
COSC 101 Handout #3: Function Calls Spring 2016

1 Function calls

A function is a named sequence of statements that performs a computation. Later, we will learn
how to define our own functions. For now, we learn how to call functions that were written by
another programmer.

Function calls have the following form:

function name(arguments)

How python executes a function call:

1. Evaluate the arguments.

2. Call the function, passing in the argument values.

3. Perform the computation of the function and return the resulting value.

Terminology:

• argument: a value given to a function

• pass: to provide to a function

• call: to ask python to evaluate a function

• return: to pass back a value (the result of the function’s evaluation)

In this example, the function pow is called. The arguments 3 and 4 are passed to pow. The function
pow computes three raised to the power of four and returns the value 81.

>>> pow(3, 4)

81

1.1 Built-in functions

>>> int(2.3) # makes a new int from argument, if possible

2

>>> float(2) # makes a new float from argument, if possible

2.0

>>> x = int(4.3)

>>> type(x) # returns the argument’s type

<type ’int’>

>>> max(-30, 12, 4.0, 6.75) # returns largest argument

12

>>> min(-30, 12, 4.0, 6.75) # returns smallest argument

-30

>>> abs(-30) # returns absolute value of argument

30

1 of 2

COSC 101 Handout #3: Function Calls Spring 2016

1.2 Help function

The help function takes one argument, such as the name of a function, and displays documentation.

>>> help(abs)

Help on built-in function abs in module __builtin__:

abs(...)

abs(number) -> number

Return the absolute value of the argument.

In the help documentation, arguments in brackets, such as z below, are optional.

>>> help(pow)

Help on built-in function pow in module __builtin__:

pow(...)

pow(x, y[, z]) -> number

With two arguments , equivalent to x**y. With three arguments ,

equivalent to (x**y) % z, but may be more efficient (e.g. for longs).

Example:

>>> pow(2, 4)

16

>>> pow(2, 4, 3)

1

1.3 Functions in expressions and expressions in functions

An expression can include not only operators, values, and variables, but also function calls.

>>> max(3, 4) * 2 + abs(-3)

8

Thus, we can revise our definition of an expression: An expression is a combination of operators,
values, variables and function calls that python can evaluate, resulting in a single value.

So, functions can appear in expressions. In addition, expressions can appear in the arguments to a
function.

>>> max(3 ** 4, 4 ** 3)

81

>>> min(3 ** 4, 4 ** 3)

64

General principle: anywhere you can put a data value, you can put an expression. This is because
python will evaluate the expression to produce a data value. The examples above illustrate this
principle: one of the arguments to max is the expression 3 ∗∗ 4 which evaluates to the number 81.

2 of 2

