
COSC 101 Lecture #29 Handout: Decorate, Sort, Undecorate pattern Fall 2014

Decorate, sort, undecorate pattern

In a previous example, we read a file that contained data about Words with Friends games between
me and my sister. Suppose we want to read this data again, and this time print out the scores of the
games in a certain order. For instance, let’s order by the difference in score (Nancy’s score minus
Michael’s score) from largest to smallest.

This is the first three lines of our desired output:

Nancy: 474, Michael: 357

Nancy: 440, Michael: 366

Nancy: 361, Michael: 341

... and so on...

We can read the data from a file and store nicely formatted results in a list, like this:

f = open(’wwf scores.txt’)

for i in range(3): # skip header
f.readline()

results = [] # a l i s t of nicely formatted resul ts
for line in f:

data = line.strip().split(’,’)

nancy = data[1]

michael = data[2]

result = "Nancy:"+nancy + ", Michael"+michael

results.append(result)

f.close()

print "\n".join(results)

But how do we get that list sorted in the way we want it? The decorate, sort, undecorate pattern
is useful here. It’s useful when you have a list of data that you want ordered. It has three steps:

(1) Decorate Make a list of pairs where the first item in the pair is the value by which you want to
sort and the second item is the data you want sorted.

(2) Sort Sort the list.

(3) Undecorate Extract the desired data from the list.

Here it is in action.

1 of 5

COSC 101 Lecture #29 Handout: Decorate, Sort, Undecorate pattern Fall 2014

f = open(’wwf scores.txt’)

for i in range(3): # skip header
f.readline()

results = [] # a l i s t of nicely formatted resul ts
for line in f:

data = line.strip().split(’,’)

nancy = data[1]

michael = data[2]

result = "Nancy:"+nancy + ", Michael"+michael

diff = int(nancy) − int(michael)

results.append([diff, result]) # DECORATE
f.close()

results.sort() # SORT by di f f , smallest to largest
results.reverse() # now largest to smallest
for i in range(len(results)):

results[i] = results[i][1] # UNDECORATE: drop di f f , keep resul t
print "\n".join(results) # print one resul t per l ine

Exercises

Some solutions are presented in class and also included in the moodle version of this handout. This
is a sequence of exercises about anagrams.

1. Suppose there is a file named ’words.txt’ that contains a huge list of English words, one per
line. Write a function that reads this file and returns the list of words sorted alphabetically.

Solution:

def load word list():

’ ’ ’
() −> l i s t of s t r
Expects a f i l e called words . t x t to be located in same folder .
Returns a sorted l i s t of words read from words . t x t .
’ ’ ’
wordlist = []

in file = open(’words.txt’)

for line in in file:

line = line.strip()

line new = line.lower()

wordlist.append(line new)

in file.close()

wordlist.sort()

return wordlist

2 of 5

COSC 101 Lecture #29 Handout: Decorate, Sort, Undecorate pattern Fall 2014

2. Write a function that takes a word (a string) and returns the word’s signature. The signature is
a string containing the letters of word in sorted order.

Solution:

def signature(word):

’ ’ ’ (s t r) −> s t r
Returns signature for word which is a string
containing the l e t t e r s of word in sorted order
>>> signature (’god ’)
’dgo’
’ ’ ’
L = list(word)

L.sort()

return ’’.join(L)

3. Write a function that takes a word list and returns a list of anagram groups. An anagram group
is a list of words that are anagrams of one another. Hint: use a python dictionary to collect
words having the same signature.

Solution:

def anagram groups(words):

’ ’ ’ (l i s t of s t r) −> l i s t of [l i s t of s t r]
Given a l i s t of words , groups together words
into anagram groups and returns a l i s t of l i s t s
where each subl i s t a group of words that are
anagrams of one another .
>>> words = [’ ate ’ , ’banana ’ , ’dog ’ , ’ eat ’ , ’god ’ , ’ tea ’]
>>> anagram groups(words)
[[’banana ’] , [’ ate ’ , ’ eat ’ , ’ tea ’] , [’dog ’ , ’god ’]]
’ ’ ’
sig to words = { }

for word in words:

sig = signature(word) # see previous exercise
if sig not in sig to words:

sig to words[sig] = []

sig to words[sig].append(word)

return sig to words.values() # we only want the word groups

For the remaining exercises, suppose we have a list called ana groups. It is a list of lists. Each
sublist is a group of words that are anagrams. For example:

ana groups = [[’ab’, ’ba’], [’ate’, ’eat’, ’tea’], [’east’, ’seat’], [’banana’]]

3 of 5

COSC 101 Lecture #29 Handout: Decorate, Sort, Undecorate pattern Fall 2014

4. Write a function that takes a list of anagram groups and a number k and prints the top k largest
anagram groups. Size is measured in terms of number of words in the group. Use the DSU
pattern!

Solution:

def print largest anagrams(anagram lists , k):

’ ’ ’ (l i s t of [l i s t of s t r] , in t) −> NoneType
Expects a l i s t of anagram groups . Prints out the
top k largest anagrams .
’ ’ ’

DECORATE
top k = []

for group in anagram lists:

size = len(group)

top k.append([size, group]) # group decorated by size of group

SORT
top k.sort() # from smallest to largest group
top k.reverse() # reverse that

UNDECORATE
for data in top k[:k]:

size = data[0]

group = data[1] # we only care about the group at th i s point
print ’,’.join(group)

words = [[’seat’, ’east’], [’ate’, ’eat’, ’tea’], [’banana’]]

print largest anagrams(words, 2)

5. Write a function that takes a list of anagram groups and a number k and prints the top k longest
anagrams. Length is measured in terms of number of characters in the anagram. Use the DSU
pattern!

Solution:
def print longest anagrams(anagram lists , k):

’ ’ ’ (l i s t of [l i s t of s t r] , in t) −> NoneType
Expects a l i s t of anagram groups . Prints out the
top k longest anagrams .
’ ’ ’

4 of 5

COSC 101 Lecture #29 Handout: Decorate, Sort, Undecorate pattern Fall 2014

DECORATE
top k = []

for group in anagram lists:

if len(group) > 1: # must have at least two words to be interest ing !
length = len(group)

top k.append([length, group]) # group decorated by length of words

SORT
top k.sort() # from smallest to largest group
top k.reverse() # reverse that

UNDECORATE
for data in top k[:k]:

length = data[0]

group = data[1] # we only care about the group at th i s point
print ’,’.join(group)

words = [[’seat’, ’east’], [’ate’, ’eat’, ’tea’], [’banana’]]

print longest anagrams(words, 2)

5 of 5

