from Pareto distribution with alpha=1.2 shape=1500
(bytes).

2.1 Validating a Configuration
The first step toward running harpoon should be to make sure configuration
files you intend to use are properly formed. A tool, config_validator exists
for this purpose. The tool takes only one argument, the configuration file.
Shown below is output of config_validator run on ‘tcp_client_ex2.xml’
and ‘tcp_server_ex2.xml’.

$./config_validator ../examples/tcp_client_ex2.xml

loading ../examples/tcp_client_ex2.xml

bad address - no prefix len?

Checking load of TcpClient

name: TcpClient

objfile: tcp_plugin.dylib

maxthreads: 10

personality: client

client source pool:

address list:

0.0.0.0 - 0.0.0.0 :0 (1)

client destination pool:

address list:

127.0.0.1 - 127.0.0.1 :10000 (1)

dumping distributions (first 10):

active_sessions: 10

interconnection_times: 3.99391 0.293601 2.12709 1.21451 0.409159 0.1121

0.580837 0.101379 0.724933 0.224031

There are a number of items to note here:

Chapter 2: Basic Configuration 8

• First, each plugin configuration has a name. The name of this plugin
is TcpClient. The name must be unique for all plugins loaded and
running in the same Harpoon process. (Note that you can have multiple
configurations of TCP plugins running as both clients and servers within
a single process, but they must each have different names.)

• The shared object file loaded for this plugin is ‘tcp_plugin.dylib’.
The operating system loader finds this file by searching the directories
specified by LD_LIBRARY_PATH environment variable. See Section 4.1.4
[Environment Variables], page 25 for more information.

• In Harpoon, sessions are mapped in a 1-1 fashion onto threads. The
maxthreads plugin attribute specifies the maximum number of operat-
ing system threads to start in the plugin. To generate a specific level
of traffic, a certain number of threads/sessions are made active over
successive intervals of time. This number of active sessions is specified
by the active_sessions distribution. Note that a specified number of
active sessions can be greater than the value given for maxthreads.
In this case, the maxthreads parameter acts as a limit; the actual
number of active sessions is min(maxthreads, ActiveSessionsi), where
ActiveSessionsi is the number of active sessions for interval i. See [dis-
tributional parameters], page 4 to review the role of sessions in Harpoon.

• personality specifies whether this plugin is acting in a server-side or
client-side role.

• client source pool and client destination pool denote address
pools used by this plugin. Since this is a client-side plugin, the client
source pool is used to bind the local-side of TCP connections to a
specific local address. In this example, the local address is 0.0.0.0,
meaning that the operating system will fill in a default local address.
The client destination pool addresses specify remote addresses and
ports where Harpoon TCP servers are listening.

• Finally, 10 random values from the distributions used by the particu-
lar endpoint (client or server) are printed. For TCP clients, there are
two relevant distributions: active_sessions and interconnection_
times. For TCP servers (example shown below), there are two relevant
distributions: active_sessions and file_sizes.

Validation of the server-side configuration file is now shown below:
$./config_validator ../examples/tcp_server_ex2.xml

loading ../examples/tcp_server_ex2.xml

bad address - no prefix len?

Checking load of TcpServer

name: TcpServer

objfile: tcp_plugin.dylib

maxthreads: 37

personality: server

server address pool:

address list:

0.0.0.0 - 0.0.0.0 :10000 (1)

Chapter 2: Basic Configuration 9

dumping distributions (first 10):

active_sessions: 37

file_sizes: 18643900 15150 807481 157679 23465 4930 39188 4418 56341 10863

Now that the client-side configuration file has been validated and ex-
plained, there is little new to describe. Note that the name of the plugin
has changed to TcpServer and the personality is server, but the plugin
shared object file is still tcp_plugin.dylib. For servers, the maxthreads
and active_sessions parameters specify the number of active threads wait-
ing to service file requests. These numbers can be set to the same single value
in most cases. (The problem of how many threads/sessions to keep active
is similar to the problem of configuring a web server. Unlike modern web
servers, Harpoon does not allocate server threads in a dynamic way, so this
number must be statically set in the configuration files to a reasonable value.)
Finally, note that the server address is set to a default address (0.0.0.0)
and the port is set to 10000.

2.2 Modifying Configuration File Addresses
For the client-side configuration file shown above, the destination address
pool is set to a single address of 127.0.0.1 – the loopback interface. This
isn’t particularly helpful, since we would like to generate traffic over a net-
work, not just through some operating system layers. This address pool is
easily changed.

Using your favorite text editor, open the file ‘tcp_client_ex2.xml’. To-
ward the end of the file the following lines are found:

...

<address_pool name="client_source_pool">

<address ipv4="0.0.0.0" port="0" />

</address_pool>

<address_pool name="client_destination_pool">

<address ipv4="127.0.0.1/32" port="10000" />

</address_pool>

...

To change the server address (client_destination_pool), change the
address block 127.0.0.1/32 to be the desired address. For host prefixes
(/32 masks) the mask is optional; specifying 127.0.0.1 has the same effect
as specifying 127.0.0.1/32. (config_validator warns about this lack of
prefix, however. See the above examples for the warning: “bad address - no
prefix len?”.)

If there are two servers running on separate machines and without con-
tiguous addresses, simply add another <address ... /> line with the second
address.

Note that for servers, the address pool definition follows the same struc-
ture, but there is a current limitation in that only one address is used for
binding. That is, specifying two addresses for a server to listen on will not

Chapter 2: Basic Configuration 10

have the desired effect; only one address will be used. For now, using the
default address specifier, 0.0.0.0, is the best option.

2.3 Starting Harpoon
We now have two configuration files with addresses set appropriately. The
examples below show how to start harpoon with these configuration files. We
assume here that the environment variable LD_LIBRARY_PATH has been set
properly (see Section 4.1.4 [Environment Variables], page 25). Alternatively,
a shell script run_harpoon.sh is installed when make install is run that
sets the environment variable to the correct directory and then executes
harpoon. The examples below use this script, which has been installed in
the default location of ‘/usr/local/harpoon’.

On the server machine:
$ /usr/local/harpoon/run_harpoon.sh -v10 -w300 -c \

-f examples/tcp_server.xml

...

10:02:16 sev(07) stopping plugin TcpServer

10:02:16 sev(00) TcpServer: plugin stopped - threads killed and reaped

10:02:16 sev(07) starting plugin TcpServer

10:02:16 sev(02) TcpServer: no plugin state existed on start - created

10:02:16 sev(01) TcpServer: started plugin with 1 threads.

10:02:16 sev(01) <stopping plugins: TcpServer:ok ><starting plugins: \

TcpServer:ok >

10:02:16 sev(09) harpoon started. verbosity<10>warp_factor<60> \

autoincr?<1>continuousrun?<1>

10:02:16 sev(05) 00:00 - emulation time tick

...

And on the client machine:
$/usr/local/harpoon/run_harpoon.sh -v10 -w300 -f examples/tcp_client.xml

...

10:02:40 sev(07) stopping plugin TcpClient

10:02:40 sev(00) TcpClient: plugin stopped - threads killed and reaped

10:02:40 sev(07) starting plugin TcpClient

10:02:40 sev(02) TcpClient: no plugin state existed on start - created

10:02:40 sev(01) TcpClient: started plugin with 1 threads.

10:02:40 sev(01) <stopping plugins: TcpClient:ok ><starting plugins: \

TcpClient:ok >

10:02:40 sev(09) harpoon started. verbosity<10>warp_factor<300>\

autoincr?<1>continuousrun?<0>

10:02:40 sev(05) 00:00 - emulation time tick

...

The command-line options used above require explanation:

‘-v10’ Turn on verbose messages. You should use this setting (level 10)
of verbosity, especially when first getting started with Harpoon.

‘-w300’ Set interval duration length to 300 seconds (also referred to as
“warp factor”). Given a specification of <active_sessions> in
a configuration file, Harpoon will iterate through this list, setting

Chapter 2: Basic Configuration 11

the number of active sessions to each value for durations of 300
seconds. If the original intervals were one hour in length (i.e.,
the average number of sessions was calculated over successive
intervals of one hour) and the ‘-w’ flag is set to 600 seconds, a
24 hour period could be emulated in 14,400 seconds (four hours).
It should be clear from this explanation where the term “warp
factor” comes from.

‘-f [examples/tcp_client.xml, examples/tcp_server.xml]’
Specify the configuration file to load. Multiple ‘-f’ flags may be
used to tell Harpoon to load more than one configuration file.

‘-c’ While the first three options were used for each side (client
and server) of Harpoon, the ‘-c’ parameter is only used for the
server-side. This option tells Harpoon to continuously cycle over
its list of active sessions, specified in <active_sessions>. Nor-
mally, Harpoon will iterate only once through this list, then
cease activity. For experiments of fixed duration, this is often
the desired behavior. However, for servers this behavior is gen-
erally to be avoided. The reason is that servers (at least for the
plugins provided with the Harpoon software distribution) do not
produce traffic without some request or provocation from clients.
It is therefore much easier to simply leave servers running, cy-
cling over a list of active sessions (typically set to a single value
anyway), much like a continuously running web server.

More information on command-line parameters is given in [harpoon
command-line parameters], page 24.

Now that the client and server are started, we can get information from
these processes via XML-RPC. Using the stats.py script in the ‘cli’ sub-
directory (and a Python interpreter of version 2.2 or greater):

$ python ./stats.py -u http://servermachine:8180/ \

-u http://clientmachine:8180/

stats for <ServerProxy for servermachine:8180/>

server-wide information:

emulation_interval 1

plugin-specific information:

TcpServer is running - up for 81 seconds

target threads = 1 active threads = 1

num_transfer = 36

send_bandwidth_total_bps = 35555.6

send_bandwidth_recent_bps = 35555.6

bytes_sent_total = 360000.0

bytes_sent_recent = 360000.0

personality = server

stats for <ServerProxy for clientmachine:8180/>

server-wide information:

Chapter 2: Basic Configuration 12

emulation_interval 0

plugin-specific information:

TcpClient is running - up for 21 seconds

target threads = 1 active threads = 1

num_requests = 10

personality = client

Note that the statistics gathered using the stats.py tool are approximate
and only reflect an application point of view. You should not use them
in any “real” measurements (like for paper submissions!). They are there
to simply help with diagnosing and monitoring currently running Harpoon
processes. Other XML-RPC tools are provided in the ‘cli’ subdirectory.
More information on them is provided in Chapter 5 [Managing Harpoon],
page 29.

2.4 Modifying a Configuration to Produce
Different Traffic Volumes

A common requirement is for harpoon to generate a specific average load. A
tool, harpoon_reconf.py is provided to assist in determining the appropri-
ate number of sessions to configure at a client to produce the desired level
of traffic.

If we wish to set the number of sessions so that the traffic rate (band-
width) produced by Harpoon is 5 Mbps averaged over a 10 minute interval,
we can use the harpoon_reconf.py tool as follows (from the top-level Har-
poon source directory):

$ python selfconf/harpoon_reconf.py -d -c examples/tcp_client_ex2.xml

-s examples/tcp_server_ex2.xml -i 600 -r 5000000

...

targetbytes 375000000.0 simbytes 378522468 median 4 mean 3 \

stdev 0.771722460186 max 5 flows 4085

number of sessions should be 3 to achieve volume of 375000000 bytes \

(5000000.0 bits/sec)

$

The tool reports that the number of active sessions should be set to 3
(the mean).

The options used for harpoon_reconf.py are as follows:

‘-d’ Turn on verbose (debugging) information.

‘-c examples/tcp_client_ex2.xml’
Specify the client-side configuration file. This is a required pa-
rameter.

‘-s examples/tcp_server_ex2.xml’
Specify the server-side configuration file. This is a required pa-
rameter.

Chapter 2: Basic Configuration 13

‘-i 600’ Specify the interval duration. The value used for this parameter
should be the same as the ‘-w’ parameter passed to harpoon. See
[harpoon command-line parameters], page 24 and Section 2.3
[Starting Harpoon], page 10 for more information. This is a
required parameter.

‘-r 5000000’
Specify the target traffic rate, in bits per second. Alternatively,
you may use the ‘-b’ parameter to specify the total volume (in
bytes) that should be generated over the specified interval du-
ration (given by ‘-i’). One of ‘-r’ or ‘-b’ is required.

Note that the ‘-d’ flag was used, producing verbose output. The tar-
get byte volume to produce over the requested interval of 600 seconds is
375000000 (5000000/8× 600 = 375000000). The mean and standard devia-
tion of the sessions needed to produce 5 Mbps are 3 and 0.772, respectively.
The output value simbytes is the average amount of traffic (in bytes) esti-
mated to be produced for three sessions. This value will always be greater
than the target (but generally not too much), since the self configuration
tools aim to produce at least as much traffic as was originally sent.

After restarting the server and client, we use stats.py one minute later to
check the server status and see that Harpoon is producing roughly 5Mbps.
This tool takes only one option, ‘-u’, to specify the URL of the harpoon
XML-RPC listener. By default, port 8180 is used.

$ python cli/stats.py -u http://servermachine:8180/

...

TcpServer is running - up for 60 seconds

target threads = 3 active threads = 3

num_transfer = 397

send_bandwidth_total_bps = 4334040.0

send_bandwidth_recent_bps = 6360550.0

bytes_sent_total = 32505300.0

bytes_sent_recent = 13516200.0

personality = server

...

Near the end of the test, we run stats.py again to check progress:
$ python cli/stats.py -u http://servermachine:8180/

...

TcpServer is running - up for 557 seconds

target threads = 3 active threads = 3

num_transfer = 4217

send_bandwidth_total_bps = 6247000.0

send_bandwidth_recent_bps = 5237350.0

bytes_sent_total = 434947000.0

bytes_sent_recent = 75286800.0

personality = server

...

We see that Harpoon is making a pretty good match to 5 Mbps and is
quite close to the average match_rate calculated above.

Chapter 2: Basic Configuration 14

Recall that the matching is done based on some interval of time (see
[Harpoon’s flow-based two level hierarchical traffic model]). Note also that
this matching is approximate, and depends on many factors. The nature
of the underlying distributions (file sizes and interconnection times) have
a great impact on the goodness of the match, but selection of the interval
duration also has a significant effect. Generally, longer intervals (i.e. five or
ten minutes) are best. Very often the match between what you expect and
what you get is quite good, but it can be “less good” if you pick a short
interval and have distributions with extreme variability.

Chapter 3: Advanced Configuration 15

3 Advanced Configuration

In the previous chapter, basic configuration of Harpoon was discussed, in-
cluding configuration file validation, setting desired endpoint addresses, and
tuning Harpoon to produce the desired traffic volume. This chapter fills in
gaps from the previous chapter by discussing, in more detail, the structure
of Harpoon configuration files (using the TCP traffic generator plugins as
the basis for discussion), and the use of the self-configuration tools.

Harpoon uses XML documents for its config files. As described in [vali-
dation of config files], page 26, an XML schema is distributed with Harpoon
that defines the structure of config files for the supplied TCP traffic plugin.
Tools are provided to automatically generate configuration files from raw
flow records. There is also a tool, config_validator, which is a simple
validator of config files. The validator can’t catch all logical errors, but it
will catch all syntactical errors.

While the self-configuration tool harpoon_conf.py can generate valid
config files for Harpoon, it is often useful to manually tweak the files pro-
duced by this script depending on testbed requirements. For this reason,
description of how to use the self-configuration tools is followed by a discus-
sion of the detailed structure of configuration files.

3.1 Self-Configuration Tools
For self-configuration, there are two required steps, and one optional step.
1. Process flow records using the harpoon_flowproc tool. The flow records

can be in Netflow version 5 wire format or in flow-tools format. The
output of this step is an intermediate flow representation.

2. Process the intermediate format produced in the previous step using the
harpoon_conf.py tool to produce Harpoon config files.

3. Optionally, the configuration files produced in step 2 can be processed to
produce a bit rate different from the original flow trace. The harpoon_
reconf.py tool takes two Harpoon configuration files as input to per-
form this task.

3.2 The harpoon_flowproc tool
The harpoon_flowproc tool takes raw flow records in either Netflow ver-
sion 5 wire format, or in flow-tools format. If your system does not have
flow-tools installed, you’ll only be able to use the raw Netflow capability.
The tool takes the flow records as standard input and produces an interme-
diate format on standard output. This intermediate format is used by the
tool harpoon_conf.py (see Section 3.3 [advanced harpoon conf.py], page 16,
below) to produce configuration files for Harpoon.

By default, harpoon_flowproc uses an IntervalDuration value of 60
seconds, expects TCP flags in the flow records, and expects the input format

Chapter 3: Advanced Configuration 16

to be flow-tools. See Section 4.3.1 [running harpoon flowproc], page 26 for
more information on command line options. The example below shows an
hour’s worth of flow records being piped into harpoon_flowproc, with the
output written to ‘flowproc.out’. It shows that there were over 4 million
flows over that hour, with about 1.8 million TCP flows. However, only 1.2
million TCP flows had SYN and FIN or RST flags (i.e., were “well-formed”).
Finally, flow surgery did not have to be performed on any of the flows. (Note
that it isn’t abnormal that surgery is minimal or not required, at least on
flow record traces I’ve looked at.)

$ flow-cat ft-v05.2002-07-31.13* | ./harpoon_flowproc -i 60 > flowproc.out

sorting tcp flow records... took 25 sec.

total flows: 4071060

total TCP flows: 1867860

total well-formed TCP flows: 1216691

surgery performed: 0

$

3.3 The harpoon_conf.py tool
The Python script harpoon_conf.py uses the output from the tool harpoon_
conf to produce configuration files for Harpoon. In the example below, an
interval duration of 600 seconds is specified (‘-i’ 600), source and destination
address pools are specified (‘-S’ and ‘-D’ options), and output config files
have a prefix of “testoutput”. See Section 4.3.2 [running harpoon conf.py],
page 27 for more information on command line parameters.

$./harpoon_conf.py -i 600 -S ’10.54.1.0/24’ -D ’10.54.42.1/32’ \

-p testoutput flowproc.out

got starting time from file header: 1028138318.2

progress (10k lines): 100000

. 200000

. . . . done (232645 lines)

$

The configuration files resulting from this script may still need to be
tweaked. In particular, the number of active sessions set in the client config-
uration file may exceed the maximum number of threads per process on the
operating system where Harpoon will be run. Either that, or you may wish
to set up a multi-host configuration, splitting the load generation over some
number of machines. For these situations, you will have to manually edit the
configuration files, changing the number of active sessions to an appropri-
ate value, and setting client source and destination addresses to appropriate
values.

3.4 The harpoon_reconf.py tool
The harpoon_reconf.py is used to tune existing client and server configu-
ration files to produce a specified bit rate. The configuration files that this
script uses can be produced by the harpoon_conf.py tool or can be made
using configuration files based on distributions from known distributions. In

Chapter 3: Advanced Configuration 17

the example below, the target rate is specified as 5 Mbps and the script
reports that 314 sessions should be configured to produce this volume. The
script itself does not modify the configuration files, so this value must be
set in the client configuration file. See also Section 2.4 [Modifying a Con-
figuration to Produce Different Traffic Volumes], page 12, and Section 4.3.3
[running harpoon reconf.py], page 28.

$./harpoon_reconf.py -d -c testoutput_tcpclient.xml \

-s testoutput_tcpserver.xml -i 300 -r 5000000

target volume: 187500000.0

interval duration: 300

client conf file: testoutput_tcpclient.xml

server conf file: testoutput_tcpserver.xml

target: 187500000.0 carry: 0

targetbytes 187500000.0 simbytes 187720505 median 320 mean 314 \

stdev 55.02035895 max 415 flows 16174

number of sessions should be 314 to achieve volume of 187500000 bytes \

(5000000.0 bits/sec)

$

3.5 Configuration File Structure
The best way to describe the structure of Harpoon config files is through an
example:

<?xml version="1.0"?>

<harpoon_plugins>

<plugin name="Example" objfile="example.so"

maxthreads="42", personality="server">

...

</plugin>

</harpoon_plugins>

The top-level tag in any config file must be <harpoon_plugins>. Within
that element, any number of traffic generation <plugin>s may be defined.
Every Harpoon configuration file must be structured this way - the XML
parser that Harpoon uses (expat — http://expat.sourceforge.net/) en-
forces this requirement.

3.5.1 <plugin> Definitions

For the <plugin> element, there are three require attributes, and one op-
tional attribute:

name An identifier for this plugin. It must be unique for all incarna-
tions of a traffic generator module running under the control of
a single harpoon executable. That is, you must have separate
<plugin> tags defined for client and server portions of the same
traffic generator if they are running in the same harpoon pro-
cess. For example, for the client-side of a TCP plugin you might

http://expat.sourceforge.net/

Chapter 3: Advanced Configuration 18

use the name “TCPClient” and for the server-side you might
use “TCPServer”.

objfile The object file into which traffic generation code is compiled.
For most UNIX-like operating systems, this file will end in the
extension .so. For MacOS X, this extension is normally .dylib.

maxthreads
An integer defining the maximum number of threads to create for
this plugin. One thread represents one Harpoon session. Note
that different operating systems impose limits on the maximum
number of threads per process. Harpoon will happily attempt
to create one million threads if you ask it to — it is up to you
to make sure this number makes sense. If Harpoon is unable to
create the number of threads you ask for it will croak, leaving
both you and the formerly running harpoon quite miserable.

personality
This attribute should contain the value ‘server’ or ‘client’.
Harpoon is organized as a client-server application. This at-
tribute specifies how the traffic generator named in the con-
figuration file should behave, either as a client or as a server.
More specifically, each plugin module has two code entrypoints:
server_session and client_session. The entrypoint taken
depends on this attribute. See Appendix C [Creating New Traf-
fic Generation Modules], page 43 for more details.

3.5.2 Configuring Distributions

Within a <plugin> element, you define the distribution data used by the
plugin. Depending on the “personality” of the plugin and on the particular
traffic generator, different distributions may be required. For example, for
the TCP client, file sizes are irrelevant since it is the server that generates
files. Note that the config_validator tool does not assume that all distri-
butions are required and checks only for the existence of distributions that
make sense based on the configured personality.

As described in Chapter 1 [Overview of Harpoon], page 1 and summarized
in [distributional parameters], page 4, there are five distributions comprising
Harpoon’s architectural model for TCP flows. Configuration of three of
those parameters is described here. Addressing is described in the following
section.

Each of the parameters PFileSize, PInterConnection, PActiveSessions,
PIPRangesrc

, and PIPRangedest
are configured using XML tags <file_sizes>,

<interconnection_times>, <active_sessions>, and <address_pool>,
respectively, also shown in the example below. Whitespace-separated values
for each distribution should be written between start and end tags for the
respective element. There is no required order among these tags. For the
TCP plugin, servers expect <file_sizes> and <active_sessions>. File

Chapter 3: Advanced Configuration 19

sizes values are given in bytes. Clients expect <interconnection_times>
and <active_sessions>. Interconnection times are given in (floating
point) seconds. Both endpoints require <address_pool> tags, as described
below.

The <active_sessions> tag identifies the number of Harpoon sessions
(threads) that should be active for a given interval. By default, this interval
is assumed to be an 60 seconds, though it need not be so. By adjusting the
“warp factor” (‘-w’ option, [harpoon command-line parameters], page 24)
on the harpoon command-line, any mapping between emulation time and
wall-clock time may be made. The Harpoon plugin controller will adjust the
number of active threads per interval according to the distribution given in
<active_sessions>. By default, Harpoon will iterate once through the list
of <active_sessions>, then plugin activity will cease (i.e., number of active
sessions will be set to 0). For clients, this is often the desired behavior. For
servers, however, this is very often not desirable. The ‘-c’ flag can be given
to Harpoon so that it cycles continuously over its list of <active_sessions>.

The maxthreads attribute described above serves as a cap to the number
of threads to be created for a plugin. If values given for <active_sessions>
exceeds maxthreads, no threads beyond maxthreads will be created. For the
client-side, the relationship between the values given for <active_sessions>
and load generated by Harpoon should be straightforward. For servers, it is
often best to simply supply one value (which should usually be the same as
the value given for maxthreads) so that enough server handlers are running
at all times. Choosing this value is akin to provisioning a web server, and
the default values set by the Harpoon configuration tools may or may not
need tuning in different environments.

The next two examples show how the three distributions described above
appear in configuration files. For these examples, the plugin headers (at-
tributes) are not specified, only the applicable distributions.

For a TCP server, only the <active_sessions> and <file_sizes> ele-
ments are required:

<plugin ... >

<!-- for a TCP server configuration -->

<active_sessions>

47

</active_sessions>

<file_sizes>

200 42000 300 1200 5400 ...

</file_sizes>

...

</plugin>

For a TCP client, only the <active_sessions> and <interconnection_
times> elements are required:

<plugin ... >

<!-- for a TCP client configuration -->

Chapter 3: Advanced Configuration 20

<active_sessions>

50 58 60 61 70 75 ...

</active_sessions>

<interconnection_times>

1.2 0.3 4.95 1.5 0.1 0.9 ...

</interconnection_times>

...

</plugin>

3.5.3 Configuring Addresses

This section introduces the XML tags for configuring client source and des-
tinations addresses, and server addresses. The basic ideas are:
• when clients make requests to servers, they bind to local source ad-

dresses and ports, and connect to remote destination addresses and
ports;

• servers bind to a server address and port, waiting for client requests;
client source addresses can be specified, or can be set to allow the oper-
ating system to assign a default local address (the same goes for servers).

All addresses (client source addresses, client destination addresses, and
server addresses) are defined using the XML tag <address_pool>, but with
different values for the required attribute name. Within each address pool,
there may be any number of <address> elements. Each <address> element
must contain exactly two attributes: ipv4 and port. The address element
must be in a CIDR-style format1. The port value of 0 is a special value
which indicates that the operating system should automatically choose a
local ephemeral port for the connection. Likewise, the address “0.0.0.0”
means that the client should bind to the default local address, and the server
should bind to “*”. For server addresses, only one address and port should
be defined: multihoming in this way is not implemented yet.

Note that these addresses say nothing about protocol. Protocol-specific
items are defined within plugin code.

The address attribute name “ipv4” suggests that other kinds of addresses
are possible. At present, only IPv4 addresses are supported but it is con-
ceivable that IPv6 will be supported in the future. Using any attribute for
an address except “ipv4” will generate a configuration file parse error.

Continuing with the examples from above, the server address pool might
defined as:

<plugin ... >

<!-- for a TCP server configuration -->

<active_sessions>

1 A current limitation with this scheme is that all four bytes of an IPv4 address
must be given even for short prefixes. Instead of writing 10.5/16, you should write
10.5.0.0/16.

Chapter 3: Advanced Configuration 21

47

</active_sessions>

<file_sizes>

200 42000 300 1200 5400 ...

</file_sizes>

<address_pool name="server_address">

<address ipv4=’0.0.0.0’ port=’10000’/>

</address_pool>

</plugin>

In this case, the server binds to “*.10000”. That is, port 10000 for any
local address on the server. For the client configuration, we define a source
address pool of 64 address (actually, 62 usable addresses, not including the
host and broadcast addresses) and for destination addresses we define two
separate class C networks (254 usable addresses):

<plugin ... >

<!-- for a TCP client configuration -->

<active_sessions>

50 58 60 61 70 75 ...

</active_sessions>

<interconnection_times>

1.2 0.3 4.95 1.5 0.1 0.9 ...

</interconnection_times>

<address_pool name="client_source_addresses">

<address ipv4=’192.168.1.0/26’ port=’0’ />

</address_pool>

<address_pool name="client_destination_addresses">

<address ipv4=’192.168.47.0/24’ port=’10000’/>

<address ipv4=’192.168.46.0/24’ port=’9900’/>

...

</address_pool>

</plugin>

3.5.4 Putting It All Together

To wrap up the examples in this section, we fill in the main plugin attributes
to complete the configuration files. For the server:

<plugin name="ServerExample" objfile="tcp_plugin.so"

maxthreads="47", personality="server">

<!-- for a TCP server configuration -->

<active_sessions>

47

</active_sessions>

<file_sizes>

Chapter 3: Advanced Configuration 22

200 42000 300 1200 5400 ...

</file_sizes>

<address_pool name="server_address">

<address ipv4=’0.0.0.0’ port=’10000’/>

</address_pool>

</plugin>

And for the client:
<plugin name="ClientExample" objfile="tcp_plugin.so"

maxthreads="75", personality="client">

<!-- for a TCP client configuration -->

<active_sessions>

50 58 60 61 70 75 ...

</active_sessions>

<interconnection_times>

1.2 0.3 4.95 1.5 0.1 0.9 ...

</interconnection_times>

<address_pool name="client_source_addresses">

<address ipv4=’192.168.1.0/26’ port=’0’ />

</address_pool>

<address_pool name="client_destination_addresses">

<address ipv4=’192.168.47.0/24’ port=’10000’/>

<address ipv4=’192.168.46.0/24’ port=’9900’/>

...

</address_pool>

</plugin>

3.5.5 Nesting Configuration Files

A feature of Harpoon configuration files is that one file may include another,
allowing a user of Harpoon to nest configuration files and reuse identical
distribution data in more than one plugin without duplicating the data itself.

Using the tag <config_file> as in the example below causes the named
file to be substituted in place:

<plugin ... >

...

<config_file> file_sizes.xml </config_file>

...

</plugin>

Assume the file file_sizes.xml contains:
<file_sizes> 500 23423 837 7735 </file_sizes>

The resulting configuration would “behave” as if you had written:
<plugin ... >

...

<file_sizes> 500 23423 837 7735 </file_sizes>

Chapter 3: Advanced Configuration 23

...

</plugin>

A very important thing to note is that each configuration file used by
Harpoon (whether it is a “top-level” configuration file or one that is included
by another) must be a well-formed XML document. One consequence is that
files can contain only one top-level element. Essentially, this means that a
file containing exactly the following:

<active_users> 55 67 79 80 100 140 142 130 110 </active_users>

<file_sizes> 500 23423 837 7735 </file_sizes>

is illegal — the XML parser that Harpoon uses will complain loudly. You
must structure your config files to accomodate this restriction.

Another point to note (which will be described again below) is that while
you may use file names that include full or relative paths, any relative paths
will be relative to the working directory of the harpoon executable. Any
plugin object files referenced in configuration files will also be referred to
relative to the working directory of harpoon.

Chapter 4: Running Harpoon 24

4 Running Harpoon

4.1 The harpoon executable
harpoon is the executable used to load modules for traffic generation. Traffic
generation is not implemented directly in harpoon, it is rather a manager of
traffic generation plugins. Using command line parameters and an external
management interface (XML-RPC) you can load, unload, start, stop, and
query traffic generation modules.

4.1.1 harpoon command-line parameters

Most configuration is done through the external management interface, but
there are a few command line parameters for initial loading and configuration
of harpoon. These parameters are:

‘-f filename’
With the ‘-f’ switch you specify Harpoon config files to be ini-
tially loaded. You may specify multiple ‘-f’ parameters in order
to load more than one config file.

‘-l logfile’
The argument to the ‘-l’ switch is a file name to which log
messages will be appended. By default, log messages are written
to STDERR.

‘-p port’ The ‘-p’ flag sets the port that Harpoon’s internal HTTP server
listens on. By default, this port is 8180.

‘-s seed’ The ‘-s’ option sets a specific seed for random number genera-
tion. If this option is not set, the random number generator is
seeded using a combination of the current time and Harpoon’s
process ID.

‘-v verbiage_level’
The ‘-v’ option sets the level of verbosity for log messages
spewed by Harpoon. The argument to ‘-v’ should be an in-
teger from 0 to 10, with 0 meaning minimal log messages are
emitted, and 10 meaning lots of program chatter is logged.

‘-w warp_factor’
With the ‘-w’ switch, you may set the number of seconds that
comprise an IntervalDuration. By default, this value is 60 sec-
onds, so if the values given in PActiveUsers represent the number
of active users per hour, it will take 24 minutes to emulate a full
day. See the full Harpoon paper for some of the issues in setting
this parameter.

‘-c’ Use the ‘-c’ flag to tell Harpoon to continuously cycle over its
values of PActiveSessions. The default behavior is for Harpoon to

Chapter 4: Running Harpoon 25

spend IntervalDuration time on each value of PActiveSessions,
successively stepping through the series of number of active ses-
sions and stopping after the final value. With the ‘-c’ flag,
Harpoon will cycle indefinitely over these PActiveUsers values.

‘-a’ Use the ‘-a’ switch to cause Harpoon to not automatically cycle
through the values in PActiveUsers. Using this flag, it is possible
to manually (through the XML-RPC interface) cycle through
intervals. Harpoon will ignore the ‘-w’ switch if ‘-a’ is set.

‘-?’ This option dumps usage information on the above command-
line parameters. Unrecognized options given to harpoon also
have this effect.

In addition to harpoon command-line parameters described in [harpoon
command-line parameters], page 24, two run-time features to be aware of
are signal handlers implemented by Harpoon, and event logging capability
of Harpoon.

4.1.2 Signals Handled by Harpoon

The following table describes signals handled by Harpoon. All other signals
are blocked.

SIGINT
SIGTERM Sending an interrupt signal to Harpoon has the effect of shutting

Harpoon down. First, all user-level threads running plugin code
are shut down, then the HTTP/XML-RPC listener is stopped.
Finally, Harpoon crumples in a heap.

SIGUSR1 Sending the USR1 signal has the effect of shutting down all user-
level plugin threads. All plugins are returned to the idle state.
Harpoon itself continues to process remote-interface method
calls.

SIGUSR2 Sending the USR2 signal to Harpoon causes all plugins to be re-
set (analogous to the resetAll() XML-RPC method described
below.) First, all plugin threads are stopped, second, the emu-
lated hour is reset to 0, finally, plugin threads are restarted for
all loaded plugins.

4.1.3 Harpoon Event Logging

Logging capability within Harpoon is currently quite limited. Using the ‘-v’
option to the harpoon executable causes different levels of log messages to
be written or suppressed. All log messages are currently written to STDERR
by default, unless an ‘-l’ switch is given to harpoon.

4.1.4 Environment Variables

While there are no environment variables required specifically by Harpoon,
many operating systems will require setting the variable LD_LIBRARY_PATH

Chapter 4: Running Harpoon 26

(or a similar variable, e.g, DYLD_LIBRARY_PATH on MacOS X) in order to
make dynamic loading of plugins work properly. Before starting Harpoon,
this variable should be set to include the directory where plugin modules are
installed (often the same directory as Harpoon, but not necessarily.) You are
advised to consult the relevant manual pages for reference (e.g., ldconfig
and ld.so for Linux, ld and ld.so.1 for Solaris, and dyld for MacOS X.)

A script, run_harpoon.sh, is supplied with the software distribution to
automatically set the above environment variable and then invoke the har-
poon executable. If you perform a make install when building Harpoon,
this script will get installed and have the correct paths. If you do not in-
stall Harpoon, the script won’t work (because of default installation path
settings). If you want to use the script, simply edit it to suit your needs.

4.2 Validating a configuration file with config_
validator

config_validator takes only one argument, the config file to be checked.
It parses the given config file and prints diagnostics on what was parsed.
Examples of config file validation are given in see Section A.2 [Validation of
Configuration Files], page 34. The config_validator uses the same code
internally as Harpoon (and can be quite picky!) so it really is a good idea
to validate your config files using this tool.

Another way to validate your config files is to use a general-purpose
XML schema validation tool. One such tool on the Web is at
http://apps.gotdotnet.com/xmltools/xsdvalidator/Default.aspx.
The file harpoon_plugins.xsd (see [XML Configuration Schema],
page 39), in the documentation directory of the Harpoon distribution,
is an XML schema defining the structure of Harpoon configuration files
for the TCP plugin. (Note that this file only defines the structure for
TCP plugins, therefore its use is limited. It is kept with the software
distribution mainly for historical reasons.) For reference on XML schemas,
see http://www.w3.org/XML/Schema. Note that schemas serve a similar
purpose as SGML DTDs, but are written entirely in XML.

4.3 Self-configuration Tools
This section describes the command-line options for the three
self-configuration tools, harpoon_flowproc, harpoon_conf.py, and
harpoon_reconf.py.

4.3.1 harpoon_flowproc

The flow record processor tool takes the flow records as standard input and
produces a reformatted series of records (in ASCII) on standard output.
There are a number of limitations to this program, making it unsuitable for
very large flow record traces.

http://apps.gotdotnet.com/-xmltools/-xsdvalidator/-Default.aspx
http://www.w3.org/XML/Schema

Chapter 4: Running Harpoon 27

‘-i’ One of the main tasks of harpoon_flowproc is to organize flow
records into a series of “sessions”, which are connections between
the same IP host pair initiated within some duration of time.
The ‘-i’ option allows the user to specify this duration of time
in seconds. By default, a value of 60 seconds is used. This value
should also match the value used for the ‘-i’ to the harpoon_
conf.py script.

‘-n’ harpoon_flowproc, by default, expects to use flow-tools for-
mat flow records (unless the flow-tools library is not found).
To use Netflow 5 wire format records, use the ‘-n’ flag.

‘-w’ harpoon_flowproc performs “flow surgery” to coalesce flow
records adjacent in time that are very likely referencing the same
flow. By default, only records containing SYN and FIN or RST
flags will be used (“well-formed” flows). To relax this require-
ment, use the ‘-w’ flag. Using this option, no flow records will be
ignored based on lack of TCP flags. Note that flow surgery will
not be performed if there are no TCP flags present, regardless
whether the ‘-w’ option is set.

4.3.2 harpoon_conf.py

The harpoon_conf.py Python script takes the output of harpoon_flowproc
and produces XML configuration files that can be used by Harpoon. While
the configuration files may need some manual tweaking for a particular en-
vironment, they can often be used right away. harpoon_conf.py has one
required argument, the file produced from running harpoon_flowproc. All
options listed below are not required.

‘-s’ Specify the point in time (floating point seconds) after which
items from the input file should be used. This is an absolute
time (i.e., not relative to the beginning of the trace). You might
use this flag if you want to restrict harpoon_conf.py to only
process output records for a particular time interval.

‘-e’ Specify the point in time (floating point seconds) before which
items from the input file should be used. This is an absolute
time (i.e., not relative to the beginning of the trace). You’d
probably use this flag in conjunction with ‘-e’ to only process
output records for a particular time interval.

‘-i’ Specify the value of IntervalDuration to use. By default, a
value of 300 seconds is used. Generally, a longer value such as
300 or 600 seconds is best.

‘-m’ Specify the maximum number of lines to process from the input
file. This option is probably less useful unless you’re doing some
debugging. Normally, using the ‘-s’ and ‘-e’ options are what

Chapter 4: Running Harpoon 28

you should really use if you want to only process records over a
particular time interval.

‘-p’ Specify a string to use as a prefix for output files. If
the string ‘testprefix’ is used, for example, the XML
configuration files ‘testprefix_tcpclient.xml’ and
‘testprefix_tcpserver.xml’ will be produced. The default
prefix is harpoonconf.

‘-d’ Turn on some debugging chatter. Multiple ‘-d’ options cause
more chatter.

‘-D’ Specify a client destination address pool as a CIDR prefix. For
example, -D ’192.168.1.0/24’. The ‘-D’ option may be speci-
fied multiple times.

‘-S’ Specify a client source address pool as a CIDR prefix. For ex-
ample, -S ’192.168.2.0/24’. The ‘-D’ option may be specified
multiple times. Note that the server address defaults to 0.0.0.0
with port 10000.

4.3.3 harpoon_reconf.py

The harpoon_reconf.py Python script reads existing client and server con-
fig files and retunes them to produce specific traffic volumes. Only bitrates
can be specified at this time.

‘-c’ Use this option to specify the client config file. This is a required
option.

‘-s’ Use this option to specify the server config file. This is a required
option.

‘-i’ Specify the value of IntervalDuration with the ‘-i’ option. De-
fault value is 300 seconds.

‘-r’ Specify the target rate in bits per second using this option. This
is a required option.

‘-d’ Turn on debugging chatter.

Chapter 5: Managing harpoon 29

5 Managing harpoon

In addition to using XML for its config files, Harpoon includes a restricted
HTTP daemon which understands POST commands for XML-RPC, and
PUT commands for upload of configuration and plugin files. These interfaces
can be used to remotely manage Harpoon daemons. This chapter describes
a usage of a PHP script for web-based Harpoon management. We also give
details on the XML-RPC / HTTP interfaces to Harpoon.

5.1 Web-based Management
A PHP (http://www.php.net) script (manage_harpoon.php) and some
Javascript and CSS support files are included with Harpoon to facilitate
large-scale management of Harpoon. This section describes usage and de-
sign of this feature.

Sorry - this script is not documented yet (and not fully tested anyway).

5.1.1 Using manage_harpoon.php

FIXME

5.1.2 Setting up Apache and PHP

FIXME

5.2 Lower-level Management Interfaces
A restricted HTTP server is embedded in Harpoon which allows remote
management using XML-RPC. The HTTP PUT method is also understood,
allowing upload of XML configuration files and plugin binaries to remote
Harpoon daemons. This section describes these low-level details of managing
Harpoon. Normally, you do not need to be concerned with these details
unless the supplied web interface is insufficient for your needs.

5.2.1 Supported XML-RPC Methods

The following table lists all XML-RPC methods recognized by Harpoon.
The harpoon executable listens to port 8180 by default for requests. This
can be changed with the ‘-p’ switch, described in See [harpoon command-
line parameters], page 24. There are simple Python scripts supplied with
the Harpoon distribution that demonstrate the basics of making manage-
ment RPCs. For further reference, see http://www.xmlrpc.org/ (there is
a very useful tutorial available at this site) and the Python documentation,
available at http://www.python.org/.

A restriction to be aware of with the XML-RPC interface of Harpoon
is that it is single-threaded. That is, it can only handle one request at
a time. This implementation has the side-effect that any call that blocks
for some amount of time will prevent any subsequent calls from executing

http://www.php.net
http://www.xmlrpc.org/
http://www.python.org/

Chapter 5: Managing harpoon 30

until the blocked call finishes. (The primary reason for implementing the
listener as a single thread is to limit the number of threads used by harpoon
itself, leaving as many resources available as possible for user-level traffic
generation threads.)

Simple scripts using each of the interfaces described below are provided
in the ‘cli’ subdirectory. You may also wish to look briefly the [stats.py
tool example], page 13 for a concrete reference using one of these interfaces.

system.listMethods
List all methods recognized by the server. Other standard
system interfaces, such as system.methodSignature and
system.methodHelp are not (yet) available.

system.null
Ping the server. Returns the string null. No parameters are
expected.

loadConfig
Load an XML configuration file. The file name is given as a
parameter to this method. The file name may include a rel-
ative path from the working directory of harpoon. Note that
any configuration files nested in the one currently being loaded
(named by this method) must also be named with paths rela-
tive to the working directory of harpoon. A boolean value is
returned indicating success or failure.

unloadConfig
Unload a plugin configuration. The plugin name is supplied as
a parameter to this method. Any plugin state is destroyed (a
la unloadPlugin() — see below), and configuration data for the
plugin is also destroyed. The plugin must be idle for this method
to succeed. A boolean value is returned indicating success or
failure.

queryPlugins
Returns a list of structures describing all plugin configurations
that have been loaded. No parameters are expected.

unloadPlugin
Unload the shared object implementing a plugin, leaving the
configuration in-tact. One parameter is expected, the name of
the plugin. The plugin must have been previously stopped for
this call to succeed. Returns a string indicating success or fail-
ure. This call can be useful to destroy any static state retained
by the plugin across calls to startPlugin and stopPlugin.
That is, any statistics held in static variables of the class imple-
menting the plugin are wiped clean as a side-effect. A boolean
value is returned to indicate success or failure.

Chapter 5: Managing harpoon 31

loadPlugin
One parameter is required, the plugin name. Load the shared
object for the plugin named in the parameter. The plugin con-
figuration must already have been loaded for this call to succeed.
A boolean value is returned indicating success or failure.

stopPlugin
One parameter is required, the plugin name. Stop all threads
running for the named plugin. Returns a boolean indicating
success or failure. Note that this call may take non-negligible
time because of delay in gracefully stopping traffic generation
threads. Be patient.

startPlugin
One parameter is required, the plugin name. Starts user-level
threads for the named plugin. If the shared object for the plugin
has not already been loaded, this loading is done as a side-effect
of this call. The plugin must be idle and/or unloaded for this
call to succeed. A boolean value is returned indicating success
or failure.

getStats No parameters are expected. Returns an array of structures in-
dicating status and statistics of Harpoon and all loaded plugins.

resetAll No parameters are expected. Stops all running plugins, resets
the emulated hour to 0 (zero) and restarts all plugins. A boolean
value indicating success or failure is returned.

suicide No parameters are expected. Initiates a shutdown of all threads
inside Harpoon, including Harpoon itself. A meaningless string
is returned.

5.2.2 Uploading Files with HTTP PUT

In addition to processing XML-RPC methods using the HTTP POST com-
mand over port 8180, Harpoon also recognizes HTTP PUT commands. Us-
ing PUT can be useful in distributing configuration and plugin files across
a number of Harpoon processes. No tools are distributed with Harpoon for
distributing files. You are advised to use existing free tool such as curl or
wget for this task. The destination file name is given as the URI, and may
include a relative path. Any preceeding forward slashes are discarded.

Examples of uploading configuration files and plugins using curl are
given below:

$ curl --upload-file dummy_plugin.xml \

http://10.2.0.2:8180/dummy_plugin.xml

% Total % Recvd % Xferd Average Speed Time Curr.

Dload Upload Total Current Left Speed

100 961 0 0 100 961 0 961 0:00:01 0:00:00 0:00:01 961

100 963 0 2 100 961 2 961 0:00:01 0:00:00 0:00:01 0

$

Chapter 5: Managing harpoon 32

$ curl --upload-file dummy_plugin.so \

http://10.2.0.2:8180/test/dummy_plugin.so

% Total % Recvd % Xferd Average Speed Time Curr.

Dload Upload Total Current Left Speed

54 37563 0 0 54 20480 0 20480 0:00:01 0:00:00 0:00:01 20480

100 37565 0 2 100 37563 2 37563 0:00:01 0:00:00 0:00:01 2780k

$

In the first example, an XML configuration file (dummy_plugin.xml) is
written to the working directory of Harpoon. In the second example, a
shared object plugin dummy_plugin.so is written to the test subdirectory
under the working directory of harpoon.

Note that there are clear security consequences of the PUT command. At
present there is no support for authentication or encryption of transactions
using SSL. There is also at present no way disable the XML-RPC interface.
These features may be added at a later date.

Appendix A: More Examples 33

Appendix A More Examples

A.1 XML Configuration Files
The following examples show portions of the configurations
‘tcp_client_ex2.xml’ and ‘tcp_server_ex2.xml’ provided in the
‘examples’ subdirectory of the Harpoon software distribution. Not all
distribution data is printed (noted by the ellipses in the examples).

First, the client configuration:
<harpoon_plugins>

<plugin name="TcpClient" objfile="tcp_plugin.dylib"

maxthreads="10" personality="client">

<active_sessions> 10 </active_sessions>

<interconnection_times>

...

3.993905 0.293601 2.127093 0.174206 0.391431

2.579116 0.273442 0.358623 0.173357 1.454077

...

</interconnection_times>

<address_pool name="client_source_pool">

<address ipv4="10.54.40.2/32" port="0" />

</address_pool>

<address_pool name="client_destination_pool">

<address ipv4="10.54.40.1/32" port="10000" />

</address_pool>

</plugin>

</harpoon_plugins>

Now, for the server configuration:
<harpoon_plugins>

<plugin name="TcpServer" objfile="tcp_plugin.dylib"

maxthreads="37" personality="server">

<file_sizes>

...

1034 9710 559390 52641 2122 2643 16167 22667 23660 20271790 14009

...

</file_sizes>

<active_sessions> 37 </active_sessions>

<address_pool name="server_pool">

<address ipv4="0.0.0.0" port="10000" />

</address_pool>

</plugin>

Appendix A: More Examples 34

</harpoon_plugins>

If you wish to use these files to produce a specific traffic volume (bit rate),
see Section 3.4 [[tuning traffic volume with harpoon reconf.py]], page 16,
Section 4.3.3 [[harpoon reconf.py command-line parameters]], page 28, or
Section 2.4 [[basic use of harpoon reconf.py]], page 12. You may also wish to
change the addresses to match your environment. See Section 2.2 [[modifying
configuration file addresses]], page 9 or Section 3.5.3 [[address configuration]],
page 20 for that information.

A.2 Validation of Configuration Files
We now validate the above configuration files and show the output of
config_validator for each. (Note that there are slight local modifications
to these config files so the output will not exactly match running config_
validator on these same files in the Harpoon software distribution.)

$ config_validator tcp_client_ex2.xml

loading ../examples/tcp_client_ex2.xml

bad address - no prefix len?

Checking load of TcpClient

name: TcpClient

objfile: tcp_plugin.dylib

maxthreads: 50

personality: client

client source pool:

address list:

10.54.0.22 - 10.54.0.22 :0 (1)

client destination pool:

address list:

10.54.46.0 - 10.54.46.255 :10000 (256)

dumping distributions (first 10):

active_sessions: 12 27 40 41 36 48 50 50 49 25

interconnection_times: 3.99391 0.293601 2.12709 1.21451 0.409159 0.1121

0.580837 0.101379 0.724933 0.224031

$

$ config_validator tcp_server_ex2.xml

loading ../examples/tcp_server_ex2.xml

bad address - no prefix len?

Checking load of TcpServer

name: TcpServer

objfile: tcp_plugin.dylib

maxthreads: 37

personality: server

server address pool:

address list:

0.0.0.0 - 0.0.0.0 :10000 (1)

dumping distributions (first 10):

active_sessions: 37

file_sizes: 18643900 15150 807481 157679 23465 4930 39188 4418 56341 10863

Appendix A: More Examples 35

A.3 Example Using Two Hosts, Unidirectional
Traffic

For the above client and server configuration files, assuming that the client
source and destination addresses are set up correctly, we’re ready to start
up Harpoon and generate traffic.

For the server, you should see something like this:
$ export LD_LIBRARY_PATH=\

$LD_LIBRARY_PATH:/home/jsommers/harpoon/src/plugins

$./harpoon -f ../examples/tcp_server_ex2.xml -v10 -w300 -c

loading ../examples/tcp_server_ex2.xml... bad address - no prefix len?

finished.

Checking load of TcpServer

name: TcpServer

objfile: tcp_plugin.so

maxthreads: 37

personality: server

server address pool:

address list:

0.0.0.0 - 0.0.0.0 :10000 (1)

dumping distributions (first 10):

active_sessions: 37

file_sizes: 15150 807481 157679 23465 4930 39188 4418 56341 10863

11:06:04 sev(07) stopping plugin TcpServer

11:06:04 sev(00) TcpServer: plugin stopped - threads killed and reaped

11:06:04 sev(07) starting plugin TcpServer

11:06:04 sev(02) TcpServer: no plugin state existed on start - created

11:06:04 sev(01) TcpServer: started plugin with 37 threads.

11:06:04 sev(01) <stopping plugins: TcpServer:ok >\

<starting plugins: TcpServer:ok >

11:06:04 sev(09) harpoon started. verbosity<10>warp_factor<300>\

autoincr?<1>continuousrun?<0>

11:06:04 sev(05) 000.00 - emulation time tick

...

〈CTRL-c〉
going down in a ball of flames...

$

Note that:

1. the variable LD_LIBRARY_PATH was set prior to starting Harpoon, and
was specified using Bourne shell syntax;

2. the start up script was not used, so the above variable had to be set;

3. the ‘-c’ flag was used so that Harpoon will continuously cycle over its
list of active sessions—this is typically what is desired for a server;

4. the sixth log line (starting “11:06:04 sev(01) <stopping plugins:
TcpServer:ok >” indicated that initial starting of the plugin was suc-

Appendix A: More Examples 36

cessful (note that the plugin is first stopped and then started—this is
normal);

5. each log line has the wall-clock time (hour:minute:second), a severity
indication (ranging from 0, most important, to 10, debug jabber), Har-
poon emulation time (epoch.fractional epoch), and the actual log mes-
sage (note that the severity levels are currently rather inconsistent—
sorry);

6. the process was stopped by hitting 〈CTRL-c〉.

The client side startup looks very similar, so it is not shown. Using either
your own monitoring tools or the XML-RPC scripts (e.g., stats.py), you
should be able to see evidence of traffic flowing.

A.4 Example Using Two Hosts, Bidirectional
Traffic at Different Rates

Taking the previous example, we now want to do the following:
1. move the installation to two different hosts;
2. generate traffic in two directions;
3. set up traffic so 10 Mbps is generated in one direction and 20 Mbps is

generated in the other direction.

Assume that host A has an IP address of 10.0.1.1, and host B has an
address of 10.0.1.2. Assume also that we want the volume to be relatively
steady over 300 second intervals. It’s easiest if we work backwards based on
the requirements above. First, we want to find out how many active sessions
we need for generating 10Mbps, and how many sessions for 20 Mbps. To
accomplish this, we need to use the harpoon_reconf.py script:

$ harpoon_reconf.py -c tcp_client_ex2.xml -s tcp_server_ex2.xml -i 300 \

-r 10000000 -d

target volume: 375000000.0

interval duration: 300

client conf file: ../examples/tcp_client_ex2.xml

server conf file: ../examples/tcp_server_ex2.xml

target: 375000000.0 carry: 0

targetbytes 375000000.0 simbytes 407692953 median 7 mean 6 \

stdev 1.50339682726 max 9 flows 3758

number of sessions should be 6 to achieve volume of 375000000 bytes \

(10000000.0 bits/sec)

As arguments to harpoon_reconf.py, we supply the two existing config-
uration files (‘tcp_client_ex2.xml’ and ‘tcp_server_ex2.xml’), the inter-
val duration (300 seconds), and the desired rate (10000000 bits per second).
(We also supplied the ‘-d’ flag to get a little more verbose output.) We see
that there should be 6 sessions configured to produce 10 Mbps. In a similar
way, we find that there should be 11 sessions configured to produce 20 Mbps.

Next, we need to create some new configuration files based on our existing
files. Since the source and destination addresses for our clients are different,

Appendix A: More Examples 37

we need two separate client configuration files. We’ll use default addresses
for the server, so we only need one server config file for both machines.

The steps should be:
1. copy ‘tcp_client_ex2.xml’ to ‘clientA.xml’ and ‘clientB.xml’;
2. edit ‘clientA.xml’ to have source address of 10.0.1.1, destination ad-

dress of 10.0.1.2, and number of active sessions as the single value 6
(also make sure that maxthreads attribute is set to at least 6);

3. edit ‘clientB.xml’ to have source address of 10.0.1.2, destination ad-
dress of 10.0.1.1, and number of active sessions as the single value 11
(also make sure that maxthreads attribute is set to at least 11);

4. move ‘clientA.xml’ and a copy of ‘tcp_server_ex2.xml’ to host A,
and ‘clientB.xml’ and a copy of ‘tcp_server_ex2.xml’ to host B;

5. start up servers;
6. start up clients.

Once we start things up, we see that the 10 second averages over one 50
second period (in the 10Mbps direction) are: 15212977, 10309469, 9073456,
9846232, 14869665, which gives an average of about 11.8Mbps. Over a longer
period, the average comes closer to 10Mbps, though generally will never be
exactly 10Mbps. It should, however, be close over the range of an inter-
val duration. Again, the quality of the match depends on a number of
things, including the interval duration, the maximum inter-connection time
(specified when using the self-configuration tools), and the nature of the
inter-connection and file size distributions (heavy-tailed distributions need
to be sampled over a long duration for the sample mean to come close to the
distributional mean).

For the 20Mbps direction, we also take 10 second averages using SNMP.
Over a 160 second duration, the samples are: 14028319, 23009625, 19027488,
20827397, 31798955, 32786164, 13115353, 15678779, 13945478, 11020225,
14158496, 10773346, 15449599, 18931181, 24803243, 26993437 which gives
an average of 19.1Mbps—pretty close to 20Mbps, even over a shorter interval
and the specified 300 seconds.

A.5 Example with Three Hosts
Finally, we want to do the following:
1. set up two client machines (A and B) to make requests to a single server;
2. generate 10 Mbps on reverse path to client A, and 5 Mbps on reverse

path to client B;
3. set up two server processes to handle the load, so that one process serves

client A, and the other process serves client B.

To our network of hosts A and B, we add a new machine, host C, with
IP address 10.0.1.3. We’ll use host C as our server.

Appendix A: More Examples 38

The easiest thing is to set up the server config files. Since we want to
set up two processes to handle the server load, we’ll need two configuration
files:
1. copy the original server config file ‘tcp_server_ex2.xml’ to

‘serverA.xml’ and ‘serverB.xml’;
2. edit ‘serverA.xml’ to listen on port 10001 for client connections from

host A (find the address pool toward the end of the file);
3. edit ‘serverB.xml’ to listen on port 10002 for client connections from

host B (find the address pool toward the end of the file);
4. move these two config files to host C.

The server processes can now be started. You may wish to start them
in the background, writing to separate log files. The other item you should
be aware of is that the XML-RPC ports should be set differently from the
default, otherwise these servers will clash. Assuming we’ve already set LD_
LIBRARY_PATH, the start up lines should be something like:

$ harpoon -f serverA.xml -p 8181 -l serverA.log -w300 -c -v10 &

$ harpoon -f serverB.xml -p 8182 -l serverB.log -w300 -c -v10 &

Now, we need to set up the client config files. Since we already set the
client source address in the previous example (see see Section A.4 [Example
Using Two Hosts], page 36), we just need to set the destination addresses
and ports correctly, and set the number of active sessions to produce the
desired volumes.

First, we need to find out how many sessions should be active to produce
5Mbps:

$ harpoon_reconf.py -c clientB.xml -s serverB.xml -i 300 -r 5000000 -d

target volume: 187500000.0

interval duration: 300

client conf file: ../examples/tcp_client_ex2.xml

server conf file: ../examples/tcp_server_ex2.xml

target: 187500000.0 carry: 0

targetbytes 187500000.0 simbytes 209525866 median 4 mean 3 \

stdev 0.891882585016 max 5 flows 2050

number of sessions should be 3 to achieve volume of 187500000 bytes \

(5000000.0 bits/sec)

harpoon_reconf.py shows that there should be three sessions active to
produce 5Mbps.

Now, we can edit the client config files and start the clients up:
1. edit ‘clientA.xml’ to have host C (10.0.1.3) as the destination ad-

dress and 10001 for the destination port (note that we already have the
number of active sessions set to produce 10Mbps);

2. edit ‘clientB.xml’ to have host C (10.0.1.3) as the destination address
and 10002 for the destination port;

3. also in ‘clientB.xml’, set the number of active sessions to three.
Now, start up the clients:

Appendix A: More Examples 39

hostA$ harpoon -f clientA.xml -w300 -v10

...

hostB$ harpoon -f clientB.xml -w300 -v10

After a while, we check the server A process to see how much traffic is
being generated using the stats.py script:

$ stats.py -u http://hostC:8181/

stats for <ServerProxy for hostC:8181/>

server-wide information:

emulation_interval 0

plugin-specific information:

TcpServer is running - up for 117 seconds

target threads = 37 active threads = 37

num_transfer = 639

send_bandwidth_total_bps = 4588290.0

send_bandwidth_recent_bps = 5593370.0

bytes_sent_total = 67103700.0

bytes_sent_recent = 53137000.0

personality = server

We see that about 5Mbps is being generated, which is what we wanted.
Note that for all these examples, we have not specified any physical con-

nections, any emulated round-trip times, routes, or the like. These config-
uration settings are outside the domain of Harpoon. You should set these
parameters based on requirements for your tests. You should also be aware
that changing these network parameters (as opposed to application layer
parameters in Harpoon) can make very significant differences in the nature
of the generated traffic. Refer to the Harpoon technical paper for examples
of such differences.

Appendix B: XML Configuration Schema 40

Appendix B XML Configuration Schema

The schema defining TCP plugin configuration files is given below for ref-
erence. (This file lives in the documentation subdirectory of the Harpoon
software distribution.) Someday maybe there will be a nice parser generator
to justify this file’s existence. (But then I’ll have to fix the logical bugs in
the file...)

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:annotation>

<xsd:documentation xml:lang="en">

this is an xml schema for harpoon configuration files.

copyright 2004 joel sommers.

an xml schema is a way to define the structure of xml documents using

xml itself. note that dtd (document type definitions) have a similar

function, yet are written using sgml rather than xml. for more

info, see: http://www.w3.org/TR/xmlschema-1/. a useful validator

on the web is at:

http://apps.gotdotnet.com/xmltools/xsdvalidator/Default.aspx.

<!--

$Id: appendices.texi,v 1.12 2005/08/05 19:36:35 jsommers Exp $

-->

</xsd:documentation>

</xsd:annotation>

<xsd:element name="harpoon_plugins" type="pluginList" />

<xsd:complexType name="pluginList">

<xsd:sequence>

<xsd:element name="plugin"

minOccurs="1" maxOccurs="unbounded"

type="pluginSpecifier" />

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="pluginSpecifier">

<xsd:sequence>

<xsd:element name="config_file" type="xsd:string"

minOccurs="0" maxOccurs="unbounded" />

<!--

NB: these element are only required for implementation of TCP

sources, and there are different specific requirements at

a server or client (which are not specified in this schema).

Appendix B: XML Configuration Schema 41

also, there are different elements required for different

sources. refer to the manual...

NB: also, defining the sub-elements of the plugin as a sequence

is overly restrictive, since they must appear in the same order

as below. in the actual code, we don’t make that restriction;

elements can appear in any order.

-->

<xsd:element name="interconnection_times" type="float_list"

minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="active_sessions" type="int_list"

minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="file_sizes" type="int_list"

minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="address_pool" type="addressList"

minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="objfile" type="xsd:string" use="required"/>

<xsd:attribute name="maxthreads" type="xsd:int" use="required"/>

<xsd:attribute name="personality" type="personalityType"

use="optional"/>

</xsd:complexType>

<xsd:simpleType name="int_list">

<xsd:list itemType="xsd:unsignedLong"/>

</xsd:simpleType>

<xsd:simpleType name="float_list">

<xsd:list itemType="xsd:float"/>

</xsd:simpleType>

<xsd:simpleType name="personalityType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="client"/>

<xsd:enumeration value="server"/>

<xsd:enumeration value="unknown"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="addressPoolType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="client_source_pool"/>

<xsd:enumeration value="client_destination_pool"/>

Appendix B: XML Configuration Schema 42

<xsd:enumeration value="server_pool"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="addressList">

<xsd:sequence>

<xsd:element name="address"

minOccurs="1" maxOccurs="unbounded"

type="addressSpecifier"/>

</xsd:sequence>

<xsd:attribute name="name" type="addressPoolType" use="required"/>

</xsd:complexType>

<xsd:complexType name="addressSpecifier">

<xsd:attribute name="ipv4" type="ipv4Type" use="required"/>

<!-- NB: not restrictive enough -->

<xsd:attribute name="port" type="xsd:nonNegativeInteger"

use="required"/>

</xsd:complexType>

<xsd:simpleType name="ipv4Type">

<xsd:restriction base="xsd:string">

<!-- NB: not completely accurate, but sufficient for now -->

<xsd:pattern value="\d{1,3}(\.\d{1,3}){0,3}(\/(\d+)){0,1}" />

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Appendix C: Creating New Traffic Generation Modules 43

Appendix C Creating New Traffic
Generation Modules

Creating a new traffic generation module can be as simple as subclassing
the HarpoonPlugin class. There are five pure virtual methods that must be
overwritten to accomplish this:
• bool init(HarpoonPluginConfig*)

• void client_session(void)

• void server_session(void)

• void stats(std::ostream&)

• void shutdown(void)

A toy example is given below. It is a good idea to review the docu-
mentation and code for the TCPPlugin before attempting to write your own
plugin.

Note in the example below that the C symbol factory_generator is the
symbol for which harpoon searches. This function returns just returns a new
traffic generator object that implements the five specific entrypoints named
above.

There are some tricks to maintaining common data structures for a plu-
gin. See the TCPPlugin for documentation and an example of this behavior.

class DummyPlugin : public HarpoonPlugin

{

public:

DummyPlugin() : HarpoonPlugin() {}

virtual ~DummyPlugin() {}

// plugin general, and thread specific configuration. this method

// is called for every thread, so you must be careful not to

// re-initialize anything.

virtual bool init(HarpoonPluginConfig *hpc)

{

HarpoonPlugin::init(hpc);

return true;

}

// if plugin personality is client, this method is called

virtual void client_session()

{

std::cerr << "dummy client session begin" << std::endl;

sleep(10);

std::cerr << "dummy client session end" << std::endl;

}

// if plugin personality is server, this method is called

virtual void server_session()

{

std::cerr << "dummy server session begin" << std::endl;

Appendix C: Creating New Traffic Generation Modules 44

sleep(10);

std::cerr << "dummy server session end" << std::endl;

}

// called for all threads when the plugin is being shut down.

virtual void shutdown()

{

std::cerr << "dummy shutdown" << std::endl;

return;

}

// best to check your own personality here to decide what stats

// to return.

virtual void stats(std::ostream &os)

{

XmlRpcUtil::encode_struct_value(os, "dummystats", "no stats!");

}

};

/*

* factory function. "factory_generator" is the C symbol we look for

* when loading harpoon plugins. (We use a C factory function to get

* around C++ name mangling issues.)

*/

extern "C"

{

Harpoon::DummyPlugin *factory_generator(void)

{

return (new Harpoon::DummyPlugin());

}

}

Appendix C: Postscript 45

Postscript

The full technical paper describing Harpoon appeared in the Internet
Measurement Conference, Taormina, Sicily, Italy, in October 2004
(http://www.cs.wisc.edu/~jsommers/pubs/p173-sommers.pdf).
Harpoon first appeared as an extended poster at the SIGMET-
RICS conference, New York, New York, USA, in June 2004
(http://portal.acm.org/citation.cfm?doid=1005686.1005733).

Thanks to Jeff Sommers for making the Harpoon icon. Thanks to Dave
Plonka at the University of Wisconsin for help understanding limitations of
flow records.

http://www.cs.wisc.edu/~jsommers/pubs/p173-sommers.pdf
http://portal.acm.org/citation.cfm?doid=1005686.1005733

Appendix C: Index 46

Appendix C: Index 47

Index

A
active sessions distribution 3, 19
address range distributions 3, 20
addressing . 9, 20

B
building the software 5

C
compiling . 5
config file validation 7, 26, 34
configuration file distribution 31
configuration file example . . 17, 21, 33, 34
configuration file structure . . 7, 14, 17, 22,

33, 34
configuring . 15, 26

D
distributional parameters 4, 18
distributions . 3, 18

E
environment variables 6, 25
event logging . 25
example configurations 7

F
file size distribution 3, 19
flow-level architecture 1

G
getting started . 1

H
harpoon command-line options 10
harpoon command-line parameters 24
harpoon high-level architecture 1
harpoon tools . 4
harpoon conf.py tool 16, 27
harpoon flowproc tool 15, 26
harpoon reconf.py tool . . 12, 16, 28, 36, 38

I
inter-connection time distribution . . . 3, 19
interval duration . 4

M
managing harpoon 28, 31
modifying addresses 9

P
parameters . 3, 4
plugin code example 43
plugin file . 31, 43
plugins . 5, 17, 43

R
remote management 28, 31
running harpoon . 24
running harpoon, example 10, 34

S
self-configuration . 15
self-configuration tools 26
signal handling . 25
software components 4
stats.py tool 11, 13, 39

T
traffic generation plugins 42
traffic generator plugins 5
traffic volume, tuning 12, 36

V
validating configuration files 7, 26

X
XML configuration file structure . . 14, 17,

22, 33
XML configuration files 26
XML configuration schema 39
XML-RPC management 13, 28, 29
XML-RPC methods 29

	Overview of Harpoon
	Architecture of Harpoon
	Harpoon Software Components
	Building the Harpoon Software

	Basic Configuration
	Validating a Configuration
	Modifying Configuration File Addresses
	Starting Harpoon
	Modifying a Configuration to Produce Different Traffic Volumes

	Advanced Configuration
	Self-Configuration Tools
	The harpoon_flowproc tool
	The harpoon_conf.py tool
	The harpoon_reconf.py tool
	Configuration File Structure
	<plugin> Definitions
	Configuring Distributions
	Configuring Addresses
	Putting It All Together
	Nesting Configuration Files

	Running Harpoon
	The harpoon executable
	harpoon command-line parameters
	Signals Handled by Harpoon
	Harpoon Event Logging
	Environment Variables

	Validating a configuration file with config_validator
	Self-configuration Tools
	harpoon_flowproc
	harpoon_conf.py
	harpoon_reconf.py

	Managing harpoon
	Web-based Management
	Using manage_harpoon.php
	Setting up Apache and PHP

	Lower-level Management Interfaces
	Supported XML-RPC Methods
	Uploading Files with HTTP PUT

	More Examples
	XML Configuration Files
	Validation of Configuration Files
	Example Using Two Hosts, Unidirectional Traffic
	Example Using Two Hosts, Bidirectional Traffic at Different Rates
	Example with Three Hosts

	XML Configuration Schema
	Creating New Traffic Generation Modules
	Postscript
	Index

