
COSC 101 Handout #20: Program Design, Part 2 Spring 2016

This handout continues an example that was started in the previous handout.

1 Playing multiple games

We would like to enhance our game so that once a single game is finished, we prompt the user to
play to see if he/she wants to play again. Below are two possible ways to add the “play again”
feature to our program. Both examples play a game that is even simpler than mastermind: it’s a
“guess a number” game where the computer selects 13 as the secret number and the user has three
chances to guess the secret number.

Version 1 Version 2

def play again():
answer = raw input("Play again? ")
return answer == ’y’

def play game():
secret = ’13’

num guesses = 0

while num guesses < 3:
guess = raw input("Guess: ")
if guess == secret:

break
num guesses += 1

if guess == secret:
print "You win!"

else:
print "You lose!"

def play games():
keep playing = True

while keep playing:
play game()

keep playing = play again()

print "Well, fine, see ya later!"

play games()

def play again():
answer = raw input("Play again? ")
if answer == ’y’:

play game()

print "Well, fine, see ya later!"

def play game():
secret = ’13’

num guesses = 0

while num guesses < 3:
guess = raw input("Guess: ")
if guess == secret:

break
num guesses += 1

if guess == secret:
print "You win!"

else:
print "You lose!"

play again()

play game()

Which version has a better program design? The answer is on the back of this handout, but don’t
peek!

1 of 2



COSC 101 Handout #20: Program Design, Part 2 Spring 2016

Version 1 is better than Version 2. The main reason is because the functions have a hierarchical
structure, as shown in this diagram. Each box is a function and there is an arrow from box A to
box B if function A calls function B.

play_games

play_game

play_again

In contrast, Version 2 is non-hierarchical:

play_game play_again play_game play_again ...

With Version 2, python never “leaves” the first game. In fact, if you play 4 games and then decide
to stop, you will see that Well, fine, see ya later! is printed four times!

Furthermore, in Version 2, the play game function not SOFA because it does more than one thing:
it not only plays a single game, but it actually initiates the process of playing multiple games.

2 Exercises
Solutions are presented in class and also included in the moodle version of this handout. All of
these questions are in the context of the game of mastermind.

1. Write a function count exact that takes in a guess and a secret code and counts the number of
exact matches (correct color, correct place) – in other words, red pins.

2. Write a function count inexact that takes in a guess and a secret code and counts the number
of inexact matches (correct color, incorrect place) – in other words, white pins. Avoid double
counting exact matches!

3. Write a function is valid that takes in a guess, which is a string, and returns True if the guess
is valid and False otherwise. A guess is valid if it contains 4 characters consisting only of the
letters R, G, B, Y, P, and O.

4. Write a function prompt user that repeatedly prompts the user for a guess until they enter a
valid guess. This function should call is valid. This function should not take any parameters
and it should return a string, corresponding to a valid user guess.

5. Write a function generate code that randomly generates a secret code. The secret code should
be exactly four characters randomly selected (with replacement) from letters R, G, B, Y, P, and
O. Hint: import the randommodule use random.randint(0,5) to randomly generate a number
between 0 and 5 (inclusive) and use this random number to index into the string ’RGBYPO’.

6. Put all of these pieces together into a play game function that plays a single game of master-
mind. Then write a program that prompts the user to play mastermind and then re-prompts
them to play again after the game ends.

2 of 2


