
COSC 101 Handout #37: Review for final exam, part 2 Fall 2014

Review for final exam

Some of these exercises are fairly challenging. On the final exam, you can expect that we will ask
a few more challenging programming questions in which you might have to tackle more complex
problems, writing helper functions, etc.

1. Given a birthday month dictionary such as:

{ ' February ' : {13 : [' Catherine ']},
' May ' : {3 : [' Katie '], 8 : [' Peter ' , ' Ed ']},
' December ' : {12 : [' Sharon '], 22 : [' Owen ']}
}

Write a function that takes a birthday month dictionary and returns a list of month names where
a month is included if and only if every birthday in that month is unique – i.e., no two people
share a birthday in that month. On above example, function would return ['February', 'December'].

Solution:

def all unique(bdm):

”””
Given a birthday month dictionary bdm, th is
returns a l i s t of month names for those months
where every birthday in that month is unique −− i . e . ,
no two people share a birthday in that month .
>>> bdm = {”February” : {13 : [”Catherine ”]} , ”May” : {3 : [”Katie”] , 8 : [”Peter”, ”Ed”]} , ”December” : {12 : [”Sharon”] , 22 : [”Owen”] } }
>>> all unique (bdm)
['December ' , 'February ']
”””
months = []

for month in bdm:

unique = True

for day in bdm[month]:

if len(bdm[month][day]) > 1:
unique = False

if unique:

months.append(month)

return months

1 of 7

COSC 101 Handout #37: Review for final exam, part 2 Fall 2014

For the next two questions, suppose we have a list of numbers where each number represents the
points earned on a basketball player’s shooting attempt. Thus, the value of the number is either:

• 0 - a miss

• 1 - a made free throw

• 2 - a made 2 pointer

• 3 - a bucket from downtown!

We are interested in calculating the number of shooting streaks. We’ll write a few versions using
different definitions of a shooting streak.

2. Write a function streaks that takes such a list and returns the number of shooting streaks. A
streak is defined as one or more consecutive baskets. Examples:

>>> streaks([0,3,2,1,3,0])
1

>>> streaks([0,3,2,1,0,3])
2

Solution:

def streaks(shots):

' ' ' (l i s t of in t) −> in t
shots i s a l i s t of numbers that represent
the points earned by a basketball player ' s
shooting attempts .

Returns the number of shooting streaks −−
the number of times the player made one or more
shots in a row.

>>> streaks ([0 ,3 ,2 ,1 ,3 ,0])
1
>>> streaks ([0 ,3 ,2 ,1 ,0 ,3])
2
' ' '
streaks = 0

in streak = False

for shot in shots:

if shot > 0 and not in streak:
streaks += 1

in streak = True

elif shot == 0:

in streak = False

return streaks

2 of 7

COSC 101 Handout #37: Review for final exam, part 2 Fall 2014

3. Same as previous question but this time a streak is defined as a sequence of three or more
consecutive baskets. Examples:

>>> streaks([0,3,2,2,2,1,3,0])
1

>>> streaks([0,3,2,2,0,3,2])
1

>>> streaks([3,2,1,0,3,3,3,0,0,0,2,1,1])
3

Solution:

def streaks(shots):

' ' ' (l i s t of in t) −> in t
shots i s a l i s t of numbers that represent
the points earned by a basketball player ' s
shooting attempts .

Each number in the l i s t represents a single
shot attempt . The value of the number is
ei ther :

0 − a miss
1 − a made free throw
2 − a made 2 pointer
3 − a bucket from downtown!

streaks returns the number of shooting streaks −−
the number of times the player made two or more
shots in a row.

>>> streaks ([0 ,0 ,3 ,2 ,2 ,0 ,0])
1
>>> streaks ([1 ,2 ,3 ,3 ,0 ,2 ,2 ,3 ,0 ,1 ,1 ,2])
3
' ' '
streaks = 0

curr streak = 0

for shot in shots:

if shot > 0:
curr streak += 1

else:

curr streak = 0 # streak ends

3 of 7

COSC 101 Handout #37: Review for final exam, part 2 Fall 2014

if curr streak == 2:

streaks += 1

return streaks

4. Write a function find match that takes two parameters, a string s and another string pattern,
and returns the index of the first occurrence of pattern in s, or -1 if it does not occur.

The pattern is a string, possibly with wildcards. The wildcard character * can match any single
character.

Examples:

>>> find match(' xyzabcd ' , ' b*d ')
4

>>> find match(' abcd ' , ' a**d ')
0

>>> find match(' abcd ' , ' b**d ')
−1

For this problem, you must write a helper function. Hint: consider taking a substring of s that
is exactly the same length as pattern and checking to see if that substring is a match for the
pattern. If we repeat this for each substring of s we can find the match (if one exists).

Solution:

def is match(s, p):

' ' ' (str , s t r) −> bool
Returns True i f s matches p where p
may have wild cards .
>>> is match (' bcd ' , 'b*d ')
True
>>> is match (' bcd ' , 'bd* ')
False
' ' '
matches = 0

i f d i f f eren t lengths can ' t match
if len(s) != len(p):

return False

th is loop assumes they are the same length
for i in range(len(s)):

if s[i] == p[i] or p[i] == ' * ' :
matches += 1

4 of 7

COSC 101 Handout #37: Review for final exam, part 2 Fall 2014

return matches == len(s)

def find match(s, pattern):

' ' '
Return index of f i r s t occurrence of pattern
in string s , or −1 i f pattern does not occur .

Pattern is a string , possibly with wildcards .
The wildcard character * can match any single
character .

>>> find match (' xyzabcd ' , 'b*d ')
4
>>> find match (' abcd ' , 'a**d ')
0
>>> find match (' abcd ' , 'b**d ')
−1
' ' '
be careful about indexing . . . we don ' t need to
go al l the way to end of s because we need at
least len (pattern) characters to find a match
for i in range(len(s) − len(pattern) + 1):

if is match(s[i:i+len(pattern)], pattern):

return i

return −1

5. For this question, imagine that we have a list of votes for prettiest spring campus. It might
look something like this:

votes = [' colgate ' , ' dartmouth ' , ' colgate ' , ' UVA ' , ' cornell ']

(a) Write a function that takes in a list of votes and returns the name of the school that
received the most votes. You cannot use any list methods (e.g., count).

(b) Write a function that takes in a list of votes and a number k and returns a list of the names
of the top k most popular schools. (Don’t worry about ties in the kth position.)

(c) Same as the previous question, but revise the function so that any school that is tied for
the kth most votes is included in the final list. The list might end up being more than k
names long. For example, on the list above, the function would return the whole list when
k = 2 because there are three schools tied for the second spot.

Solution:

5 of 7

COSC 101 Handout #37: Review for final exam, part 2 Fall 2014

helper function
def counter(L):

' ' ' (l i s t of s t r) −> dict of s t r : in t
Returns a dictionary mapping each string in L
to the number of times i t occurs in L.
>>> counter (['a ' , 'b ' , 'b ' , ' c ' , 'b ' , 'a '])
{ ' a ' : 2 , ' c ' : 1 , 'b ' : 3}
' ' '
counts = { }

for item in L:

if item in counts:

counts[item] += 1

else:

counts[item] = 1

return counts

def mode(L):

' ' ' (l i s t of s t r) −> s t r
Returns most frequently occurring string in L.
>>> mode(['a ' , 'b ' , 'b ' , ' c ' , 'b ' , 'a '])
'b '
' ' '
counts = counter(L)

max count = max(counts.values())

for item in counts:

if counts[item] == max count:

return item

def top k(L, k):

' ' ' (l i s t of str , in t) −> l i s t of s t r
Returns the top k most frequently occurring strings in L.
>>> top k (['a ' , 'b ' , 'b ' , ' c ' , 'b ' , 'a '] , 1)
['b ']
>>> top k (['a ' , 'b ' , 'b ' , ' c ' , 'b ' , 'a '] , 2)
['b ' , 'a ']
' ' '
counts = counter(L)

pairs = []

for item, count in counts.items():

pairs.append([count, item]) # decorate
pairs.sort() # sort
pairs.reverse()

6 of 7

COSC 101 Handout #37: Review for final exam, part 2 Fall 2014

top k = pairs[:k]

for i in range(len(top k)):

top k[i] = top k[i][1] # undecorate
return top k

def top k with ties(L, k):

' ' ' (l i s t of str , in t) −> l i s t of s t r
Returns the top k most frequently occurring strings in L,
including t i e s at the kth position .
>>> top k with t ies (['a ' , 'b ' , 'b ' , ' c ' , 'b ' , 'a '] , 1)
['b ']
>>> top k with t ies (['a ' , 'b ' , 'b ' , ' c ' , 'b ' , 'a '] , 2)
['b ' , 'a ']
>>> top k with t ies (['a ' , ' c ' , 'b ' , ' c ' , 'b ' , 'a ' , 'd '] , 2)
[' c ' , 'b ' , 'a ']
' ' '
counts = counter(L)

pairs = []

for item, count in counts.items():

pairs.append([count, item]) # decorate
pairs.sort() # sort
pairs.reverse()

top k = []

kth count = −1

for pair in pairs:

if len(top k) < k or pair[0] == kth count:
top k.append(pair[1]) # undecorate
kth count = pair[0]

return top k

7 of 7

