
COSC 101 Homework 4 Spring 2016

Due date: Monday, March 7, 10:00 a.m.
Submit what you have BEFORE class: no late submissions are accepted for this homework, submit what
you have. If your files are not on Moodle before class you will receive zero for hw4.
This homework is designed to give you practice writing functions and help you study for the upcoming exam.
First you are asked to implement a series of functions that do rather silly and arbitrary things. Pay attention
as each function has some subtlety to it and should help you further hone your coding skills.
Then you write two functions to determine if two sentences are anagrams of each other. Make sure you
understand the question and you have worked out a solution on paper before starting coding. If you don’t
have a strategy, typing some code is not productive. Don’t hesitate to come and see me or to go to open labs.
You are not allowed to use string built-in functions until we cover them in Unit 5.

Instructions

This homework is due before next Monday class so we can go over the correction then so you have immediate
feedback and can study additional practice problems for the exam (available on moodle).
Please write your answers in hw4.py and hw4_anagram.py.
For each function you are required

• to include the docstring and
• to write sufficient tests to assure you the code is correct. Call the functions with different parameters,

write as comments the console output, handling some general cases and special ones as we have done in
class.

Don’t forget to fill in the header at the top of the files, including hours spent, collaborators, and any feedback
you have. Cheating is cheating yourself first.

Part I: Small functions

sum13

Return the sum of the numbers in the list, returning 0 for an empty list. Except the number 13 is so special
that it does not count and the number that comes immediately after a 13 also do not count.

• sum13([1, 2, 2, 1]) returns 6
• sum13([1, 1]) returns 2
• sum13([13, 1, 4]) returns 4
• sum13([1, 2, 2, 1, 13]) returns 6
• sum13([1, 2, 13, 2, 1, 13]) returns 4

slice67

Return a list of numbers similar to the parameter list, except that the numbers between a 6 and the next 7
are not included (every 6 will be followed by at least one 7). Return an empty list when appropriate.

• slice67([1, 2, 2]) returns [1, 2, 2]
• slice67([1, 2, 2, 6, 99, 99, 7]) returns [1, 2, 2]
• slice67([1, 1, 6, 7, 2]) returns [1, 1, 2]

1

no_teen_sum and fix_teen

Given 3 integer values, a, b and c, return their sum. However, if any of the values is a teen–in the range
13..19 inclusive–then that value counts as 0, except 15 and 16 which do not count as a teens. Write a separate
helper function named fix_teen that takes in an integer value and returns that value fixed for the teen rule.
In this way, you avoid repeating the teen code three times.

• no_teen_sum(1, 2, 3) returns 6
• no_teen_sum(2, 13, 1) returns 3
• no_teen_sum(2, 1, 14) returns 3
• no_teen_sum(15, 15, 19) returns 30

double_reverse

This function takes a list as a parameter. You can assume that every item in the list is a string. The function
returns a new list that contains the strings in reverse order and with each string reversed. You can assume
the list is non-empty. Think about writing a helper function.

• double reverse(['moo', 'cow', 'mooo']) returns ['ooom', 'woc', 'oom']

xyz_there

Return True if the given string contains an appearance of 'xyz' where the 'xyz' is not directly preceded
by a period (.). So 'xxyz' returns True while 'x.xyz' returns False. You are not allowed to use string
functions.

• xyz_there('abcxyz') returns True
• xyz_there('abc.xyz') returns False
• xyz_there('xyz.abc') returns True

Last small function

Write, comment and test either of the following two functions make_tag_list or make_bricks.
make_tag_list(tag, lst)

The web is built with HTML strings like '<i>Yay</i>', which formats Yay as italic text, Yay, on the
web-page. In this example, the string 'i' makes the opening tag '<i>' and the closing tag '</i>' to
surround the string. Given the tag string and a list of strings, lst, write the function to return a new list of
HTML strings with tags around each string in lst.

• make_tag_list('i', ['Yay', 'Hello']) returns ['<i>Yay</i>', '<i>Hello</i>']
• make_tag_list('cite', ['Yay', 'cs']) returns ['<cite>Yay</cite>', '<cite>cs</cite>']

make_bricks(small, big, goal)

We want to make a row of bricks that is goal inches long. We have a number of small bricks (1 inch each)
and big bricks (5 inches each).
Return True if it is possible to make the goal by choosing from the given bricks. Note that not all the bricks
need to be used. This is a little harder than it looks and can be done without any loops.

• make_bricks(3, 1, 8) returns True
• make_ bricks(3, 1, 9) returns False
• make_bricks(3, 2, 10) returns True

2

Anagram

Your task is to write a program hw4_anagram.py that checks if two strings are anagrams). An anagram is a
type of word play, the result of rearranging the letters of a word or phrase to produce a new word or phrase,
using all the original letters exactly once.

This program should have a similar structure to the first program: you will define a few functions including
one called main. At the end of the program, you should have a call to main.

First write a remove_single method that takes a string and a character and returns the parameter string
with the character removed if it exists. If the character appears multiple times in the string, only a single
occurrence is removed.

For example

>>> remove_single('anagram', 'a')
'nagram'
>>> remove_single(remove_single(remove_single('anagram', 'a'), 'a'), 'a')
'ngrm'

Next write a function is_anagram that takes two strings and uses remove_single to determine if the two
strings are anagrams: is_anagram returns True if the two strings have exactly the same letters and may only
differ by white spaces and returns False if there are any difference in letters.

For example

>>> is_anagram("orchestra", "carthorse")
True
>>> is_anagram("orchestra", "courthouse")
False
>>> is_anagram("a decimal point", "im a dot in place")
True
>>> is_anagram("debit card", "bad credit")
True
>>> is_anagram("snooze alarms", "alas no more zzs")
False

Finally, write the main function. It should ask the user for two inputs and tells the user whether or not they
are anagrams. Here are two example executions.

Enter the first phrase: dormitory
Enter the second phrase: dirty room
Yes, these are anagrams!

Enter the first phrase: dormitory
Enter the second phrase: clean room
Sorry, these are not anagrams!

Extra Credit: Challenge Problem

Revisit the problem in hw2 in which you were asked to draw something with turtle following a drawing of
your own. This time, do the same thinking how functions can help your draw something more complex in a
file called hw4_challenge.py. You should at least define and call two drawing functions and use a diagram
to guide your code. You are required to bring to class your diagram that served you as a plan to receive
extra credit. (Chapter 6 of the textbook might be helpful.)

3

http://en.wikipedia.org/wiki/Anagram

	COSC 101 Homework 4 Spring 2016
	Instructions
	Part I: Small functions
	sum13
	slice67
	no_teen_sum and fix_teen
	double_reverse
	xyz_there
	Last small function

	Anagram
	Extra Credit: Challenge Problem

