
COSC 101 Lecture #22 Handout: Program Design, Part 2 Fall 2014

This handout continues an example that was started in the previous handout.

1 Playing multiple games

We would like to enhance our game so that once a single game is finished, we prompt the user to
play to see if he/she wants to play again. Below are two possible ways to add the “play again”
feature to our program. Both examples play a game that is even simpler than mastermind: it’s a
“guess a number” game where the computer selects 13 as the secret number and the user has three
chances to guess the secret number.

Version 1 Version 2

def play again():
answer = raw input("Play again? ")

return answer == ’y’

def play game():
secret = ’13’

num guesses = 0

while num guesses < 3:
guess = raw input("Guess: ")

if guess == secret:
break

num guesses += 1

if guess == secret:
print "You win!"

else:
print "You lose!"

def play games():
keep playing = True

while keep playing:
play game()

keep playing = play again()

print "Well, fine, see ya later!"

play games()

def play again():
answer = raw input("Play again? ")

if answer == ’y’:
play game()

print "Well, fine, see ya later!"

def play game():
secret = ’13’

num guesses = 0

while num guesses < 3:
guess = raw input("Guess: ")

if guess == secret:
break

num guesses += 1

if guess == secret:
print "You win!"

else:
print "You lose!"

play again()

play game()

Which version has a better program design? The answer is on the back of this handout, but don’t
peek!

1 of 5

COSC 101 Lecture #22 Handout: Program Design, Part 2 Fall 2014

Version 1 is better than Version 2. The main reason is because the functions have a hierarchical
structure, as shown in this diagram. Each box is a function and there is an arrow from box A to
box B if function A calls function B.

play_games

play_game

play_again

In contrast, Version 2 is non-hierarchical:

play_game play_again play_game play_again ...

With Version 2, python never “leaves” the first game. In fact, if you play 4 games and then decide
to stop, you will see that Well, fine, see ya later! is printed four times!

Furthermore, in Version 2, the play game function not SOFA because it does more than one thing:
it not only plays a single game, but it actually initiates the process of playing multiple games.

2 Exercises
Solutions are presented in class and also included in the moodle version of this handout. All of
these questions are in the context of the game of mastermind.

1. Write a function count exact that takes in a guess and a secret code and counts the number of
exact matches (correct color, correct place).

Solution:

def count exact(secret, guess):
’ ’ ’ (s t r , s t r) −> i n t
Returns number of exact matches between s e c r e t
and guess . Match i s exact i f same character
occurs at the same index .

Expects guess and s e c r e t to have same leng th .
>>> count exac t (’RBGY ’ , ’RGBY ’)
2
’ ’ ’
count = 0

for i in range(len(secret)):
if secret[i] == guess[i]:

count += 1

return count

2 of 5

COSC 101 Lecture #22 Handout: Program Design, Part 2 Fall 2014

2. Write a function count inexact that takes in a guess and a secret code and counts the number
of inexact matches (correct color, incorrect place). Avoid double counting exact matches!

Solution:

def count inexact(secret, guess):
’ ’ ’ (s t r , s t r) −> i n t
Returns number of inexac t matches between s e c r e t
and guess . Match i s inexac t i f same character
occurs but at a d i f f e r e n t p o s i t i o n .

Expects guess and s e c r e t to have same leng th .
>>> coun t inexac t (’RBGY ’ , ’RGBY ’)
2
>>> coun t inexac t (’GOOO’ , ’GPPG’)
0
>>> coun t inexac t (’GOOO’ , ’PGGP’)
1
>>> coun t inexac t (’RYOP ’ , ’RGGG’)
0
>>> coun t inexac t (’RRGB ’ , ’YYRY ’)
1
>>> coun t inexac t (’RYOP ’ , ’GGGR’)
1
>>> coun t inexac t (’RRRG ’ , ’RGGG’)
0
’ ’ ’
secret = list(secret)

guess = list(guess)

mark exact matches
for i in range(len(secret)):

if secret[i] == guess[i]:
secret[i] = ’!’ # mark s e c r e t
guess[i] = ’?’ # mark guess with d i f f e r e n t

character to avoid match

count inexac t matches
white pins = 0

for i in range(len(guess)):
for j in range(len(secret)):

if guess[i] == secret[j]:
guess[i] = ’?’

secret[j] = ’!’

3 of 5

COSC 101 Lecture #22 Handout: Program Design, Part 2 Fall 2014

white pins += 1

return white pins

3. Write a function is valid that takes in a guess, which is a string, and returns True if the guess
is valid and False otherwise. A guess is valid if it contains 4 characters consisting only of the
letters R, G, B, Y, P, and O.

Solution:

COLORS = ’RGBYPO’ # red , green , blue , yellow , purple , orange

def is valid(guess):
’ ’ ’ (s t r) −> bool
Returns True when guess i s val id , meaning
t h a t i t i s 4 charac ters long and i t c o n s i s t s
only of charac ters in COLORS.
’ ’ ’
if len(guess) != 4:

return False
for ch in guess:

if ch not in COLORS:
return False

return True

4. Write a function prompt user that repeatedly prompts the user for a guess until they enter a
valid guess. This function should call is valid. This function should not take any parameters
and it should return a string, corresponding to a valid user guess.

Solution:

def prompt user(guess num , total guesses):
’ ’ ’ (in t , i n t) −> s t r
Prompts user for acceptable guess . Guess
i s acceptable i f i t i s 4 character long
and i t c o n s i s t s only of charac ters in COLORS.

Each prompt t e l l s user which guess num i t i s
and the t o t a l g u e s s e s they have .

Returns user ’ s f i r s t va l i d guess .
’ ’ ’
prompt = "Make a guess (" + str(guess num) + " of " + str(total guesses) + "): "

4 of 5

COSC 101 Lecture #22 Handout: Program Design, Part 2 Fall 2014

guess = raw input(prompt)

while not is valid(guess):
guess = raw input("Invalid guess. " + prompt)

return guess

5. Write a function generate code that randomly generates a secret code. The secret code should
be exactly four characters randomly selected (with replacement) from letters R, G, B, Y, P, and
O. Hint: import the randommodule use random.randint(0,5) to randomly generate a number
between 0 and 5 (inclusive) and use this random number to index into the string ’RGBYPO’.
Repeat this process four times to build up a secret code.

Solution:

COLORS = ’RGBYPO’ # red , green , blue , yellow , purple , orange

def generate code():
’ ’ ’ () −> s t r
Returns 4 character s t r i n g c o n s i s t i n g of
charac ters in COLORS, randomly chosen .
’ ’ ’
code = ’’

for in range(4):
idx = random.randint(0, len(COLORS)−1)

code += COLORS[idx]

return code

6. Put all of these pieces together into a play game function that plays a single game of master-
mind. Then write a program that prompts the user to play mastermind and then re-prompts
them to play again after the game ends.

Solution: See final solution in mastermind final.py available on moodle.

5 of 5

