
COSC 101 Handout #32: Review for Exam 3 Fall 2014

1 Review

Exam 3 covers units 1-5, and does not include unit 6 (recursion). Since exam 2 covered units 1-4,
you should focus your studying on unit 5 but be aware that anything from units 1-4 is fair game.
The handouts for unit 5 are on Moodle and on the course schedule website.

Exercises

Some solutions are presented in class and also included in the moodle version of this handout.

1. Write a function that accepts a file name as a parameter (a string), and prints each line of the
file in order of longest line to shortest line. The function does not need to return anything.

Solution:

def sort by length(filename):

f = open(filename)

data = []

for line in f:

data.append([len(line), line.strip()])

data.sort()

for datum in data:

print datum[1]

sort by length (' example . t x t ')

2. Write a function prune list that takes a string frag a list of strings words and returns a new list
that contains all the words that start with frag.

>>> L = [' cat ' , ' horse ' , ' cattail ' , ' dog ']
>>> prune list(' cat ' , L)
>>> print L
[' cat ' , ' cattail ']

Solution:

def prune list0(frag, words):

less words = []

for word in words:

if word.startswith(frag):

less words.append(word)

return less words

1 of 4

COSC 101 Handout #32: Review for Exam 3 Fall 2014

L = [' cat ' , ' horse ' , ' cattail ' , ' dog ']
print prune list0(' cat ' , L)

3. Same idea as previous question but modify the list rather than return a new list. Write a function
prune list that takes a string frag a list of strings words and modifies the list, removing all
words that do not start with frag. The function should return None.

>>> L = [' cat ' , ' horse ' , ' cattail ' , ' dog ']
>>> prune list(' cat ' , L)
>>> print L
[' cat ' , ' cattail ']

Solution:

def prune list(frag, words):

i = 0

while i < len(words):
if not words[i].startswith(frag):

words.pop(i)

else:

i += 1

4. Al and Buffy go out birding. Each returns with a list of bird sightings. For example, Al returns
with ['hawk', 'jay', 'hawk', 'cardinal', 'jay', 'jay'] and Buffy returns with
['kestrel', 'kestrel', 'jay']. Write a function eagle eye al that takes in two lists, Al’s and
Buffy’s, and returns the kind that Al saw the most frequently but Buffy did not see it at all.

In the above example, the correct answer is 'hawk' because Al saw two hawks whereas Buffy
saw none. (Al saw jays more frequently than hawks, but Buffy saw a jay so jays are excluded
from consideration.)

Solution:
def histogram(L):

hist = { }

for item in L:

if item not in hist:

hist[item] = 1

else:

hist[item] += 1

return hist

2 of 4

COSC 101 Handout #32: Review for Exam 3 Fall 2014

def eagle eye al(a list , b list):

a hist = histogram(a list)

b hist = histogram(b list)

max key = None

max count = −1

for key in a hist:

if key not in b hist and a hist[key] > max count:
max count = a hist[key]

max key = key

return max key

L = [' hawk ' , ' jay ' , ' hawk ' , ' cardinal ' , ' jay ' , ' jay ']
L2 = [' kestrel ' , ' kestrel ' , ' jay ']
print eagle eye al(L, L2)

3 of 4

COSC 101 Handout #32: Review for Exam 3 Fall 2014

5. Consider these two programs.

(a) What is printed?

def f(t):

t = t.upper()

return t

s = ' abc '
f(s)

print s

(b) What is printed?

def g(L):

for i in range(len(L)):

L[i] = L[i].upper()

return L

a list = [' abc ' , ' xyz ']
g(a list)

print a list

(c) Explain the difference between the two functions in terms of aliasing.

Solution: In both cases, the argument and the parameter are aliases (i.e., s is aliased
with t in the first and a list is aliased with L in the second). However, an important
difference is that strings are immutable whereas lists are mutable. Since lists are mu-
table, the line L[i] = L[i].upper() actually modifies the list object that a list refers
to, thus a list is changed by the function. Since strings are immutable, t = t.upper()
simply makes a new string which t refers to but the original string that s refers to is
unmodified.

4 of 4

