
COSC 101 Lecture #27 Handout: Dictionaries, Part 2 Fall 2014

Dictionaries were described in the previous handout. The focus of today is getting practice with
using dictionaries. One new idea is the idea of inverting a dictionary.

Inverting a dictionary

Suppose we have a dictionary that maps friends to phone numbers.

friends numbers = {’alice’: ’315−825−5555’,

’matt’: ’315−824−7777’,

’gerome’: ’413−835−5555’ }

If we invert this dictionary, we get a dictionary that maps phone numbers to friends. In other words,
the keys become values and vice versa. Here is how we might do that.

numbers to friends = { }

for friend in friends numbers:

number = friends numbers[friend]

numbers to friends[number] = friend

The resulting dictionary numbers to friends looks like this:

{’315−824−7777’: ’matt’, ’315−825−5555’: ’alice’, ’413−835−5555’: ’gerome’ }

Before inverting a dictionary, we must consider the possibility that the same value appears more
than once. In this example, that would mean two different friends sharing the same phone number.
That’s pretty unlikely in this particular example. However, in Exercise 3 below, duplicate values
are quite possible and we must handle them properly. See the solution for exercise 3 to see how
we handle duplicate the values.

Exercises

Here are some exercises that will help you learn how to use dictionaries. Some solutions are
presented in class and also included in the moodle version of this handout.

1. Given a list of bird sightings, write a function that returns a dictionary that maps bird names
to their frequency of sightings.

Solution:

def new sighting(bird counts , sighting):

’ ’ ’ (dict of { s t r : in t } , s t r) −> NoneType
Adds new sighting bird counts dictionary .
’ ’ ’
if sighting not in bird counts:

1 of 6

COSC 101 Lecture #27 Handout: Dictionaries, Part 2 Fall 2014

bird counts[sighting] = 0

bird counts[sighting] = bird counts[sighting] + 1

recorded bird sightings
sightings = [’osprey’, ’osprey’, ’red−tailed hawk’,

’harrier falcon’, ’osprey’,

’peregrine falcon’, ’harrier falcon’,

’osprey’, ’osprey’, ’osprey’,

’harrier falcon’, ’osprey’,

’harrier falcon’, ’osprey’,

’harrier falcon’, ’osprey’,

’red−tailed hawk’, ’osprey’,

’osprey’]

bird counts = { }

add the sightings to bird counts
for sighting in sightings:

new sighting(bird counts , sighting)

print them out
for kind in bird counts:

print kind, bird counts[kind]

2. Given a dictionary of bird sightings (key is bird kind, value is number of sightings), write a
function that prints out the birds and their sighting frequency. The birds should be ordered
alphabetically. Hint: there is no sort method on dictionaries but there is a sort method on lists.

Solution:

def print sorted(bird counts):

’ ’ ’ (dict of { s t r : in t }) −> NoneType
Expects bird counts to be a dictionary of
bird counts (key is kind , value is count) .
Prints bird kind along with i t s count in
alphabetical order .
’ ’ ’
kinds = bird counts.keys()

kinds.sort()

for kind in kinds:

print kind, bird counts[kind]

2 of 6

COSC 101 Lecture #27 Handout: Dictionaries, Part 2 Fall 2014

birds = {’peregrine falcon’: 1, ’harrier falcon’: 5,

’red−tailed hawk’: 2, ’osprey’: 11}

print sorted(birds)

3. Given a dictionary of bird sightings (key is bird kind, value is number of sightings), write a
function that returns an inverted dictionary: the key is a number, and the value is a list of birds
that were seen that number of times.

Solution:
def invert dictionary(bird counts):

’ ’ ’ (dict of { s t r : in t }) −> dict of { in t : l i s t of s t r }
Expects bird counts to be a dictionary of
bird counts (key is kind , value is count) .
Returns a dictionary that maps a count to the
l i s t of birds having that count .
>>> birds = { ’ robin ’: 2 , ’ tern ’:1 , ’ finch ’:2}
>>> invert dict ionary (birds)
{1: [’ tern ’] , 2: [’ robin ’ , ’ finch ’]}
’ ’ ’
make a new dictionary
count to birds = { }

loop over kinds of birds (the keys of bird counts)
for each kind of bird . . .
for kind in bird counts:

. . . look up count for th i s kind
count = bird counts[kind]

. . . i f count i s NOT already present in new
dictionary , add the count
if count not in count to birds:

count to birds[count] = []

. . . add th is bird to l i s t of birds having th is
count
count to birds[count].append(kind)

return new dictionary
return count to birds

3 of 6

COSC 101 Lecture #27 Handout: Dictionaries, Part 2 Fall 2014

birds = {’peregrine falcon’: 1, ’harrier falcon’: 2,

’red−tailed hawk’: 2, ’osprey’: 5}

print invert dictionary(birds)

4. Same as exercise 2 but print the results ordered by frequency from largest to smallest. Hint:
you may need to first invert the dictionary.

Solution:

def invert dictionary(bird counts):

count to birds = { }

for kind in bird counts:

count = bird counts[kind]

if count not in count to birds:

count to birds[count] = []

count to birds[count].append(kind)

return count to birds

def print sorted2(bird counts):

’ ’ ’ (dict of { s t r : in t }) −> NoneType
Expects bird counts to be a dictionary of
bird counts (key is kind , value is count) .
Prints bird kind along with i t s count in
alphabetical order .
’ ’ ’
count to birds = invert dictionary(bird counts)

counts = count to birds.keys()

counts.sort()

counts.reverse()

for count in counts:

for bird in count to birds[count]:

print bird, count

birds = {’peregrine falcon’: 1, ’harrier falcon’: 5,

’red−tailed hawk’: 2, ’osprey’: 11}

print sorted2(birds)

5. Suppose two birders go out bird watching and then they want to combine their results. Write

4 of 6

COSC 101 Lecture #27 Handout: Dictionaries, Part 2 Fall 2014

a function that takes two bird count dictionaries and merges them. The function should return
a new dictionary that contains every kind of bird that occurs in either dictionary. The count
for that bird should be the total count (if the bird occurs in both input dictionaries, the new
dictionary should have the sum of those counts). Keep in mind that some birds may only
appear in one of the input dictionaries and not both.

Solution:

def merge(bird counts1 , bird counts2):

’ ’ ’ (dict of { s t r : in t } , d ic t of { s t r : in t }) −> dict of { s t r : in t }
Expects bird counts1 and bird counts2 to be
dict ionaries of bird counts (key is kind , value
is count) . Returns a dictionary that resul ts
from merging bird counts1 and bird counts2 .
>>> birds1 = { ’ robin ’: 2 , ’ tern ’:4}
>>> birds2 = { ’ robin ’: 1 , ’owl ’:1}
>>> merge(birds1 , birds2)
{ ’ tern ’: 4 , ’ robin ’: 3 , ’owl ’: 1}
’ ’ ’
make a new dictionary
merged counts = { }

add al l from f i r s t dictionary
for kind in bird counts1:

check i f kind is already present in new
dictionary
if kind not in merged counts:

merged counts[kind] = 0

merged counts[kind] += bird counts1[kind]

add any from second dictionary
for kind in bird counts2:

if kind not in merged counts:

merged counts[kind] = 0

merged counts[kind] += bird counts2[kind]

return new dictionary
return merged counts

6. Same as previous question but the new dictionary should only contain the counts of birds that
were seen by both birders. If a bird only appears in one of the input dictionaries, it should not
be included in the final result.

5 of 6

COSC 101 Lecture #27 Handout: Dictionaries, Part 2 Fall 2014

Solution:

def merge2(bird counts1 , bird counts2):

’ ’ ’ (dict of { s t r : in t } , d ic t of { s t r : in t }) −> dict of { s t r : in t }
Expects bird counts1 and bird counts2 to be
dict ionaries of bird counts (key is kind , value
is count) . Returns a dictionary that resul ts
from merging bird counts1 and bird counts2 where
only bird that appear in both are kept .
>>> birds1 = { ’ robin ’: 2 , ’ tern ’:4}
>>> birds2 = { ’ robin ’: 1 , ’owl ’:1}
>>> merge2(birds1 , birds2)
{ ’ robin ’: 3}
’ ’ ’
make a new dictionary
merged counts = { }

add al l from f i r s t dictionary
for kind in bird counts1:

only add i f also in second dictionary
if kind in bird counts2:

total = bird counts1[kind] + bird counts2[kind]

merged counts[kind] = total

return new dictionary
return merged counts

6 of 6

