
COSC 101 Handout #30: Recursion, Part 2 Spring 2016

1 Recursive functions

Recall from the previous handout that every recursive solution has this structure:

(1) base case, where the problem is simple enough to be solved directly

(2) recursive case, which has three components

(a) divide problem into one or more simpler or smaller parts of the problem,

(b) call the function (recursively) on at least one part, and

(c) combine the solutions of the parts into a solution for the problem

2 Hand tracing recursive function call

This recursive function is called m for mystery. It does not compute anything interesting... but
it’s a good function on which to practice hand-tracing the recursion. In other words, execute this
function by hand (no computer) and try to figure out what it will print.

def m(n):

if n < 0:
m(−n)

elif n < 10:
print n,

else:

m(n / 10)

digit = n % 10

print ",", digit % 3,

Hand-tracing a recursive function call can be difficult, but it is very important you understand how
python executes a recursive function. Using indentation can help, as in these examples.

m(743):

m(74):

m(7):

print 7

digit = 4

print , 1

digit = 3

print , 0

Therefore, m(743) prints 7, 1, 0.

1 of 5

COSC 101 Handout #30: Recursion, Part 2 Spring 2016

3 Writing recursive functions

If you are asked to solve a problem using recursion, follow these steps:

1) (Doc) Write the docstring first... trust me, it helps!

2) (Base) Figure out the base case: think of inputs where the answer is easy. If the input is a
number, this is often 0 or 1. If it’s a list or a string, this is often the empty string or list, or
sometimes a string/list with just one letter/item.

3) For the recursive case:

a) (Divide) Break the problem into two pieces: a piece you can “handle” easily and another
piece which is a smaller version of the same problem.

b) (Recurse) Follow the “have faith” principle. Make a recursive call and have faith the function
will work correctly. This is where the docstring is helpful.

c) (Combine) Take the result of the recursive call and the solution to the other smaller piece
and combine them into a complete solution.

Exercises

Some solutions are presented in class and also included in the moodle version of this handout.

1. Write a recursive function count e that takes a string s and returns the number of times ’e’
occurs in s.

Solution:

def count e(s):

’’’(str) −> int
Returns the number of times ’e’

occurs in s.

>>> count e(’abc’)
0

>>> count e(’bees knees’)
4

’’’

if len(s) == 0:

return 0

elif s[0] == ’e’:

return 1 + count e(s[1:])

else:

return count e(s[1:])

2 of 5

COSC 101 Handout #30: Recursion, Part 2 Spring 2016

2. Write a recursive function reverse that takes a string s and returns the string in reverse.

Solution:

def reverse(s):

’’’(str) −> str
Returns the reverse of s.

>>> reverse(’abc’)
’cba’

>>> reverse(’bees’)
’seeb’

’’’

if len(s) == 0:

return ’’

else:

first = s[0]

rest = s[1:]

rev of rest = reverse(s[1:])

return rev of rest + first

3. Write a recursive function no duplicate e that takes a string s and returns the string after re-
placing all duplicate occurrences of ’e’ with a single ’e’. So no duplicate e(’eeee zeee’)
returns ’e ze’.

Solution:
def no duplicate e(s):

’’’(str) −> str
Returns s after replacing all duplicate occurrences

of ’e’ with a single ’e’.

>>> no duplicate e(’abc’)
’abc’

>>> no duplicate e(’free bees pleez’)
’fre bes plez’

’’’

if len(s) <= 1: # s can ’ t have duplicates
return s

else: # s has at least TWO characters
first = s[0]

rest = s[1:]

no dupes rest = no duplicate e(rest)

don’ t add f i r s t to resul t i f i t wi l l
create a duplicate ’e ’
if first == ’e’ and no dupes rest[0] == ’e’:

3 of 5

COSC 101 Handout #30: Recursion, Part 2 Spring 2016

return no dupes rest

else:

return first + no dupes rest

4. Write a recursive function mirror that takes a string s and returns the string in “mirrored”, as
in mirror(’ah’) returns ’ahha’.

Solution:

def mirror(s):

’’’(str) −> str
Returns the mirror of s.

>>> mirror(’abc’)
’abccba’

>>> mirror(’bees’)
’beesseeb’

’’’

if len(s) == 0:

return ’’

else:

first = s[0]

rest = s[1:]

mirror rest = mirror(s[1:])

return first + mirror rest + first

5. Write a recursive function duplicate that takes a string s and returns the string with each letter
duplicated, as in duplicate(’ah’) returns ’aahh’.

Solution:

def duplicate(s):

’’’(str) −> str
Returns s with each letter duplicated.

>>> duplicate(’abc’)
’aabbcc’

>>> duplicate(’bees’)
’bbeeeess’

’’’

if len(s) == 0:

return ’’

else:

first = s[0]

4 of 5

COSC 101 Handout #30: Recursion, Part 2 Spring 2016

rest = s[1:]

dup rest = duplicate(s[1:])

return first∗2 + dup rest

Definition of recursion adapted from NIST, http://xlinux.nist.gov/dads//HTML/recursion.html. Mystery
function adapted from Stuart Reges.

5 of 5

