
COSC 101 Lecture #25 Handout (a): Aliasing Fall 2014

1 Aliasing and mutable objects

Aliasing is when two or more variables refer to the same object. This is not a new concept for us...
however, things get more interesting when the object is mutable.

For example, L2 is an alias of L (and vice versa) because they both refer to the same list object.

>>> L = [1,2,3]
>>> L2 = L
>>> print L2
[1, 2, 3]

>>> L[1] = 200
>>> print L
[1, 200, 3]

>>> print L2 # s ince L2 i s an a l ias , the change to L a f f e c t s L2 !
[1, 200, 3]

Notice that even though we did not do anything with the variable L2, it is clearly affected by
operations performed on its alias L. Since lists are mutable, when you change L, you are also
changing L2 since they both refer to the same object. Strings can be aliased too but since they are
not mutable, we tend not to worry about the fact that two variables might refer to the same string
object.

The python visualizer is a great tool for understanding aliasing (http://www.pythontutor.
com/visualize.html). Be sure to adjust the settings so they look like this:

or this

There’s more on the back!

1 of 2

COSC 101 Lecture #25 Handout (a): Aliasing Fall 2014

2 Aliasing and functions

Aliasing arises with functions. The parameter of a function is always an alias of the variable that
is passed in as an argument. In this example, the parameter L is an alias of the argument a list.

def double(L):
’ ’ ’
(l i s t o f i n t) −> NoneType
Doubles every number in l i s t L
’ ’ ’
for i in range(len(L)):

L[i] = L[i] ∗ 2

print L

a list = [5, 6]

double(a list)

print a list

If we run the above code, the list [10, 12] is printed twice (once for print L and once for
print a list). That’s because...

• L and a list are aliases: they refer to the same list object

• the function mutates the list object: each value in the list is doubled

3 Avoiding aliasing

To avoid aliasing, you can make a copy of the list (using slicing). In this example, L and L2 are not
aliases.

>>> L = [1,2,3]
>>> L2 = L[:] # makes a copy
>>> L[1] = 200
>>> print L
[1, 200, 3]

>>> print L2
[1, 2, 3]

Subtle detail: if you are an eagle-eyed observer, you might notice that while these two lists are not
aliases, the contain the same collection of items. If those items are mutable (e.g., the item is itself
a list) then mutating one of the items in L would cause a change to that item in L2. If you do not
understand this subtle detail, do not worry about it at this point.

2 of 2

COSC 101 Lecture #25 Handout (b): List methods Fall 2014

Lecture #17 handout introduced lists. This handout describes list methods.

1 Lists vs. strings
We have compared lists and strings before. Here are some new similarities and differences. List
also support slicing and it works exactly the same way as it does on strings (Handout #19). Lists
and strings have some methods in common, such as count. Some methods are different: for
instance find on a string works differently than index on a list. Another significant difference:
lists have methods that mutate the list object. The table below indicates which methods actually
change or mutate the list. Finally, you can translate from lists to strings and back. To turn a string
into a list, use the list function. To turn a list of characters into a string, use the join method.

>>> s = "hello"
>>> L = list(s)
>>> L
[’h’, ’e’, ’l’, ’l’, ’o’]

>>> L[0] = ’c’
>>> s2 = ’’.join(L)
>>> s2
’cello’

2 List methods
For a complete list of methods, type dir(list) into the IDLE shell and use help, as in help(list.index).

List Method Arguments Description Mutates?
append x Adds item x to the end of the list. Yes!
extend other list Adds all of the items in list other list to the end of the list. Yes!
remove x removes x from the list and returns nothing.If x is not in the

list, you get an error.
Yes!

pop i Returns the item at index i and also removes it from the list. Yes!
count x Returns the number of times item x occurs in the list
index x, start, end Returns index of item. If x not in list, you get an an error!

Note difference from find method on strings. The start and
end parameters are optional.

insert i, x Moves items at indexes i and larger to the right and inserts
x in list at position i.

Yes!

reverse none Reverses the list. This method returns None. Yes!
sort none Sorts the list. This method returns None. Yes!

>>> L = [’a’, ’b’, ’c’, ’b’, ’d’, ’b’]
>>> L.index(’c’)
2

>>> L.index(’z’)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: ’z’ is not in list

1 of 5

COSC 101 Lecture #25 Handout (b): List methods Fall 2014

>>> L.count(’z’)
0

>>> L.count(’b’)
3

>>> L.pop(2)
’c’

>>> L
[’a’, ’b’, ’b’, ’d’, ’b’]

>>> L.remove(’d’)
>>> L
[’a’, ’b’, ’b’, ’b’]

>>> L.remove(’z’)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: list.remove(x): x not in list
>>> L.append(’A’)
>>> L.insert(1, ’z’)
>>> L
[’a’, ’z’, ’b’, ’b’, ’b’, ’A’]

>>> L.extend([’b’, ’c’])
>>> L
[’a’, ’z’, ’b’, ’b’, ’b’, ’A’, ’b’, ’c’]

>>> L.sort() # s o r t mutates l i s t and re turns None
>>> L
[’A’, ’a’, ’b’, ’b’, ’b’, ’b’, ’c’, ’z’]

>>> L = L.sort() # WRONG! s o r t does NOT re turn the sor ted l i s t
>>> print L # L i s now None !
None

3 Exercises
Some solutions are presented in class and also included in the moodle version of this handout.

1. Write a function remove all that takes that takes L, a list of ints, and an int x and removes all
occurrences of x from the list. Hint: use count, remove, and a while loop. Important point:
if you want to repeatedly add/remove items from a list, it’s not a good idea to use a for loop
over that list. (Essentially a for loop assumes the thing it’s looping over is not changing.)

Solution:

def remove all(L, x):
’ ’ ’ (l i s t o f in t , i n t) −> NoneType
Removes a l l occurrences of x from L .
Modif ies the l i s t and re turns None .
>>> a l i s t = [1 , 2 , 1 , 5 , 1 , 4]

2 of 5

COSC 101 Lecture #25 Handout (b): List methods Fall 2014

>>> remove al l (a l i s t , 1)
>>> a l i s t
[2 , 5 , 4]
’ ’ ’
while L.count(x) > 0:

L.remove(x)

2. Write a function remove less than that takes L, a list of ints, and an int x and removes any
occurrence that is strictly less than x. Again, use a while loop.

Solution:

def remove less than(L, x):
’ ’ ’ (l i s t o f in t , i n t) −> NoneType
Removes a l l i tems from L t h a t are l e s s than
x . Modif ies the l i s t and re turns None .
>>> a l i s t = [1 , 2 , 1 , 5 , 1 , 4]
>>> remove less than (a l i s t , 2)
>>> a l i s t
[2 , 5 , 4]
’ ’ ’
i = 0

while i < len(L):
if L[i] < x:

L.pop(i)

else:
i += 1

3. Write a function is anagram that takes two strings and returns True if the strings are anagrams
of each other. Challenge edition: ignore spaces and be case-insenstive. So ’Dormitory’ is an
anagram of ’Dirty Room’.

Solution:

def cleanup(s):
’ ’ ’ (s t r) −> s t r
Returns s in lower case with spaces removed .
>>> cleanup (’ Dir ty Room ’)
’ dirtyroom ’
’ ’ ’
s = s.lower()

L = s.split()

3 of 5

COSC 101 Lecture #25 Handout (b): List methods Fall 2014

return ’’.join(L)

def is anagram(s, s2):
’ ’ ’
(s t r , s t r) −> bool
Returns True i f s and s2 are anagrams ,
False otherwise . When checking for anagrams
i t ignores spaces and case .
>>> is anagram (’ Dir ty Room ’ , ’ Dormitory ’)
True
>>> is anagram (’ l i s t e n ’ , ’ s i l e n t ’)
True
>>> is anagram (’ l i s t e n ’ , ’ s i l e n c e ’)
False
’ ’ ’
s = cleanup(s)

s2 = cleanup(s2)

L = list(s)

L2 = list(s2)

L.sort()

L2.sort()

return L == L2

4. Write a function count distinct that takes a list and returns the number of distinct items. For
example, on [10, 20, 10, 30, 20] it should return 3 because there are three distinct items.

Solution:
def count distinct(L):

’ ’ ’ (l i s t o f ob j ec t) −> i n t
Returns the number of d i s t i n c t o b j e c t s in L .

Expects L to contain at l e a s t one item .
>>> c o u n t d i s t i n c t ([10 , 20 , 10 , 30 , 20])
3
>>> c o u n t d i s t i n c t ([10 , 20 , 10 , 30 , 40])
4
’ ’ ’
L = L[:] # make copy to avoid modifying a l i a s
L.sort()

current = L[0]

distinct = 1

for i in range(1, len(L)):

4 of 5

COSC 101 Lecture #25 Handout (b): List methods Fall 2014

if L[i] != current:
current = L[i]

distinct += 1

return distinct

5 of 5

