
COSC 101 Lecture #7 Handout: Loops with If Statements Spring 2016

You have already learned about the following concepts:

• for loops over strings and sequences of numbers

• the accumulator pattern

• comparison operators (greater than, less than, etc.)

• the bool data type (values: True, False; operators: and, or, not)

• if statements

This handout presents several problems where solving them requires synthesizing several of these
concepts into a single program. The paper version of the handout states only the problems; another
version of the handout will be online after class with solutions: study it now as Exam 1 is coming.

1 Accumulator pattern (review)

The accumulator pattern is a general strategy for completing a task using a for loop. We can use
it to complete tasks involving strings where we accumulate a result by processing each character
of the string one at a time. Here are some key steps in applying the accumulator pattern:

1. Answer these key questions:

(a) What do you want to compute? What is the final result?

(b) Assuming the final result is a data value. What is its type?

(c) How can we build up the final result by processing one letter at a time?

2. Initialize an accumulator variable: make sure it has the right type!

3. Each time through the loop, update the accumulator variable.

4. When the loop finishes, the accumulator variable should contain the final result.

For example, this computes the length of a string by accumulating a count.

goal : print reversed copy of user ’s name
name = raw input("What is your name? ")

rev name = ’’ # accumulator variable wil l hold reversed name
for letter in name:

rev name = letter + rev name # update accumulator
when loop is over , rev name has reversed name!
print "Your name in reverse:", rev name

1 of 5

COSC 101 Lecture #7 Handout: Loops with If Statements Spring 2016

2 Conditional accumulators

A conditional accumulator uses the accumulator pattern but does not necessarily treat each item
in the sequence (i.e., each character in the string) the same. What it does is conditional on the
value of the item (i.e., character). In other words, you need to have an if statement inside the for
loop.

1. Write a program that asks the user to type a phrase and then reports the number of times the
letter “e” appears in the phrase. As an extra challenge, make your program case-insensitive:
the program reports the number of times the letter appeared, regardless of whether it appeared
as “e” or “E.”

Solution:

phrase = raw input("Enter a phrase: ")

count = 0 # accumulator
for ltr in phrase:

if ltr == ’e’ or ltr == ’E’:

count += 1

print "The letter ’e’ occurs", count, "times"

2. Write a program that asks the user for a phrase and disemvowels it (i.e., prints the phrase with
all the vowel letters removed). For example, if the user enters the phrase “The quick brown
fox jumps over the lazy dog” the program would print Th qck brwn fx jmps vr th lzy dg.

Solution:
f i r s t approach: use not operator to get non−vowels
phrase = raw input("Enter a phrase: ")

new phrase = ’’ # accumulator
for ch in phrase:

if not (ch==’a’ or ch==’e’ or ch==’i’ or ch==’o’ or ch==’u’):

new phrase = new phrase + ch # only accumulate non−vowels
print new phrase

alternative approach: i f statement i s d i f feren t
phrase = raw input("Enter a phrase: ")

new phrase = ’’

for ch in phrase:

if ch!=’a’ and ch!=’e’ and ch!=’i’ and ch!=’o’ and ch!=’u’:

new phrase = new phrase + ch

print new phrase

2 of 5

COSC 101 Lecture #7 Handout: Loops with If Statements Spring 2016

3 Search

There are many natural problems that can be characterized as search problems. Here, we look at
search over sequences. The basic idea is that we are given a sequence (say, a string of characters
typed by the user) and we want find out whether a particular pattern occurs in that sequence. This
kind of search problem is solved by using a loop over the sequence with variables that keep track
of whether or not you have found the item you are looking for.

3. Write a program that asks the user for two things: a phrase and a single letter. It then reports
whether or not that letter occurs in the phrase. As an extra challenge, solve this problem
without using a single int value – i.e., don’t count the occurrences of the letter. Examples:

Enter a phrase: Hello, world!

Enter a single letter: w

The letter w occurs in the phrase: ’Hello, world!’

Enter a phrase: Hello, world!

Enter a single letter: z

The letter z does not occur in the phrase: ’Hello, world!’

Solution: Here’s one version that counts the number of occurrences.

phrase = raw input("Enter a phrase: ")

target letter = raw input("Enter a single letter: ")

count = 0

for ltr in phrase:

if ltr == target letter:

count = count + 1

if count > 0:
print "The letter", target letter , "occurs in the",

print "phrase: ’" + phrase + "’"

else:

print "The letter", target letter , "does not occur in the",

print "phrase: ’" + phrase + "’"

Here’s another version that uses a boolean variable. Instead of counting the exact number
of occurrences, the boolean variable is simply keeping track of whether we’ve seen this
letter at all.

phrase = raw input("Enter a phrase: ")

3 of 5

COSC 101 Lecture #7 Handout: Loops with If Statements Spring 2016

target letter = raw input("Enter a single letter: ")

seen letter = False # we have not seen the l e t t e r yet
for ltr in phrase:

if ltr == target letter:

seen letter = True # we saw the l e t t e r !
if seen letter:

print "The letter", target letter , "occurs in the",

print "phrase: ’" + phrase + "’"

else:

print "The letter", target letter , "does not occur in the",

print "phrase: ’" + phrase + "’"

4. Write a program that asks the user for a phrase and then finds the largest letter in it. Remember
that “A” is the smallest letter, since capital letters are considered “less than” lowercase letters.
You can assume that the phrase contains at least one letter and that letter will be at least as
large as “A.” Thus, “A” is a good initial guess for the largest letter.

Solution:

phrase = raw input("Enter a phrase: ")

largest letter = ’A’ # smallest l e t t e r possible
for ltr in phrase:

if ltr > largest letter:
largest letter = ltr

print "The largest letter is ’" + largest letter + "’"

5. Write a short program that asks the user for a phrase and then prints whether the string contains
an “i” before an “e.” The “e” does not need to immediately follow the “i.” For example, both
“goodgrief” and “listen” contain an “i” before an “e.” (You can assume that the strings entered
are in lowercase.)

Solution:

phrase = raw input("Enter a phrase: ")

seen i = False

i before e = False

th is program uses a search pattern but i t i s
searching for two things : f i r s t i t searches for
an i , then i t searches for an e
for ltr in phrase:

if ltr == ’i’:

4 of 5

COSC 101 Lecture #7 Handout: Loops with If Statements Spring 2016

seen i = True

if ltr == ’e’ and seen i:

i before e = True

if i before e:

print "Yes, i comes before e in ’" + phrase + "’"

else:

print "No, i does not come before e in ’" + phrase + "’"

5 of 5

