
COSC 101 Handout #35: Process Query Fall 2014

1 Process queries

Our goal is to write the process query function in the homework. This is a complicated function so
we will build three versions of it, each one progressively more complex.

The inputs to process query are:

• a string representing a query, such as 'cat dog'

• a reverse index, which is a dictionary whose key-value pairs are a word (the key) and the list
of web pages containing that word (the value). Here is an example:

reverse index = { ' cat ' : [' fake1.html ' , ' fake3.html '],
' dog ' : [' fake1.html ' , ' fake2.html '],
' horse ' : [' fake1.html ']}

1. process query depends on some list processing functions. Write the functions list union,
list intersection, and list difference. (Solutions to these functions will be briefly reviewed
in class, but will not be posted in the handout.)

Challenge Edition (optional): If you want an extra challenge, try writing list intersection
without using the in operator or the count method, both of which are slow if the lists are big.
Instead, sort each list and then use a while loop and move up each list looking for items that
occur in both lists. Hint: maintain index i for L1 and j for L2 and increment one, the other, or
sometimes both depending on whether L1[i] is smaller, bigger, or equal to L2[j].

Solution: Solutions were reviewed in class.

2. Write a function process query1 that takes in a query and a reverse index and returns a list
of web pages that contain any of the query terms. For example, 'cat dog' should return
['fake1.html', 'fake2.html', 'fake3.html']. You may assume the query contains only low-
ercase words having only alphabetical characters.

Solution:

def process query1(query, index):

terms = query.split()

matches = []

for term in terms:

term matches = get query hits(term, index)

matches = list union(matches, term matches)

return matches

1 of 3

COSC 101 Handout #35: Process Query Fall 2014

3. Write a function process query2 that takes in a query and a reverse index and returns a list of
web pages that contain any of the query terms, unless the first term is 'AND'. In this case, it
should return the web pages that contain all of the query terms. For example, 'AND cat dog'
should return ['fake1.html']. You may assume the query contains only lowercase words hav-
ing only alphabetical characters (except of course the first word may be 'AND').

Solution:

def process query2(query, index):

terms = query.split()

if terms[0] == ' AND ' :
terms.pop(0) # remove the AND
intersect = True

else:

intersect = False

matches = get query hits(terms[0], index) # i f intersecting ,
cannot s tar t with
empty matches!

for term in terms[1:]:

term matches = get query hits(term, index)

if intersect:

matches = list intersection(matches, term matches)

else:

matches = list union(matches, term matches)

return matches

4. Write a function process query3 that works like process query2 except that it handles the case
when the query contains minus terms. A minus term such as '−horse' should be used to filter
the results: any web page that contains this term should be removed from the results. Again,
you may assume the query contains only lowercase words having only alphabetical characters
(except of course the first word may be 'AND').

For example, 'cat dog −horse' should return ['fake2.html', 'fake3.html'].

Another example, 'AND cat dog −horse' should return [].

Solution:
def remove negatives(L):

' ' ' (l i s t of s t r) −> l i s t of s t r
Removes items from L that s tar t with '− ' .
Returns a l i s t containing the items that have been
removed . The '− ' i s removed from each item .
' ' '

2 of 3

COSC 101 Handout #35: Process Query Fall 2014

i = 0

exclude L = []

while i < len(L):
if L[i].startswith('− '):

term = L.pop(i)

exclude L.append(term[1:]) # remove minus
else:

i += 1

return exclude L

def process query3(query, index):

terms = query.split()

if terms[0] == ' AND ' :
terms.pop(0) # remove the AND
intersect = True

else:

intersect = False

exclude terms = remove negatives(terms)

matches = get query hits(terms[0], index) # i f intersecting ,
cannot s tar t with
empty matches!

for term in terms[1:]:

term matches = get query hits(term, index)

if intersect:

matches = list intersection(matches, term matches)

else:

matches = list union(matches, term matches)

for term in exclude terms:

term matches = get query hits(term, index)

matches = list difference(matches, term matches)

return matches

5. Write the final version of process query. It is similar to version 3 above. However, each term in
the query must be normalized using the normalize word function. Read through the homework
to make sure all requirements are handled. Also, test your code using the test cases in the
homework description.

3 of 3

