
COSC 101 Handout #26: Dictionaries, Part 1 Spring 2016

A dictionary can be used to store data. Whereas a list stores an arbitrary colletion of items, a
dictionary stores key-value pairs. The running example here is a dictionary that maps stock ticker
symbols to prices. The ticker symbol is the key, the price is the value.

• Keys must be unique. E.g., two stocks cannot have the same ticker symbol.

• Keys must be an immutable type. E.g., int, float, str but not list.

• Values are not necessarily unique. E.g., two stocks might have the same price.

To create an empty dictionary, use curly braces.

>>> stocks = { } # curly braces create an empty dictionary

To initialize a dictionary with a set of key value pairs, the syntax is this.

>>> stocks = { ’FB’:20, ’MSFT’:28, ’GOOG’:652, ’AAPL’:537 } # i n i t i a l i z e w / 4 stocks
>>> stocks
{’GOOG’: 652, ’FB’: 20, ’AAPL’: 537, ’MSFT’: 28}

Notice how python does not preserve the order of the stocks, nor are they sorted alphabetically.
Unlike lists and strings, dictionaries are not ordered.

Getting and modifying values
>>> stocks[’FB’] # get value associated with key
20

>>> stocks[’ZNGA’] = 2 # add new key , value p a i r
>>> stocks[’ZNGA’]
2

>>> stocks # can see that ZNGA has been added
{’GOOG’: 652, ’ZNGA’: 2, ’FB’: 20, ’AAPL’: 537, ’MSFT’: 28}

>>> stocks[’ZNGA’] = 3 # replace value associated with key
>>> stocks[’ZNGA’]
3

>>> stocks # s t i l l only one ZNGA, now with new price
{’GOOG’: 652, ’ZNGA’: 3, ’FB’: 20, ’AAPL’: 537, ’MSFT’: 28}

>>> stocks[’FB’] = stocks[’FB’] + 9 # update value associated with key
>>> stocks[’FB’]
29

Operators and methods
>>> len(stocks) # returns number of key , value pairs
5

>>> ’GOOG’ in stocks # can use in operator , jus t l i ke l i s t s
True

>>> ’GOOGLE’ in stocks
False

>>> 652 in stocks # in operator only checks keys , not values

1 of 4

COSC 101 Handout #26: Dictionaries, Part 1 Spring 2016

False

>>> stocks.pop(’ZNGA’) # remove key , value pair
3

>>> stocks
{’GOOG’: 652, ’FB’: 29, ’AAPL’: 537, ’MSFT’: 28}

>>> stocks.keys() # returns l i s t of keys
[’GOOG’, ’FB’, ’AAPL’, ’MSFT’]

>>> stocks.values() # returns l i s t of values
[652, 29, 537, 28]

>>> stocks.items() # returns l i s t of (key , value) tuples
[(’GOOG’, 652), (’FB’, 29), (’AAPL’, 537), (’MSFT’, 28)]

Iteration
You can loop over the keys of a dictionary, like this.

>>> stocks = { ’FB’:20, ’MSFT’:28, ’GOOG’:652}
>>> for k in stocks:
... print k, # print jus t the key (t icker symbol)
GOOG FB MSFT

>>> for k in stocks:
... print stocks[k], # print jus t the value (stock price)
652 20 28

>>> for k in stocks:
... print k, stocks[k] # print both key (t icker symbol) and value (stock price)
GOOG 652

FB 20

MSFT 28

You can also loop over the lists returned by the keys, values, and items methods.

Exercises

Some solutions are presented in class and also included in the moodle version of this handout.

1. Given a list of ticker symbols, add each ticker symbol to stocks with a price of 10.

Solution:

stocks = { ’FB’:20, ’MSFT’:28, ’GOOG’:652, ’AAPL’:537 }

tickers = [’AMZN’, ’NFLX’]

for symbol in tickers:

stocks[symbol] = 10

2 of 4

COSC 101 Handout #26: Dictionaries, Part 1 Spring 2016

2. Increase the price of ’GOOG’ price by 10%. However, if ’GOOG’ is not in the dictionary, add it
with a price of 1000.

Solution:

stocks = { ’FB’:20, ’MSFT’:28, ’GOOG’:652, ’AAPL’:537 }

write code to increase the price of ’GOOG’ price by 10%.
however , i f ’GOOG’ not in stocks , add i t with a price of
1000.
if ’GOOG’ not in stocks:

stocks[’GOOG’] = 1000

else:

stocks[’GOOG’] = stocks[’GOOG’] ∗ 1.10

3. Write a function max price that takes a dictionary of stocks and returns the highest stock price.

Solution:

def max price(stocks):

’’’(dict of { str:int }) −> int
Given dictionary that maps stocks symbols to price, returns

highest stock price.

>>> stocks = { ’GOOG’:652,’FB’:20,’AAPL’:537,’MSFT ’:26 }
>>> max price(stocks)
652

’’’

return max(stocks.values())

4. Write a function priciest stock that takes a dictionary of stocks and returns the ticker symbol
of the stock with the highest stock price.

Solution:

def priciest stock(stocks):

’’’(dict of { str:int }) −> str
Given dictionary that maps stocks symbols to price, returns

the ticker symbol of the stock with the highest stock price.

>>> stocks = { ’GOOG’:652,’FB’:20,’AAPL’:537,’MSFT ’:26 }
>>> priciest stock(stocks)
’GOOG’

3 of 4

COSC 101 Handout #26: Dictionaries, Part 1 Spring 2016

’’’

max price = −1

priciest = None

for ticker in stocks:

price = stocks[ticker]

if price > max price:
max price = price

priciest = ticker

return priciest

5. Write a function pricey stocks that takes a dictionary and a cutoff (an int) and returns a list
of ticker symbols whose price is above the cutoff.

Solution:

def pricey stocks(stocks, cutoff):

’’’(dict of { str:int }, int) −> list of str
Given dictionary that maps stocks symbols

to price, returns list of stocks whose price

is above cutoff.

>>> stocks = { ’GOOG’:652,’FB’:20,’AAPL’:537,’MSFT ’:26 }
>>> pricey stocks(stocks, 500)
[’GOOG’, ’AAPL’]

’’’

pricey = []

for ticker in stocks:

if stocks[ticker] > cutoff:
pricey.append(ticker)

return pricey

4 of 4

