
COSC 102 Spring 2020

INTRO TO COMPUTING II

Course Description

This course teaches advanced programming, including abstract data types (ADTs), algorithms that manipulate
them and analysis of algorithms. Information hiding, data abstraction, and modular design are emphasized.
They are exemplified by studying important data structures (DS), such as lists, stacks, queues, trees and
hashmaps, and their algorithms that maintain sequences or search effectively. Object-Oriented Programming
(OOP) in Java is the first learning unit, and is reinforced by the following units.

In projects students design and implement programs that illustrate the topics of the course. By the end of
the course, students should be able to design and implement multi-module programs.

Goals

• Study several important data structures and different implementation techniques
• Learn how to choose the “best” data structures for a specific context
• Learn how to modify standard data structures for specific purposes, and create new ones
• Learn to read, understand, interpret and extend programs written by others in the same language
• Understand and recognize proper programming style and make design decisions consistent with OOP

practice
• Learn to reuse classes, provided code and libraries and the standard Java library, which is the Application

Programming Interfaces (APIs)
• Learn to write clean OOP programs: correct, well-designed and easy to read code

Prerequisite: COSC 101 or equivalent

This course does not require knowledge of Python, the programming language used in COSC 101. It does,
however, assume knowledge of programming fundamentals in an imperative programming language, including
the following concepts.

• Primitive and reference variables (including lists or arrays and strings).
• Looping (definite and indefinite).
• Conditionals.
• Functions and pass-by-value semantics for arguments.

Meeting times

Section Instructor Room Time
COSC 102 A Fourquet E. MCGREG 315 MWF 9:20–10:10

Instructors

Name Email Phone Office Office Hours
Fourquet E. efourquet x 6033 MCGREG 309 M 11:30–12:30 W 12:30–2:00

F 10:30–11:30

1

Name Email Phone Office Office Hours
Lyboult M. mlyboult x 7564 MCGREG 318 M 9:00–11:00 T 1:30–3:30

F 8:45–10:10
F 1:00–2:00 Recitation

Open Lab

COSC tutors are available in MCGREG 329 during open lab hours. While lab tutors can help with labs and
projects, the most important is for you to understand the course materials and topics. Get to know the lab
tutors and learn from them. Your goal is to become independent! Open lab does not exist after 102. . .

Matt’s Recitation

On Friday afternoons from 1:00PM–2:00PM Matt will hold a weekly “Recitation” in MCGREG 329. This
time will be devoted to a high-level recap of that week’s topics, summarizing what you learned in lectures
and readings. Matt will also take questions from students on particular concepts or materials anyone would
like to review in more detail. Matt will send out an email a day or two beforehand outlining the planned
topics. Some weeks may be devoted solely to helping students with a particular assignment or project. These
hours are meant to be relatively casual, so feel free to drop by/leave whenever you like!

Materials

Required Textbook Building Java Programs: A Back to Basics Approach BJP
by Stuart Reges and Marty Stepp. Fourth Edition available at the bookstore (3rd Edition available
on the web).

Websites Students are responsible for keeping up-to-date with content of the followings websites.
Course Webpage https://www.cs.colgate.edu/~efourquet/cosc102/index.html
for course general information: lecture topics and readings, labs and projects.
Moodle http://moodle.colgate.edu
for homework submissions and possible course section announcements, discussion and extra materials.

Software
All programming is done using Java. Classroom and lab computers have Java 7 and jEdit installed.
Links under the Resources section on course webpage provide instructions for installation on personal
computers.

Live Coding CodingBat Java
CodingBat is a free website with live coding problems to build coding skill. The coding problems give
immediate feedback, providing an opportunity to practice and solidify understanding of the concepts.
By doing CodingBat problems students put reading concepts into practice.

2

https://www.cs.colgate.edu/~efourquet/cosc102/index.html
http://moodle.colgate.edu
http://codingbat.com/java

Course Work

This course and its associated lab count for a total of 1.25 credits. Therefore, students are expected to spend
about 12.5 hours/week studying for this course.

Attendance It is mandatory to come to class. In class we cover concepts and discuss technical, social
and ethical topics and practice that cannot be learned on your own from a textbook. Thus, I reserve
the right to lower by one grade your final performance in the case you have missed more than 4
classes. In addition, students are responsible for material covered, distributed and completed in class
and in lab.

Participation As learning cannot be passive, I expect active participation of all the members of the class.
Courteous and shared participation is demanded, in lectures, labs and office hours.
In class students are expected to comment, to ask and answer questions about readings and lecture
content, and to collaborate with their peers on problem solving exercises. Students are expected to
show a level of involvement that enhances everyone’s learning. Participation also refers to listening
to others, meaning both the professor and classmates. Encouraging your peers to be involved in our
reflective exchanges enhances everyone learning. No-one should dominate the conversation; we should
all be respectful of our shared space and everyone’s voices.
In lab there will be tutors assisting the lab instructor. I encourage you to ask questions on concepts
and processes. (Asking how to get the exercice done doesn’t help you to learn.) You will often work
collaboratively and be taught how to do so: it is an important competence to develop. Please pay
attention and respect our instructions on the process to work well in team.
Office hours are a special time for me to teach you one-on-one. I encourage you to attend my office
hours. I will teach you how to work independently. I will ask you questions in response to your
question, to help you think further. My role is to help you develop competences and understanding. It
is on purpose I don’t give answers, I model with you the process of solving problems. I will help you on
a first step and often ask you to continue close by so I can help another student and will return to you
thereafter.
Arriving late, stepping out of the classroom, using cell phone or not paying attention
disturb everyone participation. Disrespect of our classroom will negatively affect your final grade
beyond the participation component.

Readings/Exercises Readings are assigned for each lecture. You are required to complete them prior
coming to the class. Lectures and discussions do not duplicate assigned material. You should focus on
the beginning of the reading, learn to read diagrams, and take notes during your reading. Anything
from the required readings, even if not directly discussed in class, is fair game for the homework, exams
and reading quizzes. Reading quizzes—many opened-notes—will take the first ten minutes of class
so you need to arrive on time to successfully give your answers. I will not give you extra time to make
up for your late arrival.

Projects You will usually be working on a project. Each project takes the concepts covered in lectures
and practiced in lab and pushes students to apply them to challenging context. Because projects are
substantial and long they will have a milestone due date, sometimes requiring a demo in lab, which will
be part of the project grade.

Exams There will be four exams: three exams during the term and one final, in addition to the reading
quizzes. All exams are to completed individually; absolutely no collaboration is allowed. Exam dates
will be posted on the course website. Notify the instructor at least one week prior to the exam about
scheduling conflicts.

Lab To complete this course, students must also sign up for a 2-hour weekly laboratory section. Labs are not
always designed to be completed during the lab period. The lab is a separate course with a separate
grade. Students should come to the lab prepared by having done the required readings and practice
exercises.

3

Grading

The final grade for the class is calculated on the following weighting. Grading is on an absolute scale (i.e., no
curve). Note that the lab grade is separate and will be provided in the lab syllabus.

Coursework Percent
Reading quizzes, homeworks & hand-outs 10
Interim Exams (3 x 8) 24
Final exam 24
Projects 36
Participation 6

To pass the course, you must pass the final exam. If your projects grade is more than one letter
higher than the rest of the coursework, the final grade may be adjusted downward. Interim exams will also
count towards your lab grade.

Final course grades are determined as follows. As a general rule, fractions are rounded down (e.g., an 89.9 is a
B+, not an A-). A grade of A+ is awarded only when a student demonstrates truly exceptional performance
and is not simply determined by having a high final course grade.

A+ A A- B+ B B- C+ C C- D+ D D- F
* ≥ 93 90-92 87-89 83-86 80-82 77-79 73-76 70-72 67-69 63-66 60-62 < 60

Policies

Academic honesty and collaboration You are expected to abide by Colgate’s Code of Student Conduct
and by Colgate’s Academic Honor Code.
Collaboration (i.e., discussing the problem and possible solutions) while working on lab or project is
fine, but the work you submit must be your own. Roughly speaking, it is okay to share ideas but it is
not okay to share any artifacts (code, write-up, etc.). Here is a good way to think about it: you and a
classmate can get together, discuss ideas, and even write some code. However, you are expected to
leave that meeting with nothing – no notes and certainly no code – and write up your own solution. If
someone helped you or you collaborated with peer(s) state it clearly with any submitted work: write
down their names in the main header file or better in a readme file. Failing to acknowledge your
collaborators can be considered a violation of the honor code.

Late homework or missing work Late projects are not generally accepted. Start project early and submit
early and often. Missed work may receive a zero. Conflicts with in-class exams should be addressed
well in advance.

Unexpected circumstances If unexpected circumstances arise that might compromise your performance
in the course (inability to attend class, complete the homework on time, etc.), please let me know as
soon as possible so that we may arrange appropriate accommodations. Usually these accommodations
will be made in consultation with your administrative dean.

4

http://www.colgate.edu/offices-and-services/deanofthecollege/universitystandardsandstudentconduct/codeofstudentconduct
http://www.colgate.edu/offices-and-services/deanofthecollege/academichonorcode

Getting Help

A key to your success at Colgate, and in life, is figuring out what resources are available and using them
to help you achieve your goals. For any homework problems or other class-related questions that you have,
there are several options for getting help. Please take advantage of these opportunities!

1. See instructor during office hours.
2. Post a question on the Moodle forum.
3. Form a study group with other students in the class and work together on a regular basis (note the

collaboration policy above).
4. See CS student tutors during Open Lab hours.
5. Send us email.

In addition, please be aware of the great resources that Colgate provides.

CS laptop The department has a limited number of computers available for temporary loan. You must
request and obtain permission to borrow equipment. Taking a laptop from the classroom without
signing an official form is not permitted. If you are interested in borrowing a computer, please come
talk to me.

Tech Support for Students The ITS Desk offers peer support and expertise related to computers and
technology. Located in Case-Geyer the team assists with problems concerning email, internet, and
public access computers on campus.

Academic Support and Disabilities Services If you feel you may need an accommodation based on
the impact of a disability, you should contact your instructor privately to discuss your specific needs.
If you have not already done so, please contact Lynn Waldman, Director of Academic Support and
Disability Services at 315-228-7375 in the Center for Learning, Teaching, and Research. Ms. Waldman is
responsible for determining reasonable and appropriate accommodations for students with disabilities on
a case-by-case basis, and more generally, for ensuring that members of the community with disabilities
have access to Colgate’s programs and services. She also assists students in identifying and managing
the factors that may interfere with learning and in developing strategies to enhance learning.

Counseling Center College life can sometimes get bumpy; if you are experiencing emotional or personal
difficulties, the Counseling Center offers completely confidential and highly professional services. Their
staff are trained to help students manage a wide array of emotions. The Counseling Center meets
with over half the student body for clinical services at some point during their four years at Colgate.
You can arrange an appointment online or by phone (315-228-7385). For emergencies, a counselor is
available 24/7 by calling campus safety at 315-228-7333 and asking for the counselor on call.

Student Health Services The services provide high-quality, accessible, convenient, cost-effective, non-
judgmental, and confidential health care for all students. You can arrange an appointment at the main
clinic (next to Community Memorial Hospital) by phone (315-228-7750), or visit the satellite walk-in
clinic (lower level of Curtis Hall) during normal business hours for assessment of minor injuries and
illnesses.

Haven is a sexual violence response center that provides confidential care, support, advocacy, and trauma-
informed clinical services for survivors of sexual assault, intimate partner violence, child/family abuse,
stalking, and/or harassment. Haven works from a survivor-centric model that is intended to honor and
empower individuals to define their experiences and healing process. Haven’s role is to provide options
and facilitate finding support. You can call (315-228-7385) or visit (Garden Level of Curtis Hall) during
business hours. After hours, call campus safety at 315-228-7333 and ask for the counselor on call; you
can also go directly to the Community Memorial Hospital Emergency Room, and the attending nurse
will contact an advocate from Help Restore Hope Center to discuss your options.

5

http://www.colgate.edu/offices-and-services/information-technology/workspace/support-for-students
http://www.colgate.edu/centers-and-institutes/center-for-learning-teaching-and-research/academic-support-and-disability-services
http://www.colgate.edu/offices-and-services/counseling
https://colgate.edu/offices-and-services/studenthealthservice
https://colgate.edu/sexual-violence-support-resources

Topics

• . . .

• [OOP] Object-oriented Programming (3 weeks)

• [BA] Basic Analysis (1 week)

• Programming Practices

6

Object-oriented Programming

Concepts

• Object-oriented design

– Decomposition into objects carrying state and having behavior
– Class-hierarchy design for modeling

• Definition of classes: fields, methods, and constructors
• Subclasses, inheritance, and method overriding
• Dynamic dispatch: definition of method-call
• Subtyping

– Subtype polymorphism; implicit upcasts in typed languages
– Notion of behavioral replacement: subtypes acting like supertypes
– Relationship between subtyping and inheritance

• Object-oriented idioms for encapsulation

– Privacy and visibility of class members
– Interfaces revealing only method signatures
– Abstract base classes

• Using collection classes, iterators, and other common library components

Learning Outcomes

1. Design and implement a class. [Usage]
2. Use subclassing to design simple class hierarchies that allow code to be reused for distinct subclasses.

[Usage]
3. Correctly reason about control flow in a program using dynamic dispatch. [Usage]
4. Compare and contrast

• the procedural/functional approach (defining a function for each operation with the function body
providing a case for each data variant) and

• the object-oriented approach (defining a class for each data variant with the class definition
providing a method for each operation). [Assessment]

5. Explain the relationship between object-oriented inheritance (code-sharing and overriding) and subtyping
(the idea of a subtype being usable in a context that expects the supertype). [Familiarity]

6. Use object-oriented encapsulation mechanisms such as interfaces and private members. [Usage]
7. Use iterators (later in DS topics define).

7

DS1 Concepts

DS1 Learning Outcomes

8

Basic Analysis

Concepts

• Differences among best, expected, and worst case behaviors of an algorithm
• Asymptotic analysis of upper and expected complexity bounds
• Complexity classes, such as constant, logarithmic, linear, quadratic, and exponential
• Time and space trade-offs in algorithms
• Big O notation: use

Learning Outcomes

1. Explain what is meant by “best”, “expected”, and “worst” case behavior of an algorithm. [Familiarity]
2. In the context of specific algorithms, identify the characteristics of data and/or other conditions or

assumptions that lead to different behaviors. [Assessment]
3. Determine informally the time and space complexity of simple algorithms. [Usage]
4. List and contrast standard complexity classes. [Familiarity]
5. Give examples that illustrate time-space trade-offs of algorithms. [Familiarity]
6. Use big O notation formally to give asymptotic upper bounds on time and space complexity of algorithms.

[Usage]

9

Fundamental Data Structures and Algorithms

Concepts

• Brute-force algorithms
• Simple numerical algorithms, such as computing the average of a list of numbers, finding the min, max,

and mode in a list, approximating the square root of a number, or finding the greatest common divisor
• Sequential and binary search algorithms
• Worst case quadratic sorting algorithms (selection, insertion)
• Worst or average case O(N log N) sorting algorithms (quicksort, heapsort, mergesort)
• Hash tables, including strategies for avoiding and resolving collisions
• Binary search trees: common operations on binary search trees such as select min, max, insert, iterate

over tree

Learning Outcomes

1. Describe the implementation of hash tables, including collision avoidance and resolution. [Familiarity]
2. Explain how tree balance affects the efficiency of various binary search tree operations. [Familiarity]

10

Programming Practices

Concepts

• Basic syntax and semantics of a higher-level language
• Variables and primitive data types (e.g., numbers, characters, Booleans)
• Expressions and assignments
• Simple I/O including file I/O
• Conditional and iterative control structures
• Functions and parameter passing
• The concept of recursion

Learning Outcomes

1. Analyze and explain the behavior of simple programs involving the fundamental programming constructs
variables, expressions, assignments, I/O, control constructs, functions, parameter passing, and recursion.
[Assessment]

2. Identify and describe uses of primitive data types. [Familiarity]
3. Write programs that use primitive data types. [Usage]
4. Modify and expand short programs that use standard conditional and iterative control structures and

functions. [Usage]
5. Design, implement, test, and debug a program that uses each of the following fundamental programming

constructs: basic computation, simple I/O, standard conditional and iterative structures, the definition
of functions, and parameter passing. [Usage]

6. Write a program that uses file I/O to provide persistence across multiple executions. [Usage]
7. Choose appropriate conditional and iteration constructs for a given programming task. [Assessment]
8. Describe the concept of recursion and give examples of its use. [Familiarity]
9. Identify the base case and the general case of a recursively-defined problem. [Assessment]

11

	COSC 102 Spring 2020
	INTRO TO COMPUTING II
	Course Description
	Meeting times
	Instructors
	Open Lab
	Matt's Recitation

	Materials
	Course Work
	Grading
	Policies
	Getting Help
	Topics
	Object-oriented Programming
	Concepts
	Learning Outcomes
	DS1 Concepts
	DS1 Learning Outcomes

	Basic Analysis
	Concepts
	Learning Outcomes

	Fundamental Data Structures and Algorithms
	Concepts
	Learning Outcomes

	Programming Practices
	Concepts
	Learning Outcomes

