COSC 101 Handout #37: Review for final exam, part 2 Fall 2014

Review for final exam

Some of these exercises are fairly challenging. On the final exam, you can expect that we will ask
a few more challenging programming questions in which you might have to tackle more complex
problems, writing helper functions, etc.

1. Given a birthday month dictionary such as:

{ 'February' : {13 : ['Catherine'l},
'May' : {3 : ['Katie'], 8 : ['Peter', 'Ed'1l},
'December' : {12 : ['Sharon'l, 22 : ['Owen']}

}

Write a function that takes a birthday month dictionary and returns a list of month names where
a month is included if and only if every birthday in that month is unique — i.e., no two people

share a birthday in that month. On above example, function would return ['February', 'December'].

Solution:

def all_unique (bdm):
Given a birthday month dictionary bdm, this
returns a list of month names for those months
where every birthday in that month is unique — i.e.,
no two people share a birthday in that month.
>>> bdm = {”February” : {13 : [”Catherine”]}, "May” : {3 : [”Katie”],| 8
>>> all _unique (bdm)
['December ', 'February']
months = []
for month in bdm:
unique = True
for day in bdm[month]:
if len(bdm[month][day]) > 1:
unique = False
if unique:
months.append (month)
return months

1of7

: [’ Peter

COSC 101 Handout #37: Review for final exam, part 2 Fall 2014
For the next two questions, suppose we have a list of numbers where each number represents the
points earned on a basketball player’s shooting attempt. Thus, the value of the number is either:

e (- amiss

e | - a made free throw

e 2 - amade 2 pointer

e 3 - a bucket from downtown!

We are interested in calculating the number of shooting streaks. We’ll write a few versions using
different definitions of a shooting streak.

2. Write a function streaks that takes such a list and returns the number of shooting streaks. A
streak is defined as one or more consecutive baskets. Examples:

>>> streaks([0,3,2,1,3,0])
1
>>> streaks([0,3,2,1,0,3])
2

Solution:

def streaks(shots):
"""(list of int) —> int
shots is a list of numbers that represent
the points earned by a basketball player's
shooting attempts.

Returns the number of shooting streaks —
the number of times the player made one or more
shots in a row.

>>> streaks([0,3,2,1,3,0])
1
>>> streaks([0,3,2,1,0,3])
2
streaks = 0
in_streak = False
for shot in shots:
if shot > ® and not in_streak:
streaks += 1
in_streak = True
elif shot == 0:
in_streak = False
return streaks

20f7

COSC 101 Handout #37: Review for final exam, part 2 Fall 2014

3. Same as previous question but this time a streak is defined as a sequence of three or more
consecutive baskets. Examples:

>>> streaks([0,3,2,2,2,1,3,0])

1

>>> streaks([0,3,2,2,0,3,2])

1

>>> streaks([3,2,1,0,3,3,3,0,0,0,2,1,1])
3

Solution:

def streaks(shots):
"""(list of int) —> int
shots is a list of numbers that represent
the points earned by a basketball player's
shooting attempts.

Each number in the list represents a single
shot attempt. The value of the number is
either:

0 — a miss

1 — a made free throw

2 — a made 2 pointer

3 — a bucket from downtown!

streaks returns the number of shooting streaks —
the number of times the player made two or more
shots in a row.

>>> streaks([0,0,3,2,2,0,0])
1
>>> streaks([1,2,3,3,0,2,2,3,0,1,1,2])
3
streaks = 0
curr_streak = 0
for shot in shots:
if shot > 0:
curr_streak += 1
else:
curr_streak = 0 # streak ends

30f7

COSC 101 Handout #37: Review for final exam, part 2 Fall 2014

if curr_streak == 2:
streaks += 1
return streaks

4. Write a function find match that takes two parameters, a string s and another string pattern,
and returns the index of the first occurrence of patternin s, or -1 if it does not occur.

The pattern is a string, possibly with wildcards. The wildcard character * can match any single
character.

Examples:

>>> find_match('xyzabcd', 'bxd")
4

>>> find_match('abcd', 'axxd')

0

>>> find_match('abcd', 'bxxd')
-1

For this problem, you must write a helper function. Hint: consider taking a substring of s that
is exactly the same length as pattern and checking to see if that substring is a match for the
pattern. If we repeat this for each substring of s we can find the match (if one exists).

Solution:

def is_match(s, p):
""'(str, str) —> bool
Returns True if s matches p where p
may have wild cards.
>>> [s_match('bed’, 'bxd')
True
>>> is_match('bcd’', 'bd+')
False

rr

matches = 0

if different lengths can't match
if len(s) != len(p):
return False

this loop assumes they are the same length
for i in range(len(s)):

if s[i] == p[i] or p[i] == =
matches += 1

4 0of 7

COSC 101 Handout #37: Review for final exam, part 2 Fall 2014

return matches == len(s)

def find_match(s, pattern):

rrr

Return index of first occurrence of pattern
in string s, or —1 if pattern does not occur.

Pattern is a string, possibly with wildcards.
The wildcard character % can match any single

character.

>>> find_match('xyzabed', 'bxd’)

4

>>> find_match('abed’', 'axxd')

0

>>> find_match('abed’, 'bxxd’)

-1

be careful about indexing... we don't need to

go all the way to end of s because we need at
least len(pattern) characters to find a match
for i in range(len(s) — len(pattern) + 1):
if is_match(s[i:i+len(pattern)], pattern):
return i
return —1

5. For this question, imagine that we have a list of votes for prettiest spring campus. It might
look something like this:

votes = ['colgate', 'dartmouth', 'colgate', 'UVA', 'cornell']

(a) Write a function that takes in a list of votes and returns the name of the school that
received the most votes. You cannot use any list methods (e.g., count).

(b) Write a function that takes in a list of votes and a number k and returns a list of the names
of the top k most popular schools. (Don’t worry about ties in the k" position.)

(c) Same as the previous question, but revise the function so that any school that is tied for
the k™ most votes is included in the final list. The list might end up being more than k
names long. For example, on the list above, the function would return the whole list when
k = 2 because there are three schools tied for the second spot.

Solution:

5of7

COSC 101 Handout #37: Review for final exam, part 2

Fall 2014

helper function
def counter(L):
"""(list of str) —> dict of str:int
Returns a dictionary mapping each string in L
to the number of times it occurs in L.
>>> counter(['a’, 'b’, 'b', 'c¢c’', 'b', 'a'])
{'‘a'> 2, '¢c': 1, 'b': 3}
counts = {}
for item in L:
if item in counts:
counts[item] += 1
else:
counts[item] = 1
return counts

def mode(L):

""'(list of str) —> str
Returns most frequently occurring string in L.
>>> mode(['a’, 'b', 'b', 'c¢', 'b', 'a'])
b
vy
counts = counter (L)
max_count = max(counts.values())
for item in counts:

if counts[item] == max_count:

return item

def top_k(L, k):
"""(list of str, int) —> list of str

>>> top_k(['a’, 'b', 'b', '¢', 'b', 'a’'], 1)

['b']

>>> top_k(['a’, 'b', 'b', 'c¢c', 'b', 'a'], 2)
[!b!’ !a!]

counts = counter (L)

pairs = []

for item, count in counts.items():
pairs.append([count, item]) # decorate

pairs.sort() # sort

pairs.reverse()

Returns the top k most frequently occurring strings in L.

6of 7

COSC 101 Handout #37: Review for final exam, part 2 Fall 2014

top_k = pairs[:k]
for i in range(len(top._k)):

top_k[i] = top_k[il[1] # undecorate
return top._k

def top_k_with_ties(L, k):
"""(list of str, int) = list of str
Returns the top k most frequently occurring strings in L,
including ties at the kth position.
>>> top_k_with_ties(['a’, 'b', 'b', 'c¢', 'b', 'a'], 1)

['b']
>>> top_k_with_ties(['a’, 'b', 'b', '¢', 'b', 'a'], 2)
[/bl, !a(]

>>> top_k_with_ties(['a’, '¢c', 'b', '¢', 'b', 'a’, 'd'], 2)
['c’, 'b', 'a']
counts = counter (L)
pairs = []
for item, count in counts.items():
pairs.append([count, item]) # decorate
pairs.sort() # sort
pairs.reverse()
top_k = []
kth_count = —1
for pair in pairs:
if len(top_k) < k or pair[0] == kth_count:
top_k.append(pair[1]) # undecorate
kth_count = pair[0]
return top._k

7 of 7

