
COSC 101 Handout #5: For Loops Using Range Spring 2016

1 Range function

The function range is another builtin function. It takes one argument and returns a sequence of
numbers. The length of the returned sequence is equal to the value of the argument: range(4)
returns a sequence of 4 numbers. In general, for some number n, the function call range(n) returns
the sequence 0, ..., n−1. The sequence is something called a list. We will learn about lists later.
For now, our only use of range will be inside for loops.

>>> range(4)
[0, 1, 2, 3]

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(0) # returns an empty sequence
[]

2 For loops using range

The last handout described the basics of the for statement. It showed how to loop over the charac-
ters of a string. Recall that a string is a sequence of characters. The output of range is a sequence
of numbers. It turns out that we can use a for statement to loop over any sequence. This loop prints
the numbers 0 to 9, each on a separate line.

for num in range(10):

print num

Examples

for i in range(10):

squared = i ∗ i

print(i , "^2 =", squared)

print(i)

#−−
print("This program will average numbers given by the user.")

how many numbers = eval(input("How many numbers do you want to average? "))

sum = 0.0 # i n i t i a l i z e accumulator variable

for x in range(how many numbers):

userNum = eval(input("Enter a number: "))

sum = sum + userNum # add current number

average = sum/how many numbers

print("The average is", average)

1 of 4

COSC 101 Handout #5: For Loops Using Range Spring 2016

3 Making complex patterns with for loops

The for statement is a powerful tool with many applications. A for loop repeats the same body of
code over and over: the challenge is to figure out how to express what you want to do as repetitive
application of some pattern. Here we look at a fun application: text art. We can use the for
statement to write a program that draws a “vee” shape like this:

.........

.......

.....

...

.

The pattern is actually made up of two characters: not only dots, but also spaces. The number of
each varies by line. We can use a for loop to print this pattern: each time through the loop we will
print one line of text. The challenge is figuring out how many dots and spaces to print on each line.

for line in range(5):

spaces = # how many??
dots = # how many??
print ’ ’ ∗ spaces + ’.’ ∗ dots

The pattern for spaces is pretty easy: there are 0 on the first line, 1 on the second, 2 on the third,
and so on. Therefore, the number of spaces is equal to the value of the loop variable line. To help
us figure out the pattern for the dots, we can use a loop table.

line dots -2 * line -2 * line + 9

0 9 0 0 + 9
1 7 -2 -2 + 9
2 5 -4 -4 + 9
3 3 -6 -6 + 9
4 1 -8 -8 + 9

The first thing to is figure out the rate of change: each time the line goes up by 1, the number of
dots goes down by 2. The expression −2 ∗ line has the desired rate of change but the numbers
are off. In fact, every number is off by exactly 9. To complete the formula, we can add 9 to the
expression: −2 ∗ line + 9 yields the correct number of dots for every line.

for line in range(5):

spaces = line

dots = −2 ∗ line + 9

print ’ ’ ∗ spaces + ’.’ ∗ dots

2 of 4

COSC 101 Handout #5: For Loops Using Range Spring 2016

To make this more interesting, allow the size of the vee to vary. Here is size 3:
.....

...

.

Here is size 4:
.......

.....

...

.

The size affects the pattern in two ways: the number of lines, and the number of dots on the first
line. To figure out how the number of dots changes as a function of size, we again use a loop table.

size dots on first row 2 * size 2 * size - 1

3 5 6 6 - 1
4 7 8 8 - 1
5 9 10 10 - 1

size = int(raw input("Enter a size (1 or larger): "))

for line in range(size): # loop repeats s ize times
spaces = line

dots = −2 ∗ line + (2 ∗ size − 1) # number of dots depends on size
print ’ ’ ∗ spaces + ’.’ ∗ dots

3 of 4

COSC 101 Handout #5: For Loops Using Range Spring 2016

4 In class exercise

Enter a size (1 or larger): 4

Staircase:

------//..\\------

----//......\\----

--//..........\\--

//..............\\

Enter a size (1 or larger): 6

Staircase:

----------//..\\----------

--------//......\\--------

------//..........\\------

----//..............\\----

--//..................\\--

//......................\\

size = int(raw input("Enter a size (1 or larger): "))

print "Staircase:"

for line in range(size):

dashes = −2∗line + (2∗size−2)

dots = 4∗line + 2

print ’−’∗dashes + ’//’ + ’.’∗dots + ’\\\\’ + ’−’∗dashes

4 of 4

